菜籽蛋白加工废液中多酚和多糖同步提取工艺优化
2017-05-16张韦唯代春华侯福荣何荣海马海乐
张韦唯,代春华,2,3,熊 锋,侯福荣,何荣海,2,3※,马海乐,2,3
(1. 江苏大学食品与生物工程学院,镇江 212013; 2. 江苏省农产品物理加工重点实验室,镇江 212013;3. 江苏省食品智能制造工程技术研究中心,镇江 212013)
菜籽蛋白加工废液中多酚和多糖同步提取工艺优化
张韦唯1,代春华1,2,3,熊 锋1,侯福荣1,何荣海1,2,3※,马海乐1,2,3
(1. 江苏大学食品与生物工程学院,镇江 212013; 2. 江苏省农产品物理加工重点实验室,镇江 212013;3. 江苏省食品智能制造工程技术研究中心,镇江 212013)
为开发利用菜籽蛋白加工废液中的生理活性物质,该研究在单因素试验基础上,采用Box-Behnken响应面试验设计法,对菜籽蛋白加工废液中多酚和多糖提取工艺条件进行优化,同时探究两种物质的体外抗氧化活性。结果表明,影响菜籽蛋白加工废液中多酚和多糖得率的因素大小顺序为:乙醇体积分数>浸提温度>浸提时间,最佳提取工艺为:浸提温度60 ℃、乙醇体积分数65%、浸提时间31 min,在此条件下多酚得率为2.19%,多糖得率为8.14%;多酚提取物对DPPH•具有较强清除能力,其半抑制质量浓度为0.20 mg/mL,多糖提取物对DPPH•和•OH均具有较强的清除能力,其半抑制质量浓度分别为1.45、2.38 mg/mL;高效液相色谱法初步检测表明,菜籽蛋白加工废液中含有香豆酸、丁香酸、对香豆酸、芥子酸和苯甲酸。研究结果为菜籽蛋白加工废液的再利用提供参考。
提取;工艺;优化;多酚;多糖;抗氧化性;菜籽蛋白加工废液
张韦唯,代春华,熊 锋,侯福荣,何荣海,马海乐. 菜籽蛋白加工废液中多酚和多糖同步提取工艺优化[J]. 农业工程学报,2017,33(7):302-309.doi:10.11975/j.issn.1002-6819.2017.07.040 http://www.tcsae.org
Zhang Weiwei, Dai Chunhua, Xiong Feng, Hou Furong, He Ronghai, Ma Haile. Extraction processing optimization of polyphenols and polysaccharides from rapeseed protein processing waste liquor[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(7): 302-309. (in Chinese with English abstract)doi:10.11975/j.issn.1002-6819.2017.07.040 http://www.tcsae.org
0 引 言
菜籽粕作为油菜籽压榨榨油后主要副产物,其中蛋白质质量分数达35%~42%,菜籽蛋白氨基酸组成合理,已被大量开发利用[1]。然而,在菜籽粕提取菜籽蛋白制品过程中排放出大量高浓度有机废水,主要来源于水剂法脱毒制取菜籽浓缩蛋白过程中所产生的酸洗废水[2],以及菜籽分离蛋白制备过程中所产生的酸沉乳清废水[3]。加工废液中含有一定浓度的蛋白质以及多种天然生理活性产物,包括多酚、多糖、植酸等,另外,酚类物质抑制微生物生长,使废水难降解,而且废水排放量大,通常是所加工菜籽粕质量的 5~10倍,甚至更高,其中的生物活性物质在0.5~5 mg/mL之间[4]。研究发现,多酚在阻止自由基的反应中能够起到关键作用,具有较强的抗氧化活性,同时不同来源的植物酚类化合物具有多方面的生理功能,例如抗肿瘤、抗辐射、预防心脑血管疾病、抗突变、延缓人体衰老等[5-9]。汤务霞等[10]用丙酮作为提取液提取菜籽粕中的多酚类化合物,并以鞣酸和维生素C为对照,采用 1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl radical 2,2-diphenyl-1- (2,4,6- trinitropheny) hydrazyl, DPPH)法进行测定,结果表明,丙酮多酚提取液具有一定的体外抗氧化能力。刘入铭[11]研究表明,菜籽多酚能够显著降低胃肿瘤的发病率、有效抑制胃黏膜炎症,而且菜籽多酚能够下调胃黏膜炎症因子 COX-2、mPGES-1及TNF-α诱导mRNA的表达水平。Kozlowska 等[12]通过碱解发现在菜籽中存在 9种酚酸,主要为芥子酸、阿魏酸、p-香豆酸等。菜籽多糖为菜籽粕综合利用研究中发现的具有开发利用价值的一种生物活性物质,具有抗氧化、抑瘤等作用[13-15]。然而,菜籽蛋白加工废液中多酚和多糖的研究却较少。
本试验采取乙醇浸提法同步提取菜籽蛋白加工废液中的多酚和多糖,并通过响应面法对提取工艺进行优化,同时对多酚提取物和多糖提取物的体外抗氧化性进行研究,并利用高效液相色谱法(high performance liquid chromatography,HPLC)对提取出的酚酸组分和含量进行初步探讨,提升菜籽蛋白加工废液的可利用程度,实现菜籽粕加工废水资源的综合利用,提高菜籽粕加工过程的总体经济,获得高附加值制品。
1 材料与方法
1.1 材料与试剂
