3+1维Jimbo—Miwa方程的非行波解
2017-05-30熊维玲甘桦源
熊维玲 甘桦源
摘 要:利用李群分析法得到(3+1)维Jimbo-Miwa方程的一个对称和两个对称约化方程.通过行波变换将对称约化方程转换为复域的常微分方程,给出复域的常微分方程的亚纯解结构,从而得到了(3+1)维Jimbo-Miwa方程的两类非行波解的结构,并给出该方程的新的非行波精确解.
关键词:(3+1)维Jimbo-Miwa方程;非行波解;李群分析法;对称约化方程;精确解
中图分类号:O175.4 文献标志码:A
0 引言
参考文献
[1] WAZ A M. New solutions of distinct physical structures to high-dimensional nonlinear evolution equations[J].Applied Mathematics and Computation, 2008,196(1):363-370.
[2] 李富志,刘希强. Jimbo-Miwa方程的对称约化及不变解[J].量子电子学报,2008,25(2):155-160.
[3] 傅海明,戴正德. Jimbo-Miwa方程的周期孤波解[J].河南科技大学学报(自然科学版),2009,30(3):92-95.
[4] 田畴.李群及其在微分方程中的应用[M].北京:科学技术出版社,2001.
[5] YUAN W Y,LI Y Z,LIN J M. Meromorphic solutions of an auxiliary ordinary differential equation using complex method[J]. Mathematical Methods in the Applied Sciences,2013,36(13):1776-1782.
[6] LANG S. Elliptcic Function[M].2nd ed. New York:Springer Verlag,1987.
[7] 熊維玲,梁海珍.(3+1)维Kdv-Zakharov-Kuznetsev 方程的亚纯行波解[J].广西科技大学学报,2015,26(4):9-15.
[8] 何晓莹,赵展辉.(3+1)维非线性方程的呼吸类和周期类孤子解[J].广西科技大学学报,2015,26(4):18-20.
Abstract: In this paper, the extract solutions for (3+1)-D Jimbo-Miwa equation have been investigated. One symmetry and two symmetry reduced equations of (3+1)-D Jimbo-Miwa equation are obtained by Lie-group analysis method, which are changed into ordinary differential equations in complex domain by traveling wave transformation. The two classes of non traveling wave solutions for (3+1)-D Jimbo-Miwa equation are constructed making use of the structure of meromorphic solutions for the corresponding ordinary differential equations in complex domain. Meanwhile, the new non traveling wave extract solutions for it are obtained.
Key words:(3+1)-D Jimbo-Miwa equation; non traveling wave solution; Lie-group analysis method; symmetry reduced equation; extract solutions
(学科编辑:张玉凤)