APP下载

miR- 34a- 5p对胃腺癌细胞凋亡的影响及其作用机制

2017-04-05朱金峰曾薇王海江

山东医药 2017年36期
关键词:荧光素酶癌细胞腺癌

朱金峰,曾薇,王海江

(新疆医科大学附属肿瘤医院,乌鲁木齐830011)

miR- 34a- 5p对胃腺癌细胞凋亡的影响及其作用机制

朱金峰,曾薇,王海江

(新疆医科大学附属肿瘤医院,乌鲁木齐830011)

目的探讨miR- 34a- 5p对胃腺癌细胞凋亡的影响及其作用机制。方法①采用生物信息学技术预测Bcl- 2是否为miR- 34a- 5p的靶基因。②体外培养人正常胃黏膜上皮细胞RGM- 1、人胃腺癌细胞SGC7901,采用qRT- PCR法检测两种细胞miR- 34a- 5p、Bcl- 2 mRNA表达。③将SGC7901细胞随机分为观察组和对照组,观察组转染miR- 34a- 5p mimic质粒,对照组转染scramble质粒。转染48 h,采用qRT- PCR法、Western blotting法检测Bcl- 2 mRNA和蛋白表达。④将SGC7901细胞随机分为阴性对照组、Bcl- 2 WT组、Bcl- 2 MT组,阴性对照组转染miR- 34a- 5p mimic和pRL- TK,Bcl- 2 WT组转染miR- 34a- 5p mimic、Bcl- 2野生型载体和pRL- TK,Bcl- 2 MT组转染miR- 34a- 5p mimic、Bcl- 2突变型载体和pRL- TK。转染48 h,采用双荧光素酶报告基因实验检测各组相对荧光素酶活性。⑤将SGC7901细胞随机分为阴性对照组、miR- 34a- 5p mimic组、pcDNA3.1- Bcl- 2组、miR- 34a- 5p mimic+pcDNA3.1- Bcl- 2组,阴性对照组转染scramble+pcDNA3.1- 空载体,miR- 34a- 5p mimic组转染miR- 34a- 5p mimic,pcDNA3.1- Bcl- 2组转染pcDNA3.1- Bcl- 2,miR- 34a- 5p mimic+pcDNA3.1- Bcl- 2组转染miR- 34a- 5p mimic+pcDNA3.1- Bcl- 2。转染48 h,采用流式细胞仪检测各组细胞凋亡率。结果① Bcl- 2为miR- 34a- 5p的靶基因。② SGC7901细胞miR- 34a- 5p mRNA相对表达量低于RGM- 1细胞(P<0.01),Bcl- 2 mRNA相对表达量高于RGM- 1细胞(P<0.01)。③观察组Bcl- 2 mRNA和蛋白相对表达量均低于对照组(P均<0.01)。④Bcl- 2 WT组相对荧光素酶活性低于阴性对照组和Bcl- 2 MT组(P均<0.01)。⑤miR- 34a- 5p mimic组细胞凋亡率高于阴性对照组,pcDNA3.1- Bcl- 2组、miR- 34a- 5p mimic+pcDNA3.1- Bcl- 2组低于阴性对照组及miR- 34a- 5p mimic组,组间比较P均<0.01。结论miR- 34a- 5p可通过靶向调控Bcl- 2抑制胃腺癌细胞凋亡,进而参与胃腺癌的发生、发展。

胃癌;微小RNA- 34a- 5p;B细胞淋巴瘤2;细胞凋亡

胃腺癌是消化系统最常见的恶性肿瘤之一,发病率及病死率均较高,但其发病机制尚未完全明确[1~3]。细胞凋亡是一种程序性细胞死亡[4],各种肿瘤的发生均伴随细胞凋亡受抑[5~7]。研究发现,微小RNA(miRNA)可通过直接靶向调控凋亡因子的表达,参与并调控与细胞凋亡相关的各种转录激活和信号传导,影响细胞凋亡进程,参与肿瘤的发生、发展[8,9]。目前已证实,miR- 34a- 5p与结直肠癌[10]、乳腺癌[11]等多种恶性肿瘤相关。但其与胃腺癌的关系尚不清楚。2016年1月~2017年3月,我们观察了胃腺癌细胞miR- 34a- 5p表达。现分析结果并探讨其临床意义。