菜籽蛋白加工废液(总糖质量浓度14.21 mg/mL,蛋白质8.39 mg/mL,总酚2.01 mg/mL)由江苏天琦生物科技有限公司提供(卡诺拉油菜籽);1,1-二苯基-2-三硝基苯肼,没食子酸,香豆酸,3,4-二羟基苯甲酸,苯甲醛,儿茶素,绿原酸,咖啡酸,丁香酸,对香豆酸,芥子酸,苯甲酸,芦丁酸,水杨酸,槲皮素均为标准品,购自美国 Sigma公司;甲醇(色谱纯);无水乙醇,福林酚等均为分析纯,购于国药集团化学试剂有限公司。
1.2 仪器与设备
DL-5C型低速冷冻离心机(上海安亭科学仪器厂);T6新世纪型分光光度计(北京普析通用仪器有限责任公司);LC-20AT高效液相色谱仪、LC solution工作站、SPD-20AT紫外检测器(日本岛津公司)。
2 方 法
2.1 废液中多酚、多糖的提取
将菜籽蛋白加工废液和无水乙醇按一定比例混合,在恒温水浴振荡器(200 r/min)中按照一定时间和温度进行浸提,将浸提过后的料液于冷冻离心机中(控制在4 ℃左右)以6 000 r/min离心20 min。上清液于40 ℃条件下旋蒸浓缩,真空冷冻干燥(−50 ℃,<20 Pa),得到菜籽多酚提取物;将沉淀物真空冷冻干燥(−50 ℃,<20 Pa),得到菜籽多糖提取物,用于抗氧化活性和酚酸定性定量测定。
2.2 多酚、多糖的含量测定
将菜籽多糖粗提物用蒸馏水定容,稀释到合适浓度,采用苯酚-硫酸法[16]测定菜籽蛋白加工废液中多糖的吸光值,依据葡萄糖标准曲线得出的直线方程计算菜籽蛋白废液中多糖得率。
式中E1为多糖得率,%;C1为从标准曲线获得的反应溶液多糖质量浓度,mg/mL;V为提取液总体积,mL;F为稀释倍数;M为废液总干物质量,mg。
将上清液稀释到合适浓度,采用福林酚法[17]测定浸提液中多酚的吸光值,根据没食子酸标准曲线回归方程计算菜籽蛋白废液中多酚得率。
式中E2为多酚得率,%;C2为从标准曲线获得的反应溶液多酚质量浓度,mg/mL。
2.3 单因素试验
选定浸提温度(30、40、50、60、70、80 ℃)、乙醇体积分数(20%、30%、40%、50%、60%、70%、80%)、浸提时间(20、40、60、80、100、120 min)3个因素做单因素试验,考察各单因素水平对菜籽饼粕加工废液中多酚得率和多糖得率的影响,确定相关工艺条件。
2.4 响应面优化试验设计
在单因素试验的基础上,采用 Box-Behnken中心组合设计方法,进行三因素三水平的响应面试验,以浸提温度A(℃)、乙醇体积分数B(%)、浸提时间C(min)为自变量,废液中多酚得率Y1(%)和多糖得率Y2(%)为响应值,采用响应面统计分析软件 Design-Expert 8.0确定最佳提取工艺条件。试验设计因素及水平见表1。
表1 Box-Behnken中心组合设计的因素和水平表Table1 Factors and levels of Box-Behnken central composite design
2.5 多酚提取物和多糖提取物的体外抗氧化活性试验
2.5.1 DPPH•自由基清除能力测定
试验方法参考何荣海等[18-19]方法,在优化后的提取条件下,将提取物冻干,得到菜籽粗多酚提取物和多糖提取物,配成不同浓度梯度水溶液作待测样品备用。在试管中加入 2.0 mL待测样品溶液,再加入 2.0 mL 0.2 mmol/L DPPH·无水乙醇溶液,混匀,室温下避光静置30 min,在波长517 nm处测定吸光值,按下式计算待测样品清除DPPH·能力(%)。
式中A0为DPPH·无水乙醇溶液2.0 mL+无水乙醇溶液2.0 mL的吸光值;Ax为DPPH·无水乙醇溶液2.0 mL+待测样品溶液 2.0 mL的吸光值;Ax0为待测样品溶液2.0 mL+无水乙醇溶液2.0 mL的吸光值。
半抑制浓度(IC50)是指DPPH·的抑制率为50%时多酚和多糖提取物溶液浓度[20]。IC50值越小,抗氧化能力越强。将试验重复3次,求得半抑制率的平均值。
2.5.2 •OH清除能力测定
试验方法参考张德华等[21-22]方法,利用H2O2与Fe2+混合产生·OH的原理,在体系内加入水杨酸捕捉·OH,产生有色物质,该物质在波长510 nm处有最大吸收。反应体系中含8.8 mmol/L H2O21.0 mL、9.0 mmol/L FeSO41.0 mL,9.0 mmol/L水杨酸-乙醇溶液1.0 mL,一定浓度样品1.0 mL。加H2O2启动反应,37 ℃反应30 min,以蒸馏水为对照,510 nm处测定各溶液的吸光度,考虑到样品本身的吸光度,以 9.0 mmol/L FeSO41.0 mL,9.0 mmol/L水杨酸-乙醇溶液 1.0 mL,相应浓度样品1.0 mL和1.0 mL蒸馏水作为样品的本底吸光度。按下式计算·OH清除率(%)
式中0A′为空白对照液吸光度;xA′为加入样品溶液后吸光度;0xA′为不加显色剂H2O2的样品溶液本底吸光度。
IC50是指·OH的抑制率为50%时多酚和多糖提取物溶液浓度[20]。
2.5.3 总还原能力测定
试验方法参考王振斌等[23-24]方法,2.0 mL样品与2.0 mL 0.2 mol/L,pH值 6.6的磷酸缓冲液(phosphate buffer saline, PBS)和2.0 mL质量分数1%铁氰化钾溶液混合均匀后于 50 ℃水浴反应 20 min后速冷,再加入2.0 mL质量分数10%三氯乙酸(trichloroacetic acid,TCA)溶液,3 000 r/min离心10 min,吸取2.0 mL上清液于试管中,并加入2.0 mL去离子水和0.4 mL 质量分数0.1% FeCI3,混合均匀,10 min后在700 nm处测吸光值。
