APP下载

汽车电打火控制芯片的输入模块的版图设计与验证

2017-04-23杨影张永锋肖莹莹

电子技术与软件工程 2017年5期
关键词:版图电路图晶体管

杨影+张永锋+肖莹莹

摘 要 本文介绍了一款应用于汽车工程领域的电打火控制芯片的输入模块的版图设计与验证。采用标准双极工艺,全定制的设计对输入模块进行布局布线,并完成了后端验证。本芯片功耗低、成本低,性能稳定。

【关键词】电打火控制芯片 版图设计

1 引言

汽车电打火控制芯片是为使用霍尔效应管的无触点点火系统所设计的一款电打火控制芯片。芯片通过驱动外接的NPN达林顿管来控制点火线圈,使其获得足够的点火能量,只伴随很少的能量损失。本次设计的汽车电打火芯片共包含10个模块:基准电压模块、霍尔效应管输入模块、过压保护模块、占空比控制模块、限流保护电流模块、控制转换模块、缓慢恢复模块、不饱和感应模块、衡通保护模块、驱动电路模块和RPM模块。本文主要讨论了在系统设计和电路设计完成后,对输入模块:基准电压模块和霍尔效应管输入模块电路进行详细分析,并进行仿真,然后完成后端设计以及相关的验证工作。

本文电路中所采用的器件全部是双极型器件,采用5微米标准双极工艺进行版图设计。由于芯片整体电路图比较大,所以将电路图分成若干个模块分别设计,设计前先要将每个模块中的器件的大致位置规划好,在后面的整体版图整理中,再根据工艺线给出的封装结构调整各模块中器件和焊盘的位置。

2 电路分析、仿真结果以及版图设计

2.1 基准电压模块

电路如图1所示,当V3开始给整个电路供电时,随着V3的升高,Q58先导通,从而使Q60导通,Q57、Q58构成达林顿管。Q60的导通,使得镜像电流源Q59-1和Q59-2导通,开始为Q56,Q53,R33组成的能隙基准源供电,并最终在Q38的基极上产生1.25V的基准电压。基准电压产生后,Q61的B极电位为1.9V左右,高于Q60的B极电位(1.4V),所以,Q60截止。R31,Q57,Q58,Q60组成了基准电压部分的启动电路。

基准电压模块中的关键器件:

(1)Q53和Q56的面积比要严格匹配,R33的大小影响基准电压值。

(2)R27、R28匹配。

基准电压模块的版图设计:根据隔离区划分标准,集电极电位相同晶体管可以放在同一个隔离区内,将基准电压模块电路图划分成10个隔离区。然后在各个隔离区内设计器件。

2.1.1 晶体管的设计

设计芯片一般情况下先调整晶体管的尺寸。虽然将晶体管的尺寸调到最小,会增大串联器件的电阻和增大时间常数,但是可以减小芯片面积,权衡利弊,缩小器件尺寸所帶来的好处要远远大于它所带来的坏处。设计晶体管版图,首先要设计出一个最小尺寸的晶体管,这个最小尺寸的晶体管是根据本工艺线的工艺水平定出来的,本设计中最小尺寸晶体管的发射极面积是14×14μm2,然后在这个基础上考虑图形最小间距,逐步套合成一个最小尺寸的晶体管,也就是单位管。

根据对电路的分析、仿真,计算出电路图中所有晶体管发射区的尺寸,以单位管为标准,将计算出的发射区面积都表示为单位管的N倍。然后根据单位管的尺寸和本条工艺线所给出的最小设计规则,设计出各个晶体管的版图。

2.1.2 电阻的设计

根据不同类型的电阻具有不同的方块电阻,将大阻值的电阻设计为注入电阻,小阻值的电阻设计为扩散电阻,更大阻值的电阻设计为夹层电阻。

根据电阻公式:

可以根据工艺线的端头修正因子和版图中的布局情况电阻的形状和拐角个数。模块中共有15个电阻,经过计算分析,其中有一个是基区扩散电阻,其余的是注入电阻,方块电阻数全部标注在电路图中。

2.1.3 电容的设计

模块中只有一个电容,电容值为2pF,根据式(2)可以算出电容面积为:

算出电容的面积后,将这个电容做成梳状电容,使P区和N区的重迭面积为5000 就可以满足电容值为2pF的要求。

将电路图中的每个器件设计好之后,对比电路图,符合低风险合并规则的器件可以合并以减少面积。然后再参考电路图进行布线。基准电压模块版图设计如图2所示。

2.2 霍尔效应管输入模块

电路如图3所示,Q108的基极为其输出信号。霍尔效应管产生的信号从PIN5进入(V1),直接传给Q113的B极,Q113的B极与Q119的B极电位进行比较。当霍尔效应管产生的信号为高时,Q113极的B极电位为高,高于Q119的B极电位,所以,Q119导通,Q113截止。Q119的导通,使得Q111的B极电位为高,导通,从而将Q120-2的电流全部拉走,使得没有电流从Q108、Q112和R75中流过,此时模块的输出(Q108的基极)为低,约为0V。反之,上述各管子工作状态相反,模块输出为高,约为0.7V。Q114、Q115和D4组成了一个过压保护,使从霍尔效应管输入的信号不会过高,将其上限限定为(Vcc+2.1)V。霍尔效应管输入电路模块版图设计如图4所示。

3 版图验证

完成版图设计的电路性能由于诸多物理因素的介入,与逻辑设计、电路设计的结果相比,会有一定的变化,因此必须对版图进行验证,主要包括几何设计规则检查(DRC),电学规则检查(ERC),网表一致性检查(LVS),电路功能和性能验证(后仿真)等部分。这些检查工作能为电路的版图设计的正确性提供依据。本设计对绘制完的版图进行了DRC和LVS验证。

4 结论

这款电打火控制芯片的设计成功,填补了国内类似芯片的设计空白,更重要的是这款芯片的所有元器件几乎都采用最小设计尺寸,使芯片面积、功耗最小,从而提高了芯片的利用率,节省了设计成本。

参考文献

[1]陈赟.大规模集成电路自动布局布线设计方法研究[D].成都:电子科技大学,2003.

[2]陈金松.模拟集成电路(原理、设计、应用)[M].北京:中国科学技术大学出版社,1997:93-115.

[3]P.R.Gray,R.G.Meyer.Analysis and Design of Analog Integrated Circuit[M].北京:高等教育出版社,2003.240-248.

[4]黄祯.双极电流型脉宽调制器的研究与设计[D].西安:西安电子科技大学,2007.

[5]赵璐.一种电源管理芯片的保护电路设计[D].成都:电子科技大学,2007.

[6]Jiren Yuan,Christer Svensson.Principle of CMOS Circuit Power-Delay Optimization with Transistor Sizing[J].Circuits and Systems,1996.ISCAS “96,Connecting the World”,1996 IEEE International Symposium on Volume 1,12-15 May 1996:637-640.

[7]Bradley S.Carlson,Suh-Juch Lee.Delay Optimization of Digital CMOS VLSI Circuit by Transistor Reordering[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and System,1995,Vol.14(10):1183-1192.

猜你喜欢

版图电路图晶体管
“且”的真与假
2.6万亿个晶体管
退耕还林还草工程 助“绿”中国版图
功率晶体管击穿特性及测试分析
金旅“新”版图
一种新型的耐高温碳化硅超结晶体管
意法半导体(ST)新款100V晶体管提高汽车应用能