APP下载

玉米淀粉废水强化混凝与反硝化脱氮除磷技术研究

2017-02-09郭晓娅年跃刚闫海红殷勤高鹏陈光伟

环境工程技术学报 2017年1期
关键词:氯化铁混凝絮凝剂

郭晓娅,年跃刚*,闫海红,3,殷勤,3,高鹏,陈光伟

1.环境基准与风险评估国家重点实验室,中国环境科学研究院,北京 100012 2.中国环境科学研究院水污染控制技术研究中心,北京 100012 3.北京师范大学水科学研究院,北京 100875 4.中蓝连海设计研究院,上海 201204 5.中粮生化能源(公主岭)有限公司,吉林 四平 136100



玉米淀粉废水强化混凝与反硝化脱氮除磷技术研究

郭晓娅1,2,年跃刚1,2*,闫海红1,2,3,殷勤1,2,3,高鹏4,陈光伟5

1.环境基准与风险评估国家重点实验室,中国环境科学研究院,北京 100012 2.中国环境科学研究院水污染控制技术研究中心,北京 100012 3.北京师范大学水科学研究院,北京 100875 4.中蓝连海设计研究院,上海 201204 5.中粮生化能源(公主岭)有限公司,吉林 四平 136100

针对现行玉米淀粉废水处理工艺出水氮、磷易超标的问题,提出2种提高脱氮除磷潜能的解决方案:在预处理阶段设置混凝工艺强化去除部分污染物;在反硝化阶段引入部分竖流沉淀池(初沉池)出水作为补充碳源。通过设计单因素混凝试验,对比氯化铁、硫酸铝、壳聚糖、海藻酸钠4种絮凝剂对污染物的去除效果。结果表明:氯化铁较适合作玉米淀粉废水处理絮凝剂,当氯化铁投加量为0.40 gL,pH为4,温度为35 ℃时,TP、SS、TN和CODCr的去除率分别为93.5%、94.8%、10.8%和10.7%。采用序批式反应器,研究了以淀粉废水处理过程中的初沉池出水作为反硝化碳源的污染物降解特性与动力学特性;分别采用基于Monod方程的微分方程模型和分段零级反应动力学模型拟合试验数据。结果表明:反硝化过程中存在-N积累现象,-N最大积累率为61%;采用基于Monod方程的微分方程模型,能够很好地拟合水解酸化段废水作为碳源的反硝化过程中-N以及-N与-N当量总和)浓度的变化趋势,-N以及的最大降解速率分别为24.21、12.78和15.97 mg(g·h)(以MLVSS计);分段零级动力学模型能较好拟合-N浓度随时间的变化趋势,阶段1和阶段2的反硝化速率分别为16.09和8.71 mg(g·h)(以MLVSS计)。

玉米淀粉废水;混凝;反硝化碳源;动力学模型

目前关于淀粉废水的预处理技术包括泡沫分离法[2]、酸沉法[3]、絮凝法[4]等,主要以回收废水中的蛋白质为主,而以除磷为目的研究较少,因为在预处理阶段进行化学除磷成本较高,且易引起生物处理磷元素的缺失。针对外加碳源,国内外研究者多以降低脱氮成本,资源化利用废物为主要研究方向,开发了多种新型外加碳源,如厌氧产酸发酵液[5-6]、天然或人工缓释碳源[7-8]、高浓度有机废水[9-10]等。玉米淀粉废水的主要成分为淀粉和蛋白质,废水的CODCr为8 000~30 000 mgL,BOD5为5 000~20 000 mgL,其本身属于可生化的高浓度有机废水,如能将预处理过程中的部分废水作为其脱氮工艺的外加碳源,不仅能够提高脱氮工艺的碳氮比,也能减轻来水水质对生物处理的压力,同时为混凝处理后的废水提供部分磷元素,可极大地降低废水的处理成本。