2.6 高效液相色谱分析
2.6.1 色谱条件
Kromasil C18色谱柱(4.6 mm×250 mm,5µm);柱温20 ℃,进样量20µL,检测波长280 nm;采用双泵系统,流速0.7 mL/min。流动相A为超纯水(含0.05%三氟乙酸),流动相B为纯甲醇。采用梯度洗脱:0~25 min,10%~22% B→25~45 min,22%~65% B→45~53 min,65%~50% B→53~60 min,50%~10% B→60~70 min,10% B。
2.6.2 酚酸标准溶液的配置
精密称取一定量14种酚类化合物标准品,用5.0 mL甲醇溶解,用超纯水分别定容至50 mL容量瓶中,制成单个酚酸溶液和混合样品母液。
2.6.3 目标单体酚的定量分析
取已知各单体酚浓度的混合样品母液,梯度进样5、10、15、20、25μL,用高效液相色谱进行检测。
2.7 数据处理与统计分析
试验数据采用Origin 8.6 软件进行分析作图,SPSS 13.0软件进行方差分析,结果以平均数±标准偏差表示,响应面设计与分析的软件为Design- Expert 8.0,试验数据均为3次平行试验的平均值。
3 结果与分析
3.1 单因素试验结果分析
3.1.1 浸提温度对浸提效果的影响
固定乙醇体积分数60%、浸提时间60 min,考察浸提温度对多酚得率和多糖得率的影响。由图 1可知,随着温度的升高,多糖得率是先上升后下降。温度升高,分子运动加快,细胞间的摩擦作用使得细胞破裂,多糖溶解及扩散速度加快,得率提高,60 ℃时多糖得率达到最高,但随着温度继续增加,多糖得率显著下降,可能因为过高的温度使部分多糖有效成分被分解。多酚得率在浸提温度从50 ℃升到60 ℃时,有略微上升趋势,60 ℃后开始缓慢下降,整体趋势较为平缓。一般来说温度越高越有利于多酚物质的提取[25],在高温条件下会导致乙醇挥发,使提取液浓度增大,而且较高的温度会破坏多酚化学结构,从而影响多酚得率[26-27]。结合多酚得率和多糖得率的趋势,最优提取温度在60 ℃附近,中心组合试验选取的温度范围为50~70 ℃。
3.1.2 乙醇体积分数对浸提效果的影响
固定浸提温度60 ℃、浸提时间60 min,考察乙醇体积分数对多酚得率和多糖得率的影响。乙醇体积分数是影响浸提效果的一项重要指标。如图 2所示,随着乙醇体积分数的增加,菜籽蛋白加工废液中多酚得率和多糖得率都呈上升趋势。乙醇体积分数40%~60%阶段,多酚得率明显上升,60%之后得率上升幅度降低。由于原料是废液,乙醇体积分数的增大使固体有效成分浓度降低,从而得率持续上升。而多糖得率在乙醇体积分数 30%~50%阶段呈直线上升,50%后多糖得率趋于平缓,说明多糖的溶出量已达饱和。结合多酚得率和多糖得率的趋势,最优乙醇体积分数在 60%附近,中心组合试验选取的乙醇体积分数范围为50%~70%。
图1 提取温度对多酚和多糖得率的影响Fig.1 Effect of extraction temperature on yield of polyphenols and polysaccharides
图2 乙醇体积分数对多酚和多糖得率的影响Fig.2 Effect of ethanol concentration on yield of polyphenols and polysaccharides
3.1.3 浸提时间对浸提效果的影响
固定浸提温度60 ℃、乙醇体积分数60%,考察浸提时间对多酚得率和多糖得率的影响。从图3中可以看出,15~30 min时间段,多糖得率上升,30 min后多糖得率呈现波动下降的趋势,所以表明30 min时多糖溶出量最多。15~30 min时间段,多酚得率也是上升的,30 min之后多酚扩散速度减慢,基本平衡。提取时间延长也会增加能耗,所以,最优提取时间在30 min附近,中心组合试验选取的时间范围为15~45 min。
图3 浸提时间对多酚和多糖得率的影响Fig.3 Effect of extraction time on yield of polyphenols and polysaccharides
3.2 响应面法优化多酚、多糖的浸提条件
3.2.1 响应面试验设计及结果
根据 Box-Behnken试验设计的原理,结合单因素试验的结果,设计试验并得到结果,如表2所示。
表2 响应面试验设计及结果Table2 Experimental result based on Box-Behnken design
运用Design-Expert 8.0软件对表2试验数据进行分析,以多酚得率Y1(%)和多糖得率Y2(%)为响应值,经回归拟和后得到二次多项式回归方程
3.2.2 模型的建立与显著性检验
利用Design-Expert 8.0软件对表2结果进行统计及分析,得到方差的分析结果如表3所示。
表3 多酚得率方差分析表Table3 Variance analysis of polyphenols yield
经数据分析处理(表 3),多酚得率模型的F值为12.51,P值为0.0015<0.05,说明该模型显著可靠。失拟项不显著,而且R2=0.9415,R2Adj=0.8662,表明建立的模型和试验拟合良好,是可以对多酚得率进行分析和预测的。依F检验知,因素A、B、A2、B2和C2的P值均小于 0.05,说明温度及其平方项、乙醇体积分数及其平方项、时间平方项对多酚得率影响显著,而因素C(时间)和各交互相的影响均不显著。各单因素对多酚浸提效果的影响依次为:乙醇体积分数(B)>温度(A)>时间(C)。
