图像复原的一种新的加速动量梯度投影法
2017-03-01武高玉李慧云
武高玉++李慧云
DOI:10.16661/j.cnki.1672-3791.2016.27.137
摘 要:该文提出了一种新的应用于图像复原的加速动量梯度投影法。该方法在负梯度的方向上添加一个动量项,并且动态地选取动量参数和步长,从而加速了算法的收敛。在合理的假设下,证明了算法的全局收敛性。数值试验表明,与当前先进的FISTA方法相比较,该文提出的算法无论是在时间上还是在图像复原的质量上都是有竞争力的。
关键词:加速动量梯度投影法 动量 图像复原
中图分类号:TP391.41 文献标识码:A 文章编号:1674-098X(2015)09(c)-0137-04
A New Momentum Gradient Projection Method for Image Restoration
Wu Gaoyu1 Li Huiyun2
(1.School of Science Hebei University of Technology, Tianjin, 300401, China;2.School of Control Science and Engineering, Hebei University of Technology, Tianjin, 300401, China)
Abstract: In this paper, a new momentum gradient projection method for image restoration is proposed by using the convex combination of the negative gradient direction and the momentum term as the search direction, and the proposed method employs dynamic selection of momentum parameters and step length, which accelerates its convergence. Under mild conditions, the method is proved to be globally convergent. Experiment results demonstrate that the proposed method outperforms FISTA, both in time efficiency and in the quality of image restoration.
Key Words: Momentum gradient projection method; Momentum; Image restoration
表1是FISTA和算法1两种算法图像处理后的峰值信噪比(PSNR),运行时间(CPU) 的对比。从PSNR可以看出,用算法1复原的图像与原始图像最接近;从CPU可以看出,算法1速度较快。
图1对2个测试图像进行了图像处理,将算法1与FISTA算法在图像复原的质量上进行了比较,可以看出,算法1复原的图像的视觉效果稍微优于FISTA算法复原图像的视觉效果。
4 结语
该文提出了一种新的应用于稀疏信号重构的加速动量梯度投影法,即把负梯度方向与动量项的凸组合作为搜索方向。通过数值试验的比较,该方法在图像复原的质量上与FISTA相当,但比FISTA收敛速度快,CPU时间更少。该文的方法是有效的。但其收敛速度还有待研究。
参考文献
[1] Chambolle A,De Vore R A,Lee N Y,et al.Nonlinear wavelet image processing:variational problems, compression,and noise removal through wavelet shrinkage[J].Image Processing IEEE Transactions on,1998,7(3):319-335.
[2] Figueiredo M A T,Nowak R D.An EM algorithm for wavelet-based image restoration[J].IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society,2003,12(8):16-906.
[3] Figueiredo M A T,Nowak R D.A bound optimization approach to wavelet-based image deconvolution[C]//IEEE International Conference on Image Processing. 2005:782-785.
[4] Beck A,Teboulle M.A fast iterative shrinkage-thresholding algorithm for linear inverse problems[J]. SIAM Journal on Imaging Sciences,2009,2(1):183-202.
[5] 刘紫娟,李慧云,刘新为. 外推系数带参数的加速邻近梯度算法[J]. 数值计算与计算机应用,2016,37(3):211-222.
[6] Kim S J,Koh K,Lustig M,et al.An interior-point method for large-scale l1-regularized least squares[J].IEEE Journal of Selected Topics in Signal Processing,2007,1(4):606-617.
[7] Figueiredo M A T,Nowak R D,Wright S J.Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[C]//IEEE Journal of Selected Topics in Signal Processing.2007:586-597.
[8] Ma G,Hu Y,Gao H.An accelerated momentum based gradient projection method for image deblurring[C]// IEEE International Conference on Signal Processing, Communications and Computing.2015.
[9] 畢亚倩,刘新为.求解界约束优化的一种新的非单调谱投影梯度法[J].计算数学,2013,35(4):419-430.