1 材料

人正常胃黏膜上皮细胞RGM- 1、人胃腺癌细胞SGC7901,购自ATCC细胞库。DMEM培养基、FBS、PBS、Trypsin Solution,购自美国Gibco公司;Lipofectamine 2000,购自美国Invitrogen公司;Bcl- 2兔抗人多克隆单抗,购自美国Protein Tech公司;双荧光素酶检测试剂盒,购自广州市锐博生物科技有限公司;Annexin V- FITC/PI细胞凋亡检测试剂盒,购自美国Thermo Fisher Scientific公司;双荧光素酶报告基因检测试剂盒,购自美国Promega公司;miR- 34a- 5p mimic、scramble、重组质粒pcDNA3.1- Bcl- 2和空白质粒pcDNA3.1,购自美国Life Technologies公司。

2 方法与结果

2.1 miR- 34a- 5p的靶基因预测 采用miRNA靶标预测软件[miRNA数据库miRBase(http://www.mirbase.org)、Targetscan human(http://www.targetscan.org/)]预测Bcl- 2是否为miR- 34a- 5p的靶基因。结果显示,Bcl- 2为miR- 34a- 5p的靶基因。

2.2 细胞培养 将RGM- 1、SGC7901细胞分别置于含100 U/mL青霉素、100 μg/mL链霉素、10% FBS的DMEM培养基中,在37 ℃、5% CO2、饱和湿度条件下培养。倒置显微镜下观察细胞生长情况,隔日更换培养液。当细胞融合达90%时,0.25%胰酶消化后传代,取传3代细胞进行后续实验。

2.3 RGM- 1、SGC7901细胞miR- 34a- 5p、Bcl- 2 mRNA表达检测 采用qRT- PCR法。取传3代两种细胞,TRIzol法提取细胞总RNA,以甲醛变性的琼脂糖凝胶电泳鉴定总RNA完整,紫外分光光度计检测总RNA浓度和纯度合格,然后逆转录为cDNA;以cDNA为模板,进行定量PCR扩增。引物序列:miR- 34a- 5p上游引物:5′- TGGCAGTGTCTTAGCTGGTTGT- 3′,下游引物:5′- GCGAGCACAGAATTAATACGAC- 3′;U6 snRNA(miR- 34a- 5p内参)上游引物:5′- CTCGCTTCGGCAGCACA- 3′,下游引物:5′- AACGCTTCACGA-AYYYGCGT- 3′。Bcl- 2上游引物:5′- GGTGCCACCT-GTGGTCCACCTG- 3′,下游引物: 5′- CTTCACTTGTGGCCCAGATAGG- 3′;β- actin(Bcl- 2内参)上游引物:5′- CCTCACCCTGAAGTACCCCA- 3′,下游引物:5′- TCGTCCCAGTTGGTGACGAT- 3′。取扩增产物进行琼脂糖凝胶电泳。采用2-ΔΔCt法计算miR- 34a- 5p、Bcl- 2 mRNA相对表达量。结果显示,RGM- 1细胞miR- 34a- 5p mRNA相对表达量为0.94±0.04,SGC7901细胞为0.68±0.03,二者比较P<0.01;RGM- 1细胞Bcl- 2 mRNA相对表达量为0.93±0.03,SGC7901细胞为2.37±0.22,二者比较P<0.01。

2.4 转染miR- 34a- 5p mimic质粒的SGC7901细胞Bcl- 2 mRNA和蛋白表达检测 取传3代SGC7901细胞,胰酶消化后计数,细胞铺板,待细胞融合50%~80%时,随机分为观察组和对照组。观察组转染miR- 34a- 5p mimic质粒,对照组转染scramble质粒。转染方法:用250 μL无血清DMEM培养基稀释4.0 μg质粒,250 μL DMEM培养基稀释10 μL Lipofectamine 2000;混合质粒与Lipofectamine 2000稀释液室温下孵育20 min;将混合液置于细胞培养板,轻轻混匀,37 ℃、5% CO2条件下培养4 h;更换为基础培养基,继续培养48 h,收集细胞进行以下检测。①Bcl- 2 mRNA表达:采用qRT- PCR法,具体方法同2.3。结果显示,观察组Bcl- 2 mRNA相对表达量为0.71±0.07,对照组为2.37±0.26,两组比较P<0.01。②Bcl- 2蛋白表达:采用Western blotting法。取两组细胞,分别加入RIPA细胞裂解液(含0.1%蛋白酶抑制剂),冰上裂解30 min,超声破碎2次、每次6 s;将细胞裂解液转移至1.5 mL微量离心管中,4 ℃、12 000 r/min离心30 min,收集上清液,BCA法进行蛋白定量。分别取50 μg蛋白进行SDS- PAGE,恒压100 V 70 min,冰浴转膜至PVDF膜上;5% BSA封闭1 h;加入Bcl- 2一抗4 ℃摇床孵育过夜;TBST洗膜,加入辣根过氧化物酶标记的二抗室温孵育1 h;TBST洗涤,ECL化学发光显像。以β- actin为内参,计算Bcl- 2蛋白相对表达量。结果显示,观察组Bcl- 2蛋白相对表达量为0.94±0.04,对照组为1.47±0.21,两组比较P<0.05。