如表4所示,多糖得率模型的F值为16.49,P值为0.000 6<0.001,说明该模型极显著。失拟项的P值为0.056 1>0.05,不显著,而且R2=0.955 0,R2Adj=0.897 1,表明建立的模型拟合性较好,可以对多糖得率进行分析和预测。依F检验知,因素A、B、A2、B2和C2的P值均小于 0.05,说明这些因素对多糖得率影响显著,而因素C(时间)和各交互相的影响都不显著。各单因素对多糖浸提效果的影响依次为:乙醇体积分数(B)>温度(A)>时间(C)。
表4 多糖得率方差分析表Table4 Variance analysis of polysaccharides yield
3.2.3 响应面优化
若以多酚得率和多糖两者作为评价指标,所得的最优提取条件是不一致的,因而选用两者的综合评价指标(overall desirability, OD)进行综合评分。在计算综合指标之前,采用极差化法将各指标进行规格化[28]。由于多酚得率和多糖得率均要求达到最大化,其规格化方程为:Di=(Yi−Ymin)/(Ymax−Ymin),其中,Ymax和Ymin分别为各指标的最大值与最小值,若某试验的指标值为Ymax时,将Di设为1。反之,某个指标值为Ymin时,Di为0[29]。将两者权重系数均设为0.5,则综合评分为:OD=(0.5D1+0.5D2)。最终得到最佳提取工艺条件为温度 60.01 ℃,乙醇体积分数65.69%,时间30.93 min,多酚得率预测值2.19%,多糖得率预测值8.18%。为了方便试验,修正最佳工艺条件为温度60 ℃,乙醇体积分数65%,时间31 min,多酚得率实际值2.19%,多糖得率实际值8.14%。多酚得率试验值与预测值一致,多糖得率试验值比预测值高0.04%。
3.3 多酚提取物和多糖提取物的体外抗氧化活性试验
3.3.1 DPPH•自由基清除能力测定
由图4可知,多酚提取物质量浓度在0.1~0.5 mg/mL范围内DPPH·的清除率从32.63%上升至93.53%,多糖提取物质量浓度在0.40~2.40 mg/mL范围内DPPH·的清除率从18.65%上升至77.97%。分析数据可知,在选定的多酚提取物和多糖提取物质量浓度范围内,随着质量浓度的增大,多酚提取物和多糖提取物对DPPH·自由基的清除率也明显增加,呈现良好的量效关系。对比可以明显看出:多酚提取物对DPPH·自由基清除率均高于相同质量浓度条件下多糖提取物对DPPH·的清除率。在多酚提取物的质量浓度为0.5 mg/mL时,其DPPH·自由基清除率已经达到93.53%,明显高于相同质量浓度条件下多糖提取物对DPPH·的清除率。多酚提取物和多糖提取物对DPPH·自由基的IC50分别为0.20、1.45 mg/mL。史兰[30]对菜籽粕有效分离成分的研究中,测得提取出的菜籽多酚对DPPH·自由基的IC50为51.00µg/mL。刘琴等[31]用不同溶剂提取出菜籽粕中的多酚,测得DPPH·清除能力为50.528 0μmol/g。与菜籽粕中提取的多酚活性相比,本试验废液中提取的多酚活性较低,这可能是菜籽蛋白加工废液中多酚有效成分含量较低,并且菜籽粕在蛋白加工过程中部分多酚结构可能被破坏。
图4 多酚提取物和多糖提取物对DPPH·的清除能力Fig.4 DPPH· scavenging ratio of polyphenol extracts and polysaccharide extracts
3.3.2 ·OH清除能力测定
由图 5可以看出,多酚提取物质量浓度在 5.00~30.00 mg/mL范围内·OH的清除率从 36.92%上升至83.62%,多糖提取物质量浓度在0.80~3.80 mg/mL范围内·OH的清除率从13.59%上升至78.60%。比较可知,多糖提取物对·OH的清除能力强于多酚提取物,且随着样品质量浓度的增加,·OH的清除力不断增加。整体来看,多糖提取物对羟自由基的清除能力要强于多酚提取物。多酚提取物和多糖提取物羟自由基IC50分别为10.85、2.38 mg/mL。朱沛沛等[32]用微波辅助乙醇提取菜籽饼粕多酚,测得多酚提取液对羟基的清除率在0~1.4 mg/mL质量浓度范围内随其浓度的增加而增大,最大清除率达61.37%,比本试验多酚提取物对羟自由基的清除能力高很多,说明废液中多酚对羟自由基的清除能力较弱。
图5 多酚提取物和多糖提取物对·OH的清除能力Fig.5 ·OH scavenging ratio of polyphenol extracts and polysaccharide extracts
3.3.3 总还原能力测定
由图 6可知,随着浓度的增大,多酚提取物和多糖提取物总还原力都不断增大,而且呈现良好的量效关系,对比可以明显看出:多酚提取物的总还原力大于多糖提取物的总还原力。
图6 多酚提取物和多糖提取物的还原能力Fig.6 Reducing abilities of polyphenol extracts and polysaccharide extracts
3.4 HPLC法分析多酚提取物的组成和含量
