对中学数学教学的几点思考
2017-05-29何金龙
何金龙
摘要:在数学教学中,教师应培养学生的新观念、新思想,创新能力,经营和开拓市场的能力,团队精神的思考,以及解决方案。
关键词:中学数学;教学;能力培养
中图分类号:G633.6 文献标识码:A 文章编号:1992-7711(2016)12-0080
进入新世纪后,我们面临的问题很多,其中最关键的就是怎样使产业升级,在这方面起重要作用的是人才。究竟需要什么样的人才呢?专家指出需要以下四种素质的人才:有新观念;能够不断从事技术创新;善于经营和开拓市场;有团队精神。为此,在数学教学中,我们应加强学生这四个方面能力的培养。
一、在数学教学中培养学生的新观念、新思想
新观念中不仅包含对事物的新认识、新思想,而且包含不断学习的过程。为此,作为新人才就必须学会学习,只有不断地学习,获取新知识更新观念,形成新认识。在数学史上,法国大数学家笛卡尔在学生时代喜欢博览群书,认识到代数与几何割裂的弊病,他用代数方法研究几何的作图问题,指出了作图问题与求方程组的解之间的关系,通过具体问题,提出了坐标法,把几何曲线表示成代数方程,断言曲线方程的次数与坐标轴的选择无关,用方程的次数对曲线加以分类,认识到了曲线的交点与方程组的解之间的關系。主张把代数与几何相结合,把量化方法用于几何研究的新观点,从而创立解析几何学。数学教师在教学中不仅要教学生学会,更应教学生会学。在不等式证明的教学中,笔者重点教学生遇到问题怎么分析,灵活运用比较、分析、综合三种基本证法,同时引导学生用三角、复数、几何等新方法研究证明不等式。
例:已知 a>=0,b>=0,且 a+b=1,求证(a+2)(a+2)+(b+2)(b+2)>=25/2
证明这个不等式方法较多,除基本证法外,可利用二次函数的求最值、三角代换、构造直角三角形等途径证明。若将a+b=1(a>=0,b>=0) 作为平面直角坐标系内的线段,也能用解析几何知识求证。证法如下:在平面直角坐标系内取直线段x+y=1,(0=
二、在数学教学中培养学生的创新能力
创新能力在数学教学中主要表现对已解决问题寻求新的解法。“学起于思,思源于疑”,学生探索知识的思维过程总是从问题开始,又在解决问题中得到发展和创新。教学过程中,学生在教师创设的情境下,自己动手操作、动脑思考、动口表达,探索未知领域,寻找客观真理,成为发现者,要让学生自始至终地参与这一探索过程,发展学生的创新能力。如在球的体积教学中,笔者利用课余时间将学生分为三组,要求第一组每人做半径为10厘米的半球;第二组每人做半径为10厘米高10厘米圆锥;第三组每人做半径为10厘米高10厘米圆柱。每组出一人又组成许多小组,各小组分别将圆锥放入圆柱中,然后用半球装满土倒入圆柱中,学生发现它们之间的关系,半球的体积等于圆柱与圆锥体积之差。球的体积公式的推导过程,集公理化思想、转化思想、等积类比思想及割补转换方法之大成,就是这些思想方法灵活运用的完美范例。教学中再次通过展现体积问题解决的思路分析,形成系统的条理的体积公式的推导线索,把这些思想方法明确地呈现在学生的眼前。学生才能从中领悟到当初数学家的创造思维进程,激发学生的创造思维和创新能力。
三、在数学教学中培养学生经营和开拓市场的能力
一切数学知识都来源于现实生活中,同时,现实生活中许多问题都需要用数学知识、数学思想方法去思考解决。比如,洗衣机按什么程序运行有利节约用水;渔场主怎样经营既能获得最高产量,又能实现可持续发展;一件好的产品设计怎样营销方案才能快速得到市场认可,产生良好的经济效益。为此,数学教学中应有意识地培养学生经营和开拓市场的能力。善于经营和开拓市场的能力在数学教学中主要体现为对一个数学问题或实际问题如何设计出最佳的解决方案或模型。如证明组合恒等式Cnm=Cnm-1+Cn-1m-1,一般分析是利用组合数的性质,通过一些适当的计算或化简来完成。但是可以让学生思考能否利用组合数的意义来证明。即构造一个组合模型,原式左端为m个元素中取n个的组合数。原式右端可看成是同一问题的另一种算法:把满足条件的组合分为两类,一类为不取某个元素a1,有Cnm-1种取法;一类为必取a1有Cn-1m-1种取法。由加法原理及解的唯一性,可知原式成立。又如,经营和开拓市场时,我们常常需要对市场进行一些基本的数字统计,通过建立数学模型进行分析研究来驾驭和把握市场的实例也不少。这类问题的讲解不仅能提高学生的智力和运用数学知识解决实际问题的能力,而且对提高学生的善于经营和开拓市场的能力大有益处。
四、在数学教学中培养学生团队精神
团队精神就是一种相互协作、相互配合的工作精神。数学教师在教学中多设计一些学生互相配合能解决的问题,增进学生协作意识,培养他们的团队精神。如笔者又在讲授球的体积公式时,课前笔者让20名学生用厚0.5厘米的纸板依次做半径为10、9.5、9 …… 0.5厘米圆柱,列出各圆柱的体积计算公式并算出结果。又让40名学生用厚0.25厘米的纸板依次做半径为10、9.75、9.5 …… 0.5、0.25厘米圆柱,列出各圆柱的体积计算公式并算出结果。课堂上笔者先把球的体积公式写在黑板上,然后让学生用两根细铁丝分别将两组圆柱按大到小通过中心轴依次串连得到两个近似半球的几何体。让大家比较它们的体积与半径为10厘米的半球体积,发现第二组比第一组的体积接近于半球的体积,如果纸板厚度变小得到的几何体体积愈接近于半球的体积,帮助学生发现了球的体积公式另一证法。同时,不仅向学生讲教学过程中的实验材料为什么让大家各自准备,而且有意识地让学生损坏串连到一起的几何体和各自的小圆柱。通过这些,学生认识到只有齐心协力才能到达成功的彼岸。数学教学具有不仅使学生学知、学做;而且使学生学共同生活、学共同发展。
(作者单位:江西省金溪县琅琚中学 344800)