1 材料与方法

1.1 混凝试验废水来源及试验方法

废水取自吉林省某大型玉米深加工企业,该企业废水处理系统采用竖流沉淀预处理水解酸化EGSBAO工艺。取竖流沉淀池(初沉池)出水作为混凝试验用水,由于该企业废水水质不稳定,为比较不同絮凝剂的混凝效果,采用12组水质较为相近的废水进行试验。混凝试验用水水质如表1所示。试验所用絮凝剂为壳聚糖、硫酸铝、氯化铁、海藻酸钠,试剂均购自国药集团化学试剂有限公司。

表1 混凝试验用水水质

Table 1 Water quality of coagulation experiments mgL

Table 1 Water quality of coagulation experiments mgL

CODCrSS浓度TN浓度TP浓度pH6881~7428246~290329~38988~10336~39

注:pH无单位。

水样加酸碱调整pH,取6个1 L烧杯,分别放入同水质的淀粉废水1 L,投加一定量的絮凝剂,置于六联搅拌机上,快速搅拌1 min(转速为250 rmin),慢速搅拌20 min(转速40 rmin),静置沉淀30 min,取表面1~2 cm处上清液测定混凝效果。

1.2 反硝化脱氮试验碳源与污泥来源及试验方法

碳源为该企业竖流沉淀池出水,该次试验水质指标:CODCr为12 234 mgL;TN浓度为531 mgL;TP浓度为161 mgL;浓度为24 mgL;浓度为2.3 mgL;浓度为4.9 mgL;pH为3.98。接种污泥为二沉池浓缩污泥[11]。

反应器为柱状有机玻璃反应器,有效容积为7 L(图1)。以废水作为反硝化碳源,对污泥进行驯化,得到稳定的反硝化脱氮系统。取出部分活性污泥,用超纯水淘洗3次并曝气30 min,使污泥处于内源呼吸阶段。根据正交试验设计进行批式试验:分别向9个250 mL锥形瓶内加入不同体积的废水碳源、150 mL活性污泥和50 mL自配水,再加入自来水补足至250 mL。通过1 molL的NaOH和HCl调节废水pH,用封口膜将锥形瓶密封,以消除外界环境因素对反硝化作用的影响。自配水配置方法:将一定量的硝酸钾、磷酸二氢钾加入自来水中,控制各锥形瓶硝态氮浓度约为100 mgL,磷酸盐及其他微量元素充足。

1—pH计电极;2—恒温加热棒;3—机械搅拌棒;4—取样口及排水口;5—反应器。图1 试验装置Fig.1 The schematic diagram of experimental setup

1.3 试验仪器

主要试验仪器包括ZR-6型混凝试验搅拌机(深圳中润);CTL-12型化学需氧量速测仪(承德华通);UV-2100紫外可见分光光度计(上海尤尼柯);ICS-1000离子色谱仪(美国戴安);FG2便携式pH计(瑞士梅特勒)。

1.4 分析方法

1.5 数据处理

根据硝酸盐还原电子传递体系当量关系,将每1 g亚硝酸盐还原为氮气所需的电子当量与将0.6 g硝酸盐氮还原为氮气所需的电子当量相同,采用硝酸盐和亚硝酸盐当量总和表征比反硝化速率[13]:

(1)

(2)

(3)

(4)

(5)

当碳源充足且硝酸盐浓度比较高时,比反硝化速率只与反硝化菌的活性和数量有关,与硝酸盐氮的浓度无关,反硝化过程呈零级反应动力学[17],反硝化速率可表示为:

vd=ΔCcor(Δt×X)

式中:vd为反硝化速率,mg(mg·d);t为时间,d。

2 结果与分析

2.1 混凝试验及其结果分析

影响混凝效果的因素有投加量、转速、pH、温度等,综合考虑各影响因素对工程运行的影响,选取絮凝剂投加量、pH以及温度3种因素进行单因素试验,对比分析氯化铁、硫酸铝、海藻酸钠和壳聚糖4种絮凝剂对污染物尤其是TP和SS的去除效果。试验设计如表2所示。