2.5 miR- 34a- 5p靶向调控Bcl- 2表达验证 采用双荧光素酶报告基因实验。将SGC7901细胞以8×104个/孔密度接种至24孔板,以含10% FBS的RPMI 1640培养基培养至细胞80%融合。随机分为阴性对照组、Bcl- 2 WT组、Bcl- 2 MT组,阴性对照组转染miR- 34a- 5p mimic和pRL- TK;Bcl- 2 WT组转染miR- 34a- 5p mimic、Bcl- 2 野生型载体和pRL- TK;Bcl- 2 MT组转染miR- 34a- 5p mimic、Bcl- 2突变型载体和pRL- TK。转染方法同2.4。转染48 h,以被动裂解液PBL裂解细胞,取20 μL细胞裂解液加入100 μL荧光素酶检测试剂Ⅱ(LAR Ⅱ),立即检测萤火虫荧光素酶活性。然后加入100 μL Stop & GloTM试剂,立即检测海肾荧光素酶活性。以萤火虫荧光素酶活性与海肾荧光素酶活性比值作为相对荧光素酶活性。结果显示,阴性对照组相对荧光素酶活性为0.88±0.04,Bcl- 2 MT组为0.81±0.03,Bcl- 2 WT组为0.54±0.06。Bcl- 2 WT组相对荧光素酶活性明显低于其他两组(P均<0.01)。

2.6 细胞凋亡检测 取SGC7901细胞随机分为阴性对照组、miR- 34a- 5p mimic组、pcDNA3.1- Bcl- 2组、miR- 34a- 5p mimic+pcDNA3.1- Bcl- 2组,阴性对照组转染scramble+pcDNA3.1- 空载体,miR- 34a- 5p mimic组转染miR- 34a- 5p mimic,pcDNA3.1- Bcl- 2组转染pcDNA3.1- Bcl- 2,miR- 34a- 5p mimic+pcDNA3.1- Bcl- 2组转染miR- 34a- 5p mimic+pcDNA3.1- Bcl- 2。各组转染48 h,用不含EDTA的胰酶消化后收集细胞,预冷1×PBS洗涤,1×Binding Buffer悬浮,加入Annexin V- FITC,室温避光孵育15 min,PI标记后流式细胞仪检测各组细胞凋亡率。结果显示,阴性对照组细胞凋亡率为(39.90±3.21)%,miR- 34a- 5p mimic组为(70.73±2.45)%,pcDNA3.1- Bcl- 2组为(25.07±3.31)%,miR- 34a- 5p mimic+pcDNA3.1- Bcl- 2组为(30.97±2.73)%。miR- 34a- 5p mimic组细胞凋亡率明显高于阴性对照组,pcDNA3.1- Bcl- 2组、miR- 34a- 5p mimic+pcDNA3.1- Bcl- 2组细胞凋亡率明显低于阴性对照组及miR- 34a- 5p mimic组,组间比较P均<0.01。

