浅谈人工智能与机器人情感获得
2017-05-23马文翔
马文翔
摘 要:近年来由于机器学习和深度学习的长足发展,人工智能又一次掀起高潮。特别是其在图像识别、大数据处理、自动驾驶等领域取得的卓越成绩,引起了人们广泛的关注。本文回顾了人工智能的发展历程,分析其核心技术,并讨论了智能机器人情感获得的可能性、利弊以及规避风险的方法,对深入理解人工智能及其发展前景有重要意义。
关键词:人工智能 机器学习 机器人情感获得 发展综述
中图分类号:TP18 文献标识码:A 文章编号:1003-9082 (2017) 04-0234-01
引言
人类自从工业革命结束之后,就已然开始了对人工智能的探索,究其本质,实际上就是对人的思维进行模仿,以此代替人类工作。人工智能的探索最早可以追溯到图灵时期,那时图灵就希望未来的智能系统能够像人一样思考。在20世纪五十年代,人工智能被首次确定为一个新兴的学科,并吸引了大批的学者投入到该领域的研究当中。经过长时间的探索和尝试,人工智能的许多重要基本理论已经形成,如模式识别、特征表示与推理、机器学习的相关理论和算法等等。进入二十一世纪以来,随着深度学习与卷积神经网络的发展,人工智能再一次成为研究热点。人工智能技术与基因过程、纳米科学并列为二十一世纪的三大尖端技术, 并且人工智能涉及的学科多,社会应用广泛,对其原理和本质的理解也更为复杂。 一、人工智能的发展历程
回顾人工智能的产生与发展过程 ,可以将其分为:初期形成阶段,综合发展阶段和高潮应用阶段。
1.初期形成阶段
人工智能这一思想最早的提出是基于对人脑神经元模型的抽象。其早期工作被认为是由美国的神经学家和控制论学者 Warren McCulloch与Walter Pitts共同完成的。在1951年,两名普林斯顿大学的研究生制造出了第一台人工神经元计算机。而其真正作为一个新的概念被提出是在1956年举行的达茅斯会议上。由麦卡锡提议并正式采用了“人工智能”(Artificial Intelligence)來描述这一研究如何用机器来模拟人类智能的新兴学科。1969年的国际人工智能联合会议标志着人工智能得到了国际的认可。至此,人工智能这一概念初步形成,也逐渐吸引了从事数学、生物、计算机、神经科学等相关学科的学者参与该领域的研究。
2.综合发展阶段
1.7 7年, 费根鲍姆在第五届国际人工智能联合会议上正式提出了“知识工程”这一概念。而后其对应的专家系统得到发展,许多智能系统纷纷被推出,并应用到了人类生活的方方面面。20世纪80年代以来,专家系统逐步向多技术、多方法的综合集成与多学科、多领域的综合应用型发展。大型专家系统开发采用了多种人工智能语言、多种知识表示方法、多种推理机制和多种控制策略相结合的方式, 并开始运用各种专家系统外壳、专家系统开发工具和专家系统开发环境等等。在专家系统的发展过程中,人工智能得到了较为系统和全面的综合发展,并能够在一些具体的任务中接近甚至超过人类专家的水平。
3.高潮应用阶段
进入二十一世纪以后,由于深度人工神经网络的提出,并在图像分类与识别的任务上远远超过了传统的方法,人工智能掀起了前所未有的高潮。2006年,由加拿大多伦多大学的Geoffery Hinton及其学生在《Science》杂志上发表文章,其中首次提到了深度学习这一思想,实现对数据的分级表达,降低了经典神经网络的训练难度。并随后提出了如深度卷积神经网络(Convolutional Neural Network, CNN),以及区域卷积神经网络(Region-based Convolutional Neural Network, R-CNN),等等新的网络训练结构,使得训练和测试的效率得到大幅提升,识别准确率也显著提高。
二、人工智能核心技术
人工智能由于其涉及的领域较多,内容复杂,因此在不同的应用场景涉及到许多核心技术,这其中如专家系统、机器学习、模式识别、人工神经网络等是最重要也是发展较为完善的几个核心技术。
1.专家系统
专家系统是一类具有专门知识和经验的计算机智能程序系统,通过对人类专家的问题求解能力建模,采用人工智能中的知识表示和知识推理技术来模拟通常由专家才能解决的复杂问题,达到具有与专家同等解决问题能力的水平。对专家系统的研究,是人工智能中开展得较为全面、系统且已经取得广泛应用的技术。许多成熟而先进的专家系统已经被应用在如医疗诊断、地质勘测、文化教育等方面。