表2 混凝单因素试验设计Table 2 Design table of single factor experiments of coagulation

4种絮凝剂最佳混凝效果及去除成本如表3所示。从表3可以看出,氯化铁和硫酸铝除TP和SS效果显著,考虑到原水的pH(3.5~3.9)和温度(30~35 ℃),认为氯化铁絮凝剂较适宜,且有市售的氯化铁水溶液,省去了企业增设溶药池等问题,因此建议使用氯化铁作为玉米淀粉废水的絮凝剂。吴昊等[18]研究了不同絮凝剂对淀粉废水生化处理出水中TP的去除效果表明,4种絮凝剂中氯化铁的除磷效果最佳,但由于处理后出水pH呈酸性,达不到国家排放标准要求,需和氯化钙联合使用。将氯化铁絮凝剂置于预处理阶段既可以避免此类问题的发生,同时也可以缓解反应器管道堵塞问题。

表3 4种絮凝剂最佳混凝效果及成本Table 3 The best coagulation effects and costs of 4 kinds of flocculants

2.2 以初沉池出水为碳源的正交试验设计及直观分析表

表4 因素水平表Table 4 Experimental conditions

表5 极差直观分析Table 5 Intuitionistic range analysis

注:K1,K2,K3为不同影响因子在不同水平下硝态氮去除率和的平均值;R为极差,表明各因子对结果的影响程度。

由表5可知,以淀粉废水处理过程中的初沉池出水作为碳源可获得较高的脱氮率。其中,温度为反硝化过程的显著影响因子,各因子对硝态氮去除率的影响程度为:温度>pH>CN。最优反应条件:温度为40 ℃,pH为7,CN为9。同时试验发现,系统在20 ℃可发生明显的-N积累现象。

2.3 反硝化过程中氮浓度变化规律

在正交最优操作条件下,设定反应器温度为40 ℃,pH为7,CN为9,设计以初沉池出水为碳源和以乙酸钠为碳源作为对照的2个系统,获取反硝化反应周期内氮浓度的变化,如图2所示。由图2可知,硝态氮降解过程呈明显的阶段变化(阶段Ⅰ、Ⅱ、Ⅲ)。以初沉池出水为碳源的反硝化过程在前60-N浓度呈直线下降,去除率为-N逐步积累至最高点;60 min后,系统内主要进行以-N为电子受体的反硝化,-N浓度逐渐降低。-N浓度在整个反应过程中呈逐渐下降趋势。以乙酸钠为碳源的反硝化过程在前40 min对-N的去除率达到98.59%。随着反硝化反应的进行,2个系统内pH不断上升,均出现折点A和折点B。折点A恰好与-N浓度接近零)及-N浓度的峰值)同时出现;折点B与+0.6-N浓度转折点)同时出现,指示反硝化的结束。其与王少坡等[19-21]的试验结果相同,因此可根据pH的变化判断反硝化进行的程度。

注:A和B为pH变化转折点;C、D、E为硝态氮浓度变化转折点。图2 2种反硝化碳源氮浓度的变化Fig.2 Variation of nitrogen concentration with two kinds of denitrification carbon sources

图3 Monod动态模型拟合Fig.3 Simulation of nitrogen compounds by Monod model

2.4 Monod动态模型拟合

表6 反硝化过程动态模型动力学参数Table 6 The kinetic parameter values of denitrification process

注:KD为半饱和常数。

2.5 分段零级动力学拟合

图4 分段零级动力学拟合Fig.4 Simulation of nitrogen compounds by piecewise zero-order kinetic model

从表7可以看出,分段零级反应方程能够较好

表7 反硝化碳源试验Ccor-时间拟合结果Table 7 Fitting results of Ccor against time with two denitrification carbon sources