3 讨论

miRNA是高度保守的内源性非编码小分子RNA,由20~23个核苷酸组成,在转录后水平调控基因表达[12]。miRNA可加速降解和(或)阻断其靶基因的翻译及诱导转录后基因表达,从而参与调节细胞增殖、分化、代谢和凋亡等各种生物学过程[13],且与多种肿瘤的发生密切相关[14~17]。miR- 34a- 5p是miRNA中比较重要的一种。Sun等[18]研究发现,与癌旁正常肝组织相比,miR- 34a- 5p在肝癌组织中低表达;上调肝癌细胞中miR- 34a- 5p表达可抑制肝癌细胞增殖,促进肝癌细胞凋亡;提示miR- 34a- 5p可能作为抑癌基因参与肝癌的发生、发展。Wu等[19]研究发现,在多发性骨髓瘤干细胞中过表达miR- 34a- 5p可抑制骨髓瘤细胞增殖和克隆形成,并促进细胞凋亡,在多发性骨髓瘤的发生、发展过程中发挥负性调控作用。但是,关于miR- 34a- 5p与胃腺癌的关系鲜见报道。本研究结果显示,与人正常胃黏膜上皮细胞RGM- 1相比,人胃腺癌细胞SGC7901 miR- 34a- 5p低表达,提示miR- 34a- 5p可能作为抑癌基因参与胃腺癌的发生、发展。进一步对miR- 34a- 5p在胃腺癌细胞凋亡中的作用进行研究,发现转染miR- 34a- 5p mimic上调miR- 34a- 5p表达可促进胃腺癌细胞凋亡,提示miR- 34a- 5p可能通过促进胃腺癌细胞凋亡,在胃腺癌的发生、发展中发挥抑癌基因作用。

Bcl- 2基因家族与细胞凋亡密切相关,根据其功能和结构分为两类:一类是具有抗凋亡作用的基因,如Bcl- 2、Bcl- xl、Bcl- w、MCL- 1等;另一类是具有促凋亡作用的基因,如Bax、Bak、Bad、Bid、Bim等[20]。越来越多的研究表明,Bcl- 2信号通路在细胞增殖与凋亡过程中发挥重要作用[21]。Chen等[22]报道,miR- 744可直接靶向调控Bcl- 2,在宫颈癌细胞中过表达miR- 744可下调Bcl- 2表达,并激活Caspase- 3表达,从而抑制宫颈癌细胞增殖,促进宫颈癌细胞凋亡,对宫颈癌的发生、发展起负性调控作用。季涛等[23]研究发现,在胃黏膜肠上皮化生、胃黏膜不典型增生及胃癌组织中Bcl- 2阳性表达率呈逐渐升高趋势,同时细胞凋亡率呈逐渐降低趋势,提示Bcl- 2可能作为癌基因,通过使细胞凋亡受抑,参与胃癌的发生、发展。本研究结果发现,与人正常胃黏膜上皮细胞RGM- 1相比,Bcl- 2在人胃腺癌细胞SGC7901中高表达,提示Bcl- 2可能作为癌基因参与胃腺癌的发生、发展。为进一步验证Bcl- 2在胃腺癌中的表达调控机制,我们采用miRNA数据库对miR- 34a- 5p的下游靶基因进行预测,结果发现miR- 34a- 5p可与Bcl- 2的3′- UTR结合,提示miR- 34a- 5p可能靶向调控Bcl- 2表达。我们进一步在人胃腺癌细胞SGC7901中转染miR- 34a- 5p mimic以上调miR- 34a- 5p表达,结果发现,过表达miR- 34a- 5p可抑制Bcl- 2在转录和蛋白水平上的表达,进一步验证了miR- 34a- 5p可对Bcl- 2表达具有调控作用。细胞凋亡检测结果显示,转染pcDNA3.1- Bcl- 2以进一步上调Bcl- 2表达,可显著抑制人胃腺癌细胞SGC7901凋亡,提示Bcl- 2可能通过抑制胃腺癌细胞凋亡,在胃腺癌的发生、发展中发挥癌基因作用。为验证miR- 34a- 5p是否通过调控Bcl- 2的表达参与胃腺癌的凋亡过程,我们在人胃腺癌细胞SGC7901中同时转染miR- 34a- 5p mimic和pcDNA3.1- Bcl- 2,结果显示,共同过表达miR- 34a- 5p和Bcl- 2可逆转miR- 34a- 5p促进胃腺癌细胞凋亡的作用,进而使胃腺癌细胞凋亡受抑。提示miR- 34a- 5p靶向作用于Bcl- 2,通过下调Bcl- 2表达促进胃腺癌细胞凋亡。但是,当胃腺癌细胞共同转染miR- 34a- 5p mimic和pcDNA3.1- Bcl- 2时,解除了miR- 34a- 5p对Bcl- 2表达的抑制作用,从而逆转了miR- 34a- 5p促进胃腺癌细胞凋亡的作用。

综上所述,miR- 34a- 5p通过靶向调控Bcl- 2参与胃腺癌细胞凋亡,进而参与胃腺癌的发生、发展。

[1] Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016,66(2):115- 132.

