应重视硝态氮同化过程在降低土壤硝酸盐浓度中的作用*
2017-02-06余云飞王慎强
程 谊 黄 蓉 余云飞 王慎强†
(1 土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所),南京 210008)
(2 江苏省农业委员会,南京 210036)
应重视硝态氮同化过程在降低土壤硝酸盐浓度中的作用*
程 谊1黄 蓉1余云飞2王慎强1†
(1 土壤与农业可持续发展国家重点实验室(中国科学院南京土壤研究所),南京 210008)
(2 江苏省农业委员会,南京 210036)
在保证生产力条件下,采取合理的氮肥管理措施降低土壤硝态氮浓度对降低氮污染至关重要。当前,应用硝化抑制剂能够有效延缓铵态氮的硝化速率,进而降低土壤硝态氮淋溶损失和氮氧化物排放,但是其缺点显而易见:促进氨挥发并引起硝化抑制剂污染。好氧条件下,土壤硝态氮净变化量取决于产生(硝化)和消耗(硝态氮同化)的量。但是,一直以来,受微生物优先利用铵态氮这一传统观点的影响,人们普遍认为农田土壤微生物较少利用硝态氮,很大程度上忽视了对硝态氮同化过程的研究。该过程独具优势,它将硝态氮转变为微生物生物量氮进行短期储存并发生再矿化,具有保氮功能且环境友好。加入特定的碳源可以提高硝态氮同化这已是不争的事实,未来应加强硝态氮同化降低土壤硝酸盐累积方面的研究:(1)外源碳影响硝态氮同化的微生物驱动机制是什么?(2)怎样才能操控硝态氮同化和再矿化过程,使得作物氮需求和土壤氮供应相匹配,进而降低氮损失?(3)在碳源充足的条件下,反硝化作用亦会增强,如何才能做到在提高硝态氮同化的同时避免反硝化氮损失?
硝态氮累积;硝态氮同化;硝化抑制剂;碳源
施用氮肥是提高农作物产量、保证粮食安全必不可少的措施。仅从2008—2012年的这四年间,世界化肥氮施用量从0.99亿吨增加至1.2亿吨,年平均增幅达5.3%[1]。随着世界人口不断增长,预计到2050年世界氮肥需求量将进一步增长至2.4亿吨[2]。在农田土壤中,氮肥是养分,一旦脱离农田土壤,它就可能成为污染物质。因此,迫切需要研究使氮肥既能被土壤固持又能被植物和土壤微生物快速利用的关键技术,尽可能地阻止氮肥从农田扩散至水体、大气和陆地生态系统[3]。
1 控制农田土壤硝态氮浓度是关键
土壤中的氮以有机氮、铵态氮、硝态氮等不同的形态存在。铵态氮是还原态,为阳离子,在带阴离子的土壤胶体中容易被吸附;硝态氮是氧化态,为阴离子,具有更大的移动性[4]。以尿素、碳酸氢铵等铵态氮形式施入的氮肥一般在2~3周内即可通过硝化作用迅速转变为移动性较强的硝态氮[5]。在我国北方旱作土壤中这种转化更为迅速(1~2周)[6-7]。对于喜铵态氮的植物,如水稻和茶树,铵态氮迅速转变为硝态氮,不利于作物对肥料氮的吸收。即使对于玉米、小麦和蔬菜等喜硝态氮的植物,当氮肥投入超过了植物对氮的需求时,也会造成农田土壤硝态氮的大量累积。近期,对中国主要旱地土壤剖面硝酸盐累积的综合分析表明,小麦、玉米、菜地和果园0~4 m土壤剖面的硝态氮累积量分别高达453、749、1230、2 155 kg hm-2(以纯氮计),土壤剖面硝态氮累积最容易发生在降水量为400~800 mm区间的华北地区,且降水强度、氮肥用量以及盈余氮量是旱地土壤剖面硝态氮累积的驱动因子[8]。此外,我国农田还面临着严重的土壤硝态氮径流、反硝化等损失[9-11]。因此,控制农田土壤中硝态氮的产生和累积是提高氮肥利用率、减少氮素损失的关键手段之一。
2 硝化抑制剂未必是最佳的选择
目前,人们常常施用硝化抑制剂来抑制亚硝化单胞菌属(Nitrosomonas)的活性,从而起到抑制NH4+至NO2-的氧化、减少硝态氮产生的作用[5,12]。大量的室内和田间试验均表明,硝化抑制剂可以降低硝化速率、N2O排放以及径流水和渗漏水中硝态氮的浓度[13-14]。但是,硝化抑制剂的施用使得土壤中铵态氮浓度长时间保持在较高水平,极大地增加了氨挥发损失风险,尤其是在pH较高的土壤中增加更显著[4,10-11]。Qiao等[13]分析了62篇关于田间硝化抑制剂应用效果的文章,发现硝化抑制剂能够降低48%的无机氮淋洗、44%的N2O排放和24%的NO排放,增加20%的氨挥发排放,但从整体来看,硝化抑制剂表现正环境效应,净减少16.5%的氮损失。最佳的氮肥管理策略应该满足作物氮需求与土壤氮供应相匹配。对于喜硝态氮植物,硝化抑制剂施用虽然减缓了铵态氮肥的硝化速率,但可能不利于作物对肥料氮的吸收。此外,硝化抑制剂的抑制效率高低、有效期长短及施用效果除取决于该抑制剂本身的性质和生物活性外,还受土壤类型、有机质含量、氮肥品种、施氮量、施氮时间、作物种类、温度、水分以及土壤管理措施等诸多因素的影响[15-16]。鉴于硝化抑制剂的诸多局限性,是否可以在继续加强硝化抑制剂研究的同时,从另一个角度,即通过提高好氧条件下土壤硝态氮消耗速率来研究呢?答案是肯定的。