从拟合优度来看,利用分段零级反应方程拟合数据的R2低于利用改进的Monod方程拟合的R2,但同样可以达到较高的拟合水平。Monod经验方程适用于较广的基质浓度,已得到广泛的验证和应用,对于反硝化工艺的合理设计以及过程的正确控制具有重要意义,但Monod方程中的vmax只能获知微生物利用碳源的最大降解速率。分段动力学方程除简化了计算过程外,还可以观察到反硝化速率随时间的变化情况,能够直观地了解碳源性能及污染物随时间的降解规律。

3 结论

(1)强化混凝预处理工艺可以去除部分污染物,减轻玉米淀粉废水来水水质对后续生物处理,尤其是对厌氧反应器的影响,氯化铁絮凝剂投加量为0.40 gL,pH为4,温度为35 ℃时,TP、SS、TN、CODCr的去除率分别为93.5%、94.8%、10.8%和10.7%。

[1] 高鹏,年跃刚,闫海红,等.玉米深加工清洁生产技术的应用对废水处理效果的影响[J].环境工程技术学报,2014,4(3):181-186. GAO P,NIAN Y G,YAN H H,et al.Effect of cleaner production of a corn starch enterprise on wastewater treatment effectiveness[J].Journal of Environmental Engineering Technology,2014,4(3):181-186.

[2] MU T H,LIU Y,ZHANG M,et al.Protein recovery from sweet potato starch wastewater by foam separation[J].Separation Science and Technology,2014,49(14):2255-2260.

[3] TIAN X,SHI Y X,LIN G L,et al.Study on environmental materials with treatment of sweet potato starch wastewater by hydrolysis acidification sedimentation process[C]Advanced materials research.Switzerland:Trans Tech Publications,2013:49-52.

[4] PU S Y,QIN L L,CHE J P,et al.Preparation and application of a novel bioflocculant by two strains ofRhizopussp. using potato starch wastewater as nutrilite[J].Bioresource Technology,2014,162:184-191.

[5] GAO Y,PENG Y,ZHANG J,et al.Biological sludge reduction and enhanced nutrient removal in a pilot-scale system with 2-step sludge alkaline fermentation and A2O process[J].Bioresource Technology,2011,102(5):4091-4097.

[6] ZHANG L,ZHANG S,WANG S,et al.Enhanced biological nutrient removal in a simultaneous fermentation,denitrification and phosphate removal reactor using primary sludge as internal carbon source[J].Chemosphere,2013,91(5):635-640.

[7] 文辉,陈云峰,高良敏.不同碳源材料用于污水厂尾水生物反硝化碳源的效果研究[J].环境科学学报,2011,31(3):499-504. WEN H,CHEN Y F,GAO L M.The effect of bio-denitrification of sewage plant wastewater using different carbon source materials[J].Acta Scientiae Circumstantiae,2011,31(3):499-504.

[8] OVEZ B,OZGEN S,YUKSEL M.Biological denitrification in drinking water usingGlycyrrhizaglabraandArundadonaxas the carbon source[J].Process Biochemistry,2006,41(7):1539-1544.

[10] BERNET N,HABOUZIT F,MOLETTA R.Use of an industrial effluent as a carbon source for denitrification of a high-strength wastewater[J].Applied Microbiology and Biotechnology,1996,46(1):92-97.

[11] 郭晓娅,年跃刚,闫海红,等.以玉米淀粉废水为反硝化碳源的污染物降解特征与微生物群落结构研究[J].环境工程技术学报,2016,6(5):427-433. GUO X Y,NIAN Y G,YAN H H,et al.Pollutants degradation characteristics and microbial community structure using cornstarch wastewater as denitrification carbon source[J].Journal of Environmental Engineering Technology,2016,6(5):427-433.

[12] 国家环境保护总局.水和废水监测分析方法[M].4版.北京:中国环境科学出版社,2002.

[13] ÇOKGÖR E U,SÖZEN S,ORHON D,et al.Respirometric analysis of activated sludge behaviour:I.assessment of the readily biodegradable substrate[J].Water Research,1998,32(2):461-475.