如图7a所示,各酚酸组分在混合标样中均有良好的分离度。结合图7b分析可知,香豆酸、丁香酸、对香豆酸、芥子酸和苯甲酸可明显看出对应峰,表明菜籽蛋白加工废水中也很有可能含有这些酚酸。荆文光等[33]从菜籽粕中分离得到芥子酸,丁香酸,香草酸,对羟基苯甲醛、原儿茶酸,对羟基苯甲酸、龙胆酸等。刘琴等[27]从菜籽粕中鉴定出芥子酸和芥子碱。吴梨[34]用碱解法结合乙酸乙酯萃取对菜籽粕、种皮粕和种胚粕中的不溶性多酚分别进行了提取和分析,结果表明菜籽种皮中含有芥子酸及其异构体、阿魏酸、香豆酸、羟基苯甲酸、丁香酸、咖啡酸、原儿茶酸等 9种酚酸。大量研究表明,本试验所检测出的酚酸都已在菜籽粕中被鉴定出。表 5定量分析结果可见,多酚提取物中所检测出的5种酚酸中,芥子酸质量分数最多达到5.57 mg/g,香豆酸2.65 mg/g,其他酚酸含量相对较少。史兰[30]对10个油菜籽品种的菜籽粕、种皮粕和种胚粕中的不溶性多酚的含量进行了分析,结果表明在种皮粕中芥子酸和原儿茶酸为主要酚酸,芥子酸的质量分数为 0.076~0.234 mg/g,占不溶性总酚体积分数的18.07%~47.05%。菜籽粕提蛋白后的废液中,芥子酸含量依然相对较多。此工艺为菜籽蛋白加工废液的再利用提供一定研究基础。
图7 标准酚酸样品和菜籽蛋白加工废液中酚酸检测的色谱图Fig.7 Chromatograms of standard phenolic acids and phenolic acids in rapeseed protein processing waste liquid
表5 多酚提取物所含酚酸的保留时间、回归方程、决定系数和质量分数Table5 Retention time, regression equation, determination coefficient and content of standard phenolic acid in polyphenol extracts
4 结 论
使用乙醇提取菜籽蛋白加工废液中的多酚和多糖,在单因素的基础上,以多酚得率和多糖得率为响应值,响应面优化后,得到最佳提取工艺条件为:浸提温度60 ℃、乙醇体积分数 65%、时间 31 min,多酚得率为2.19%,多糖得率为8.14%,多酚得率预测值为2.19%,多糖得率预测值为 8.18%。多酚得率试验值与预测值一致,多糖得率试验值比预测值高0.04个百分点。说明回归方程能较真实地反映各因素对多酚和多糖得率的影响,证明用响应面法优多酚和多糖得率回归模型较可靠。
多酚提取物和多糖提取物的体外抗氧化能力试验结果表明,多酚和多糖对不同的自由基的清除能力是不同的,且在测定的质量浓度范围内呈良好的量效关系。多酚提取物的DPPH·自由基清除率明显高于相同质量浓度条件下多糖提取物对DPPH·自由基的清除率,而多糖提取物对羟自由基的清除能力要强于多酚提取物。多酚提取物的总还原力要高于多糖提取物的总还原力。高效液相色谱法初步检测结果表明,菜籽蛋白加工废液中含有香豆酸、丁香酸、对香豆酸、芥子酸和苯甲酸,其中芥子酸最多,质量分数达到5.57 mg/g。
[1] 冉仁森,陈锦屏,米瑞芳,等. 油菜籽多肽的制备工艺[J].食品科学,2013,34(23):245-249. Ran Rensen, Chen Jinping, Mi Ruifang, et al. Enzymatic preparation of crude polypeptides from rapeseed meal[J]. Food Science, 2013, 34(23): 245-249. (in Chinese with English abstract)
[2] 兰文菊,彭密军,彭胜,等. 酸溶液对菜籽粕脱毒工艺探讨[J]. 中国粮油学报,2012,27(11):67-71. Lan Wenju, Peng Mijun, Peng Sheng, et al. Study on the technology of detoxification of rapeseed meal by acid solvent[J]. Journal of the Chinese Cereals and Oils Association, 2012, 27(11): 67-71. (in Chinese with English abstract)
[3] 严梅荣,鞠兴荣,王丹丹,等. 碱提酸沉淀方法制取菜籽蛋白质的研究[J]. 中国粮油学报,2009,24(6):72-75. Yan Meirong, Ju Xingrong, Wang Dandan, et al. Preparation of rapeseed protein by alkali extraction and acid precipitation[J]. Journal of the Chinese Cereals and Oils Association, 2009, 24(6): 72-75. (in Chinese with English abstract)
[4] 沈凤梅. 菜籽粕加工废水的资源化利用[D]. 武汉:武汉轻工大学,2014. Sheng Fenmei. Resource Utilization from Rapeseed Meal Processing Wastewater[D]. Wuhan: Wuhan Polytechnic University, 2014. (in Chinese with English abstract)
[5] Zhou Zhengqun, Xiao Jia, Fan Hongxia, et al. Polyphenols from wolfberry and their bioactivities[J]. Food Chemistry, 2017, 214(9): 644-654.