[2] 张雯,王金万.胃癌的流行病学及其分型[J].中国全科医学,2010,13(11):16- 17.

[3] 邹文斌,李兆.中国胃癌发病率及死亡率研究进展[J].中国实用内科杂志,2014,34(4):408- 415.

[4] Wlodkowic D, Telford W, Skommer J, et al. Apoptosis and beyond: cytometry in studies of programmed cell death[J]. Methods Cell Biol, 2011,10(3):55- 98.

[5] Burz C, Berindan NL, Balacescu O, et al. Apoptosis in cancer: key molecular signaling pathways and therapy targets[J]. Acta Oncol, 2009,48(6):811- 821.

[6] Wang RA, Li ZS, Yan QG, et al. Resistance to apoptosis should not be taken as a hallmark of cancer[J]. Chin J Cancer, 2014,33(2):47- 50.

[7] Strasser A, Cory S, Adams JM. Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases[J]. EMBO J, 2011,30(18):3667- 3683.

[8] Gregory RI, Yan KP, Amuthan G, et al. The Microprocessor complex mediates the genesis of microRNAs[J]. Nature, 2004,432(7014):235- 240.

[9] 李洁,秦性良,邵宁生.MicroRNA及其靶基因的时空特异性与动态变化[J].生物化学与生物物理进展,2013,40(7):617- 626.

[10] Koelzer VH, Sokol L, Zahnd S, et al. Digital analysis and epigenetic regulation of the signature of rejection in colorectal cancer[J]. Oncoimmunology, 2017,6(4):e1288330.

[11] Imani S, Zhang X, Hosseinifard H, et al. The diagnostic role of microRNA- 34a in breast cancer: a systematic review and meta- analysis[J]. Oncotarget, 2017,8(14):23177- 23187.

[12] Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004,116(2):281- 297.

[13] Bartel DP. MicroRNAs: target recognition and regulatory functions[J]. Cell, 2009,136(2):215- 233.

[14] Calin GA, Liu CG, Sevignani C, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias[J]. Proc Natl Acad Sci U S A, 2004,101(32):11755- 11760.

[15] Chen X, Wang X, Ruan A, et al. miR- 141 is a key regulator of renal cell carcinoma proliferation and metastasis by controlling EphA2 expression[J]. Clin Cancer Res, 2014,20(10):2617- 2630.

[16] Siu MK, Abou- Kheir W, Yin JJ, et al. Loss of EGFR signaling regulated miR- 203 promotes prostate cancer bone metastasis and tyrosine kinase inhibitors resistance[J]. Oncotarget, 2014,5(11):3770- 3784.

[17] Rokavec M, Oner MG, Li H, et al. IL- 6R/STAT3/miR- 34a feedback loop promotes EMT- mediated colorectal cancer invasion and metastasis[J]. J Clin Invest, 2014,124(4):1853- 1867.

[18] Sun TY, Xie HJ, Li Z, et al. miR- 34a regulates HDAC1 expression to affect the proliferation and apoptosis of hepatocellular carcinoma[J]. Am J Transl Res, 2017,9(1):103- 114.

[19] Wu S, He X, Li M, et al. MiRNA- 34a overexpression inhibits multiple myeloma cancer stem cell growth in mice by suppressing TGIF2[J]. Am J Transl Res, 2016,8(12):5433- 5443.

[20] Wensveen FM, Alves NL, Derks Ingrid AM, et al. Apoptosis induced by overall metabolic stress converges on the Bcl- 2 family proteins Noxa and Mcl- 1[J]. Apoptosis, 2011,16(7):708- 721.

[21] Anvekar RA, Asciolla JJ, Missert DJ, et al. Born to be alive: a role for the Bcl- 2 family in melanoma tumor cell survival, apoptosis, and treatment[J]. Front Oncol, 2011,1(34).pii:fonc.2011.00034.

[22] Chen XF, Liu Y. MicroRNA- 744 inhibited cervical cancer growth and progression through apoptosis induction by regulating Bcl- 2[J]. Biomed Pharmacother, 2016(81):379- 387.

[23]季涛,徐向明,谭洪武.胃癌变过程中凋亡基因生存素及Bcl- 2的表达与幽门螺杆菌感染相关性研究[J].中华医院感染学杂志,2015,25(8):1707- 1709.