[14] WILDERER P A,JONES W L,DAU U.Competition in denitrification systems affecting reduction rate and accumulation of nitrite[J].Water Research,1987,21(2):239-245.

[15] 谢丽,蔡碧婧,杨殿海,等.亚硝酸积累条件下反硝化脱氮过程动力学模型[J].同济大学学报(自然科学版),2009,37(2):224-228. XIE L,CAI B J,YANG D H,et al.Kinetic model of denitrification process with nitrite accumulation[J].Journal of Tongji University(Natural Science),2009,37(2):224-228.

[16] 白凡玉,岳秀萍,段燕青,等.以吡啶、喹啉和吲哚为单一碳源时反硝化过程中亚硝酸盐积累及动力学研究[J].环境工程学报,2015,9(2):665-669. BAI F Y,YUE X P,DUAN Y Q,et al.Nitrite accumulation and kinetic study of denitrification with pyridine,quinolone and indole as sole carbon source[J].Chinese Journal of Environmental Engineering,2015,9(2):665-669.

[17] KUJAWA K,KLAPWIJK B.A method to estimate denitrification potential for predenitrification systems using NUR batch test[J].Water Research,1999,33(10):2291-2300.

[18] 吴昊,黄进刚,陈建军.不同絮凝剂对淀粉废水除磷效果的研究[J].工业水处理,2014(10):56-59. WU H,HUANG J G,CHEN J J.Research on the removing effect of phosphorus from starch wastewater by using different flocculants[J].Industrial Water Treatment,2014(10):56-59.

[19] 郭晓娅,年跃刚,闫海红,等.水解酸化废水作为反硝化碳源的过程特征及其动力学分析[J].环境工程技术学报,2016,6(6):539-546. GUO X Y,NIAN Y G,YAN H H,et al. Kinetics and process characteristics of hydrolysis-acidogenosis wastewater as denitrification carbon source[J].Journal of Environmental Engineering Technology,2016,6(6):539-546.

[20] 王少坡,彭永臻,王淑莹,等.不同硝态氮组成下反硝化过程控制参数pH变化规律[J].高技术通讯,2005,15(8):91-95. WANG S P,PENG Y Z,WANG S Y,et al.Effect of proportion of nitrate and nitrite on pH profiles during denitrification[J].High Technology Letters,2005,15(8):91-95.

[21] 付昆明,曹相生,孟雪征,等.污水反硝化过程中亚硝酸盐的积累规律[J].环境科学,2011,32(6):1660-1664. FU K M,CAO X S,MENG X Z,et al.Characteristics of nitrite accumulation during wastewater denitrification[J].Environmental Science,2011,32(6):1660-1664.

[22] LI J M,LI J,ZHENG G H,et al.Effects of the COD-N ratio and pH on the accumulation of denitrification intermediates with available pyridine as a sole electron donor and carbon source.[J].Environmental Technology,2008,29(12):1297-1306.

[23] GLASS C,SILVERSTEIN J A.Denitrification kinetics of high nitrate concentration water:pH effect on inhibition and nitrite accumulation[J].Water Research,1998,32(3):831-839.

[24] LI W,SHAN X Y,WANG Z Y,et al.Effect of self-alkalization on nitrite accumulation in a high-rate denitrification system:performance,microflora and enzymatic activities[J].Water Research,2016,88:758-765.

[25] VINCENT R,LAVERMAN A M,JOHNNY G,et al.Nitrite accumulation during denitrification depends on the carbon quality and quantity in wastewater treatment with biofilters.[J].Environmental Science & Pollution Research International,2015,22(13):10179-10188.

[26] 袁怡,黄勇,邓慧萍,等.CN比对反硝化过程中亚硝酸盐积累的影响分析[J].环境科学,2013,34(4):1416-1420. YUAN Y,HUANG Y,DENG H P,et al.Effect of CN ratio on nitrite accumulation during denitrification process[J].Environmental Science,2013,34(4):1416-1420.