[6] Ali F, Ranneh Y, Ismail A, et al. Identification of phenolic compounds in polyphenols-rich extract of Malaysian cocoa powder using the HPLC-UV-ESI-MS/MS and probing their antioxidant properties[J]. Journal of Food Science and Technology, 2015, 52(4): 2103-2111.
[7] Kang Lina, Ma Tingting, Zhao Pei, et al. The hepatoprotective effect of polyphenols from sphallerocarpus gracilis Stem leaves against CCI4-induced acute hepatic damage in mice[J]. Modern Food Science and Technology, 2015, 31(3): 18-23.
[8] Li Yao, Liao Xia, Xiao Xingning, et al. Progress in research on the antitumor mechanisms of plant polyphenols based on proteomics[J]. Chinese Chamber of Commerce, 2016, 37(3): 235-240.
[9] Shay J, Elbaz H A, Lee I, et al. Molecular mechanisms and therapeutic effects of (-)-epicatechin and other polyphenols in cancer, inflammation, diabetes, and neurodegeneration[J]. Oxidative Medicine and Cellular Longevity, 2015(2015).
[10] 汤务霞,田景元,汤超. 丙酮法提取菜籽饼多酚及体外抗氧化性研究[J]. 食品工业,2012(1):54-57. Tang Wuxia, Tian Jinyuan, Tang Chao. Polyphenols of repeseed meal by acetone extraction and its antioxidant activity in vitro[J]. Food Industry, 2012(1): 54-57. (in Chinese with English abstract)
[11] 刘入铭. 菜籽多酚对K19-C2mE转基因鼠胃肿瘤病变的抑制作用[D]. 长春:吉林大学,2014. Liu Ruming. 4-Vinyl-2, 6-dimethoxyphenol(canolol) Suppresses Gastric Tumor Lesions in K19-C2mE Transgenic Mice[D]. Changchun: Jilin University, 2014. (in Chinese with English abstract)
[12] Kozlowska H, Rotkiewicz D A, Zadernowski R, et al. Phenolic acids in rapeseed and mustard[J]. Journal of the American Oil Chemists' Society, 1983, 60(6): 1119-1123.
[13] 税丹,王立峰,袁建,等. 酸法提取菜籽多糖的抗氧化活性研究[J]. 食品科学,2011,32(21):98-101. Shui Dan, Wang Lifeng, Yuan Jian, et al. Antioxidant effect of rapeseed polysaccharides extracted by hydrochloric acid[J]. Food Science, 2011, 32(21): 98-101. (in Chinese with English abstract)
[14] 朱建飞,唐春红,吴谋成. 菜籽多糖WPS-1对小鼠腹腔巨噬细胞免疫功能的影响[J]. 中国粮油学报,2011,26(8):41-49. Zhu Jianfei, Tang Chunhong, Wu Moucheng. Immunomodulating effects of rapeseed polysaccharide WPS-1 on mouse peritoneal macrophage[J]. Journal of the Chinese Cereals and Oils Association, 2011, 26(8): 41-49. (in Chinese with English abstract)
[15] 严奉伟,王辰,严赞开. 菜籽多糖对 S180小鼠肉瘤及其免疫能力的影响[J]. 食品科学,2007,28(4):309-313. Yan Fengwei, Wang Chen, Yan Zankai. Effects of rapeseed polysaccharides(RSPS) on S180 tumor growth inhibition and immune capability enhancement in vivo[J]. Food Science, 2007, 28(4): 309-313. (in Chinese with English abstract)
[16] 池源,王丽波. 苯酚-硫酸法测定南瓜籽多糖含量的条件优化[J]. 食品与机械,2014,30(1):89-92. Chi Yuan, Wang Libo. Study on phenl-sulfuric acid method for determination of polysaccharide content in pumpkin seeds[J]. Food & Machinery, 2014, 30(1): 89-92. (in Chinese with English abstract)
[17] 游见明,曹新志. 福林酚法测定茶树中茶多酚的分布水平[J].湖北农业科学,2013,52(10):2417-2419. You Jianming, Cao Xinzhi. Analysis on the distribution of tea polyphenol in tea tree by folin-ciocalteaut method[J]. Hubei Agricultural Sciences, 2013, 52(10): 2417-2419. (in Chinese with English abstract)
[18] 何荣海,蒋边,朱培培,等. 枯草芽孢杆菌固态发酵菜籽粕生产多肽及降解硫苷的研究[J]. 食品工业科技,2014,35(10):228-233. He Ronghai, Jiang Bian, Zhu Peipei, et al. Study on solid-state fermentation of rapeseed meal for preparation of peptides and degradation of glucosinolates bybacillus subtilis[J]. Science and Technology of Food Industry, 2014, 35(10): 228-233. (in Chinese with English abstract)
[19] 何荣海,刘磊,蒋边,等. 枯草芽孢杆菌液态发酵菜籽粕制备抗氧化肽[J]. 食品工业科技,2013,13(12):12-20. He Ronghai, Liu Lei, Jiang Bian. Preparation of antioxidant peptides bybacillus subtilisliquid-state fermentation from rapeseed meal[J]. Science and Technology of Food Industry, 2013, 13(12): 12-20. (in Chinese with English abstract)
[20] Lin Liyun, Liu Hsiuman, Yu Yawen, et al. Quality and antioxidant property of buckwheat enhanced wheat bread[J]. Food Chemistry, 2009, 112(4): 987-991.
