关于可列马氏链状态出现频率延迟平均的强大数定律
2017-04-08刘建国杨卫国
刘建国+杨卫国
摘要对于齐次马氏链由有限状态推广到可列的情形,由于可列和与极限运算不能交换,与文中证明方法与有限情形不同. 利用了二元函数延迟平均的强极限定理和条件期望的平滑性,研究可列齐次马氏链状态出现频率延迟平均的强大数定律.
关键词齐次马氏链;强大数定律;平滑性
中图分类号O211.62文献标识码A
由于p是关于π的C强遍历的,当N充分大时。可知上式右端充分小,由(13)和(14)可知式(7)成立. 定理證毕.
参考文献
[1]Lssacson D L,Madsen R W. Markov Chains Theory and Application[M] . New York :John Wiley & Sons , 1976:184.
[2]Gut A,Stradtmuller U. On the strong law of large numbers for delayed sums and random fields[J].Acta Mathematica Hungarica.2010,129(1/2):182-203.
[3]Huang H L,Yang W G,Shi Z Y. The Central Limit Theorem for Nonhomogemeous Markov Chains[J]. Applied probability and Statistics , 2013,9(4):337-347.
[4]王蓓,石志严.可列非齐次循环马氏链的遍历性[J]. 江苏大学报,2013,34(6):741-744.
[5]吴玉,范爱华. 关于可列非齐次马氏链的若干极限定理[J]. 纯粹数学与应用数学, 2015,31(2):182-193.
[6]Wang Z Z,Yang W G. The generalized entropy theorem for nonhomogeneous markov chains[J]. Journal of Theoretical Probability , 2016,29(3):761-775.
[7]Yang W. Strong law of large numbers for countable nonhomogeneous markov chains[J] . Linear Algebra and Its Application,2009,430(11/12):3008-3018.
[8]Yang W. The asymptotic equipartion property for nonhomogeneous markov Informance sources[J]. Probability Engineer Inform and its Ational Sciences,1998,12(4):509-518.
[9]Yang W G,Tao L L,Cheng X J. On the almost everywhere convergence for arbitrary stochastic sequence[J].Acta Mathematica Scientia,2014,34(5):1634-1642.
[10]Yang W G. Covergence in the Cesaro sense and strong law of large numbers for Nonhomogeneous Markov chains[J].Linear Algebra and its Applications,2002,354(1):275-288.