2.机器学习
机器学习是一个让计算机在非精确编程下进行活动的科学,也就是机器自己获取知识。起初,机器学习被大量应用在图像识别等学习任务中,后来,机器学习不再限于识别字符、图像中的某个目标,而是将其应用到机器人、基因数据的分析甚至是金融市场的预测中。在机器学习的发展过程中,先后诞生了如凸优化、核方法、支持向量机、Boosting算法等等一系列经典的机器学习方法和理论。机器学习也是人工智能研究中最为重要的核心方向。
3.模式识别
模式识别是研究如何使机器具有感知能力 ,主要研究图像和语音等的识别。其经典算法包括如k-means,主成分分析(PCA),贝叶斯分类器等等。在日常生活各方面以及军事上都有广大的用途。近年来迅速发展起来应用模糊数学模式、人工神经网络模式的方法逐渐取代传统的基于统计学习的识别方法。图形识别方面例如识别各种印刷体和某些手写体文字,识别指纹、癌细胞等技术已经进入实际应用。语音识别主要研究各种语音信号的分类,和自然语言理解等等。模式识别技术是人工智能的一大应用领域,其非常热门的如人脸识别、手势识别等等对人们的生活有着十分直接的影响。
4.人工神经网络
人工神经网络是在研究人脑的结构中得到启发, 试图用大量的处理单元模仿人脑神经系统工程结构和工作机理。而近年来发展的深度卷积神经网络(Convolutional neural networks, CNNs)具有更复杂的网络结构,与经典的机器学习算法相比在大数据的训练下有着更强的特征学习和表达能力。含有多个隐含层的神经网络能够对输入原始数据有更抽象喝更本质的表述,从而有利于解决特征可视化以及分类问题。另外,通过实现“逐层初始化”这一方法,实现对输入数据的分级表达,可以有效降低神经网络的训练难度。目前的神经网络在图像识别任务中取得了十分明显的进展,基于CNN的图像识别技术也一直是学术界与工业界一致追捧的热点。
三、机器人情感获得
1.智能機器人现状
目前智能机器人的研究还主要基于智能控制技术,通过预先定义好的机器人行动规则,编程实现复杂的自动控制,完成机器人的移动过程。而人类进行动作、行为的学习主要是通过模仿及与环境的交互。从这个意义上说,目前智能机器人还不具有类脑的多模态感知及基于感知信息的类脑自主决策能力。在运动机制方面,目前几乎所有的智能机器人都不具备类人的外周神经系统,其灵活性和自适应性与人类运动系统还具有较大差距。
2.机器人情感获得的可能性
人脑是在与外界永不停息的交互中,在高度发达的神经系统的处理下获得情感。智能机器人在不断的机器学习和大数据处理中,中枢处理系统不断地自我更新、升级,便具备了获得情感的可能性及几率。不断地更新、升级的过程类似于生物的进化历程,也就是说,智能机器人有充分的可能性获得与人类同等丰富的情感世界。
3.机器人获得情感的利弊
机器人获得情感在理论可行的情况下,伴之而来的利弊则众说纷纭。一方面,拥有丰富情感世界的机器人可以带来更多人性化的服务,人机合作也可进行地更加深入,可以为人类带来更为逼真的体验和享受。人类或可与智能机器人携手共创一个和谐世界。但是另一方面,在机器人获得情感时,机器人是否能彻底贯彻人类命令及协议的担忧也迎面而来。
4.规避机器人情感获得的风险
规避智能机器人获得情感的风险应预备强制措施。首先要设计完备的智能机器人情感协议,将威胁泯灭于未然。其次,应控制智能机器人的能源获得,以限制其自主活动的能力,杜绝其建立独立体系的可能。最后,要掌控核心武器,必要时强行停止运行、回收、甚至销毁智能机器人。
三、总结
本文梳理了人工智能的发展历程与核心技术,可以毋庸置疑地说,人工智能具有极其广阔的应用前景,但也伴随着极大的风险。回顾其发展历程,我们有理由充分相信,在未来人工智能的技术会不断完善,难题会被攻克。作为世界上最热门的领域之一,在合理有效规避其风险的同时,获得情感的智能机器人会造福人类,并极大地帮助人们的社会生活。
参考文献
[1]韩晔彤.人工智能技术发展及应用研究综述[J].电子制作,2016,(12):95.
[2]曾毅,刘成林,谭铁牛.类脑智能研究的回顾与展望[J].计算机学报,2016,(01):212-222.
[3]张越.人工智能综述:让机器像人类一样思考
[4]张妮,徐文尚,王文文.人工智能技术发展及应用研究综述[J].煤矿机械,2009,(02):4-7.
[5]史忠植.高级人工智能(第二版)科学出版社,2006