[21] 张德华,邓辉,乔德亮. 植物多糖抗氧化体外实验方法研究进展[J]. 天然产物研究与开发,2015,27(4):747-751. Zhang Dehua, Deng Hui,Qiao Deliang. Research progress on experimental methods on testing in vitro antioxidant activity of plant polysaccharides[J]. Natural Product Research and Development, 2015, 27(4): 747-751. (in Chinese with English abstract)
[22] Zhuang Yuan, Yan Peisheng. Study on hydroxyl radical scavenging ability of fermented kelp waste[J]. Chemical Engineering Transactions, 2016, 51(14): 289-294.
[23] 王振斌,刘加友,马海乐. 无花果多糖提取工艺优化及其超声波改性[J]. 农业工程学报,2014,30(10):262-269. Wang Zhenbin, Liu Jiayou, Ma Haile. Extraction process optimization and ultrasonic modification of polysaccharide from Ficus carica L.[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(10): 262-269. (in Chinese with English abstract)
[24] 赵谋明,邹晶,赵亚琦. 脱酰胺与双酶协同作用提高小麦面筋蛋白酶解效率[J]. 农业工程学报,2016,32(23):303-308. Zhao Mouming, Zou Jing, Zhao Yaqi, et al. Deamidization and double enzyme synergetic hydrolysis increasing hydrolysis effeciency of wheat gluten[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(23): 303-308. (in Chinese with English abstract)
[25] Harbourne N, Jacquier J C, O’riordan D. Optimisation of the aqueous extraction conditions of phenols from meadowsweet (Filipendula ulmaria L.) for incorporation into beverages[J]. Food Chemistry, 2009, 116(3): 722-729.
[26] 令博,王捷,吴洪斌. 葡萄皮渣多酚超声波辅助提取工艺响应面法优化及抗氧化活性研究[J]. 食品科学,2011,32(18):24-29. Ling Bo, Wang Jie, Wu Hongbin. Polyphenols from grape skin: optimization of ultrasonic-assisted extraction process by response surface methodology and antioxidant activity evaluation[J]. Food Science, 2011, 32(18): 24-29. (in Chinese with English abstract)
[27] Prasad K N, Yang E, Yi C, et al. Effects of high pressure extraction on the extraction yield, total phenolic content and antioxidant activity of longan fruit pericarp[J]. Innovative Food Science & Emerging Technologies, 2009, 10(2): 155-159.
[28] 张立军,袁能文. 线性综合评价模型中指标标准化方法的比较与选择[J]. 统计与信息论坛,2010,25(8):10-15. Zhang Lijun, Yuan Nengwen. Comparison and selection of index standardization method in linear comprehensive evaluation model[J]. Statistics & Information Forum, 2010, 25(8): 10-15. (in Chinese with English abstract)
[29] 吴建民,陶菊春. 用综合加权评分法优化钻井泥浆配方的研究[J]. 农业工程学报,2002,18(2):45-48. Wu Jianmin, Tao Juchun. Experimental study on optimizing mud prescription for well drilling by using comprehensively weighted grading method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 18(2): 45-48. (in Chinese with English abstract)
[30] 史兰. 菜籽粕中有效成分的提取分离工艺研究[D]. 西安:陕西科技大学,2014. Shi Lan. Study on the Extraction and Separation of Active Ingredients in Rapeseed Meal[D]. Xi’an: Shaanxi Universityof Science & Technology, 2014. (in Chinese with English abstract)
[31] 刘琴,吴梨,石嘉怿,等. 油菜籽多酚的分布及加工过程对菜籽多酚含量的影响[J]. 食品科学,2010,31(19):33-37. Liu Qin, Wu Li, Shi Jiayi, et al. Distribution of polyphenols in rapeseed shell and kernel and effect of oil extraction methods on their content in rapeseed Meal[J]. Food Science, 2010, 31(19): 33-37. (in Chinese with English abstract)
[32] 朱沛沛,李嘉乐,曾懿,等. 菜籽饼粕多酚的提取及其清除羟自由基活性研究[J]. 粮油食品科技,2013,21(1):23-26. Zhu Peipei, Li Jiale, Zeng Yi, et al. Study on extraction of polyphenol from rapeseed meal and the activity of eliminating hydroxy radical[J]. Science and Technology of Cereals,Oils and Foods, 2013, 21(1): 23-26. (in Chinese with English abstract)
[33] 荆文光. 菜籽粕化学成分和生物活性研究[D]. 北京:中国中医科学院,2014. Jin Wenguang. Studies on Chemical Constituents and Bioactivity of the Rapeseed Meal (Brassfca napus L)[D]. Beijing: China Academy Chinese medical Science, 2014. (in Chinese with English abstract)
[34] 吴梨. 油菜籽中多酚类化合物及其分布的研究[D]. 南京:南京财经大学,2011. Wu Li. Research on Polyphenolics of Rapeseed[D]. Nanjing: Nanjing University of Finance and Economics, 2011. (in Chinese with English abstract)
Extraction processing optimization of polyphenols and polysaccharides from rapeseed protein processing waste liquor
Zhang Weiwei1, Dai Chunhua1,2,3, Xiong Feng1, Hou Furong1, He Ronghai1,2,3※, Ma Haile1,2,3
(1.School of Food and Biological Engineering,Jiangsu University,Zhenjiang212013,China; 2.Key Laboratory for Physical Processing of Agricultural Products of Jiangsu Province,Zhenjiang212013,China; 3.Food Intelligent Manufacturing Engineering Technology Research Center of Jiangsu Province,Zhenjiang212013,China)