EffectofmiR- 34a- 5ponapoptosisofgastricadenocarcinoma

ZHUJinfeng,ZENGWei,WANGHaijiang

(AffiliatedCancerHospitalofXinjiangMedicalUniversity,Urumqi830011,China)

ObjectiveTo investigate the effect and mechanism of miR- 34a- 5p on the apoptosis of gastric adenocarcinoma.Methods①Bioinformatics tools were used to predict the potential target gene of miR- 34a- 5p. ②Normal gastric mucosa epithelial cells RGM- 1 and gastric adenocarcinoma cells SGC7901 were cultured, and qRT- PCR was performed to detect the expression of miR- 34a- 5p and Bcl- 2 mRNA in these two cell lines. ③SGC7901 cells were assigned into two groups: the observation group was transfected with miR- 34a- 5p mimic plasmid and the control group with scramble plamid for 48 h, and then qRT- PCR was performed to detect Bcl- 2 mRNA, and Western blotting was used to detect the Bcl- 2 protein. ④ SGC7901 cells were assigned into three groups: the negative control group was co- transfected with miR- 34a- 5p mimic and pRL- TK; the Bcl- 2 WT group was co- transfected with miR- 34a- 5p mimic, Bcl- 2 WT plasmid, and pRL- TK; the Bcl- 2 MT group was co- transfected with miR- 34a- 5p mimic, Bcl- 2 MT plasmid, and pRL- TK. The relative luciferase activity was measured by dual luciferase reporter assay at 48 h. ⑤SGC7901 cells were assigned into four groups: the negative control group was co- transfected with miRNA scramble and pcDNA3.1 empty vector, the miR- 34a- 5p mimic group was transfected with miR- 34a- 5p mimic, the pcDNA3.1- Bcl- 2 group was transfected with pcDNA3.1- Bcl- 2, and the miR- 34a- 5p mimic+pcDNA3.1- Bcl- 2 group was co- transfected with miR- 34a- 5p mimic and pcDNA3.1- Bcl- 2. The apoptotic rate of the four groups was measured by flow cytometry after 48 h of transfection.Results①Bcl- 2 was predicted to be the potential target gene of miR- 34a- 5p. ② Compared with RGM- 1 cells, SGC7901 cells had relatively low expression of miR- 34a- 5p and high expression of Bcl- 2 mRNA (bothP<0.01). ③ The relative expression of Bcl- 2 mRNA and protein in the observation group was lower than that in the control group (P<0.01). ④The relative luciferase activity of the Bcl- 2 WT group was lower than that of the negative control group and Bcl- 2 MT group (P<0.01). ⑤The apoptotic rate of the miR- 34a- 5p mimic group was higher than that of the negative control group, and the apoptotic rates of the pcDNA3.1- Bcl- 2 group and miR- 34a- 5p mimic+pcDNA3.1- Bcl- 2 group were lower than those of the negative control group and miR- 34a- 5p mimic (P<0.01).ConclusionThe miR- 34a- 5p can inhibit the apoptosis of gastric adenocarcinoma by up- regulating the expression of Bcl- 2 and thus be involved in the occurrence and development of gastric adenocarcinoma.

gastric carcinoma; miR- 34a- 5p; Bcl- 2; apoptosis

新疆维吾尔自治区自然科学基金面上项目(2016D01C347)。

朱金峰(1980- ),男,主治医师,主要研究方向为胃肠肿瘤的诊治。E- mail: zjf122@hotmail.com

王海江(1963- ),男,主任医师,主要研究方向为胃肠肿瘤的诊治。E- mail: wanghaijiang@medmail.com.cn

10.3969/j.issn.1002- 266X.2017.36.006

R735.2

A

1002- 266X(2017)36- 0021- 04

2017- 04- 12)

猜你喜欢

荧光素酶癌细胞腺癌
NNMT基因启动子双荧光素酶报告系统的构建及其与SND1靶向关系的验证
不同双荧光素酶方法对检测胃癌相关miRNAs靶向基因TIAM1的影响
重组双荧光素酶报告基因质粒psiCHECK-2-Intron构建转染及转染细胞萤火虫荧光素酶和海肾荧光素酶表达
癌细胞最怕LOVE
假如吃下癌细胞
益肺解毒方联合顺铂对人肺腺癌A549细胞的影响
癌细胞最怕Love
正常细胞为何会“叛变”? 一管血可测出早期癌细胞
HIF-1a和VEGF-A在宫颈腺癌中的表达及临床意义
GSNO对人肺腺癌A549细胞的作用