[27] LEE N M,WELANDER T.The effect of different carbon sources on respiratory denitrification in biological wastewater treatment[J].Journal of Fermentation and Bioengineering,1996,82(3):277-285.

[28] HENZE M.Capabilities of biological nitrogen removal processes from wastewater[J].Water Science & Technology,1991,23(456):669-679. ○

姜诗慧,彭剑峰,宋永会,等.沈阳市2005—2012年水足迹与水资源承载力分析[J].环境工程技术学报,2017,7(1):15-23.

JIANG S H, PENG J F, SONG Y H, et al.Analysis of water footprint and water resources carrying capacity in Shenyang in 2005-2012[J].Journal of Environmental Engineering Technology,2017,7(1):15-23.

Enhanced coagulation and nitrification for nitrogen and phosphorus removal from corn starch wastewater

GUO Xiaoya1,2, NIAN Yuegang1,2, YAN Haihong1,2,3, YIN Qin1,2,3, GAO Peng4, CHEN Guangwei5

1.State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences,Beijing 100012, China 2.Research Center of Water Pollution Control Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China 3.College of Water Science, Beijing Normal University, Beijing 100875, China 4.China Bluestar Lehigh Engineering Corporation, Shanghai 201204, China 5.COFCO Bio-chemical Energy(Gongzhuling)Company Limited, Siping 136100, China

Considering the limit-exceeding problems of nitrogen and phosphorus in current cornstarch wastewater treatment, two solutions were put forward: one is to remove some pollutants by enhanced flocculation at the pretreatment stage; the other is to utilize the effluent of primary sedimentation tank as a carbon source for denitrification. The wastewater was treated by ferric chloride, aluminum sulfate, chitosan, and sodium alginate as flocculants, and optimum conditions were determined by single factor coagulation tests. The results showed that the ferric chloride was the suitable flocculant for treatment of cornstarch wastewater. When the dosing quantity of ferric chloride coagulant was 0.40 gL, pH was 4, temperature was 35 ℃, the removal rates of TP, SS, TN and CODCrwere 93.5%, 94.8%, 10.8% and 10.7%, respectively. The pollutant degradation characteristics and dynamic characteristics were studied by sequencing batch reactor with the effluent of primary sedimentation tank as the carbon source for denitrification, and Monod equation and piecewise zero-order kinetic model were used to fit the experimental data. The results showed that-N accumulation was found in the denitrification process, and the accumulation rate was 61%. The predicted values of simulation parameters using Monod equation fit well with the measured data, and the maximum degradation rates of-N and-N were 24.21, 12.78 and 15.97 mg(g MLVSS·h) respectively. The concentrations of-N was also fit well by piecewise zero-order kinetic model and the denitrification rates of stage 1 and 2 were 16.09 and 8.71 mg(g MLVSS·h) respectively.

cornstarch wastewater; coagulation; carbon source for denitrification; kinetic model

2016-03-21

国家水体污染控制与治理科技重大专项(2012ZX07202-009-01)

郭晓娅(1990—),女,硕士研究生,主要从事水污染控制与资源化技术研究,xiaoyaguo1990@163.com

*责任作者:年跃刚(1963—),男,研究员,博士,主要从事生态修复、中水回用技术研究,nianyg@craes.org.cn

X703

1674-991X(2017)01-0007-08

10.3969j.issn.1674-991X.2017.01.002

猜你喜欢

氯化铁混凝絮凝剂
氧化铝生产中降低絮凝剂消耗的措施
丙烯酰胺强化混凝去除黑河原水浊度的研究
净水混凝效果影响因素的正交小试研究
湿法冶金行业用絮凝剂研究进展
一次盐水三氯化铁加入量实验
探究氯化铁溶液灼烧的变化
一种油井水泥用抗分散絮凝剂
污水处理厂二级出水中混凝沉淀工艺的应用
氯化铁水解平衡异常移动的分析
混凝-热活化过硫酸盐氧化预处理乳化液废水