Rapeseed protein processing waste liquor contains a variety of natural antioxidant products, which include polyphenol, polysaccharide, peptide, and so on. To realize the comprehensive utilization of rapeseed protein processing waste liquor and gain high value-added products to improve the overall economy, the extraction efficiency and the antioxidant activities of polyphenols and polysaccharides in waste liquid from production of rapeseed protein were researched in this paper. First of all, effects of extraction temperature, ethanol concentration and extraction time on the extraction rate of polyphenols and polysaccharides from waste liquid were investigated by single-factor experiments to acquire the appropriate ranges of extraction parameters. Then a Box-Behnken design (BBD) was applied to evaluate the effects of extraction temperature, ethanol concentration and extraction time on the extraction efficiency and their interactions at 3 equidistant levels. The ranges of the 3 independent variables i.e. extraction temperature, ethanol concentration and extraction time were 50-70 ℃ , 50%-70% and 15-45 min, respectively, which were based on the results of single-factor experiments. The result indicated that ethanol concentration was the most significant variable, followed by extraction temperature and time according to the regression coefficient significance of the equation and the gradient of slope in 3D (three-dimensional) response surface map. The optimum conditions could be modified as follows: Extraction temperature of 60 ℃, ethanol concentration of 65% and extraction time of 31 min. Under the optimal conditions, extraction ratios of polyphenols and polysaccharides were 2.19% and 8.14%, respectively, which were well-matched with the predicated values of 2.19% and 8.18% obtained from the models. The results revealed that the regression equations and models were reliable to predict the influences of factors on extraction ratios of polyphenols and polysaccharides. In addition, anti-oxidative activities of polyphenols extract and polysaccharides extract in vitro were evaluated by scavenging activity of DPPH (1,1-diphenyl-2-picrylhydrazyl radical 2,2-diphenyl-1-(2,4,6-trinitropheny) hydrazyl) and hydroxyl radical as well as reducing power. The result showed that the DPPH radical scavenging abilities of polyphenols extract and polysaccharides extract increased from 32.63% to 93.53% and from 18.65% to 77.97% with the increasing of their concentrations from 0.10 to 0.50 mg/mL and from 0.40 to 2.40 mg/mL, respectively. Half inhibitory concentrations of polyphenols extract and polysaccharides extract for scavenging DPPH were 0.20 and 1.45 mg/mL respectively according to their regression equation. Hydroxyl radical scavenging abilities of them increased from 36.92% to 83.62% and from 13.59% to 78.60% with the increasing of their concentrations from 5.00 to 30.00 mg/mL and from 0.80 to 3.80 mg/mL, respectively. Half inhibitory concentrations of polyphenols extract and polysaccharides extract for scavenging hydroxyl radical were 10.85 and 2.38 mg/mL respectively according to their regression equation. The reducing abilities also increased with the increasing of the concentrations of polyphenols extract and polysaccharides extract. In contrast, reducing ability of polyphenols extract was stronger than that of polysaccharides extract. From these results, for different free radicals, the scavenging ability of polyphenols and polysaccharides was different, and showed a good dose-effect relationship in the range of mass concentrations. The DPPH free radical scavenging rate and reducing ability of polyphenols extract were both significantly higher than that of polysaccharides extract under the same mass concentration, while the polysaccharides extract had a stronger scavenging ability to hydroxyl radical than polyphenols extract. In the end, the phenolic ingredients in samples were analyzed by HPLC (high performance liquid chromatography). The result indicated that polyphenols extract was rich in phenolic compounds such as cumaric acid, syringic acid, pcoumaric acid, sinapinic acid and benzoic acid. The concentration of cumaric acid was 2.65 mg/g and that of sinapinic acid even reached 5.57 mg/g.
extraction; processing; optimization; polyphenols; polysaccharides; antioxidant ability; rapeseed protein processing waste liquor
10.11975/j.issn.1002-6819.2017.07.040
TS229
A
1002-6819(2017)-07-0302-08
2016-10-19
2017-03-25
国家重点研发计划(2016YFD0401401);江苏省重点研发计划(BE2016352);镇江市农业科技支撑项目(NY2014012);江苏高校青蓝工程资助项目。
张韦唯,女,江苏南通人,主要从事功能食品的研究。镇江 江苏大学食品与生物工程学院,212013。
Email:vivian_jsnt@sina.com
※通信作者:何荣海,男,江苏丹徒人,博士,教授,主要从事食品物理加工技术研究。镇江 江苏大学食品与生物工程学院,212013。
Email:heronghai@ujs.edu.cn