3 土壤硝态氮同化过程大有可为
硝态氮在土壤中的净变化量取决于多个微生物过程综合作用的结果[17]。一般而言,硝态氮的产生过程主要是硝化过程,消耗过程包括反硝化和微生物同化(又称微生物固持)。因此,提高硝态氮在土壤中的消耗速率很有可能成为降低土壤硝酸盐累积的有效措施之一。在好氧条件下,反硝化速率常常可以忽略不计[18],而在厌氧条件下,反硝化会产生大量的中间产物如N2O和NO[19]。土壤中硝态氮反硝化的最终结果均会引起农业中氮素的损失,并影响大气环境[4]。而硝态氮同化过程则是指土壤微生物利用硝态氮作为氮源并转化为微生物生物量氮。这个过程独具优势,因为它不仅具有保氮功能,且对环境不会造成负面影响,此外,微生物生物量氮可以短期储存,进一步发生再矿化释放出铵态氮,最终提高可供植物利用的有效态氮数量[20-22]。旱地土壤在大部分时间处于好氧条件下,反硝化作用比较微弱。因此,提高农田土壤微生物同化硝态氮速率,将有助于降低土壤中硝酸盐的累积及其向环境扩散引起的环境污染。
然而,长期以来,受微生物优先利用铵态氮这一传统观点的影响,人们普遍认为农田土壤微生物不利用硝态氮[23-28],因此,硝态氮同化作为一个具有保氮功能且环境友好的氮转化过程一直不受重视,尤其是在我国,描述土壤氮素问题和研究成果的经典专著《中国土壤氮素》[4]也未记录此过程。与铵态氮相比,微生物利用硝态氮需要消耗更多的能量,且土壤铵态氮浓度高时会抑制硝态氮的转运或硝态氮还原酶的合成[29-30]。但是,旱地耕作土壤中硝态氮浓度常常高于铵态氮,而土壤中又存在着硝化细菌和异养微生物对铵态氮的强烈竞争作用,因而,当铵态氮含量不足以满足微生物需求时,硝态氮的微生物同化作用就有可能发生[21]。此外,有效态碳(C)数量亦是限制硝态氮同化的关键因子。在森林和草地土壤中发现了显著的硝态氮同化作用[20,31]。一般而言,森林和草地土壤的有机质含量高于农业土壤,这可能意味着农业土壤所含的有效态碳数量较少,限制了微生物对硝态氮的利用。Recous等[25]发现,耕作土壤中仅加入KNO3时,微生物硝态氮同化速率忽略不计,而在相同KNO3施用量的基础上加入500 mg kg-1(以碳计,下同)的葡萄糖时立即发生硝态氮同化。Romero等[32]也发现,农业土壤中同时加入葡萄糖和硝酸钠可以明显提高硝态氮同化速率,且硝态氮同化速率随着葡萄糖加入量增加而提高,尤其当葡萄糖加入量达5 000 mg kg-1时,高达65.9%的标记硝酸钠可被微生物同化。可见,土壤中加入足够数量的纯碳源完全可以刺激硝态氮同化。但是,农业和养殖业废弃物施入对硝态氮同化速率的影响却明显不同。大量的研究表明,土壤中加入动物粪肥不能刺激硝态氮同化[26-27,33],而施用小麦秸秆可以提高硝态氮同化[34-35]。因此,有机物料能否促进土壤微生物利用硝态氮可能取决于碳源类型。与小麦秸秆相比,堆肥、菜籽饼和鸡粪的C/N较低,常常小于20,碳可利用性可能不足以支持微生物的生长需求。与此相反,高C/N有机物料的施入则会激发异养微生物吸收更多的外源氮来满足自身生长对氮的需求,致使微生物在利用铵态氮的同时也利用硝态氮。这就解释了为什么加入足够数量的高C/N的有机物料才有可能提高微生物硝态氮同化速率。
此外,对于哪类微生物是土壤微生物硝态氮同化作用的执行者目前尚不清楚。研究表明,细菌和真菌均参与土壤氮素的转化过程[36]。目前,关于真菌与细菌在土壤N2O排放、自养硝化、异养硝化和反硝化过程的相对贡献大小已有大量的报道[37-39],然而,鲜有研究关注真菌与细菌对硝态氮同化过程的相对贡献[40]。从微生物选择性看,细菌优先利用NH4+-N作为氮源[29],其他微生物如真菌可能更倾向于将NO3--N作为氮源[41]。然而,目前为止,真菌是否参与土壤硝态氮同化过程仍然不清楚。Romero等[32]发现,加入葡萄糖后细菌数量呈爆发性增长,且随着葡萄糖用量的增加而增长。然而,他们并未测定真菌数量,无法明确真菌和细菌的相对贡献。此外,微生物对氮源的选择是与环境相适应的,不同生态系统微生物的群落结构不同,氮循环也随之而变。越来越多的证据表明,真菌与细菌生物量的比值随pH下降而增加,这意味着在酸性土壤中,真菌可能起更重要的作用[42-43]。可见,真菌和细菌对土壤硝态氮同化的相对贡献可能还受土壤pH的影响。但是,在硝态氮同化过程中,起作用的细菌和真菌的群落结构和多样性至今未知。因此,有待于深入研究不同环境条件下参与硝态氮同化作用的细菌和真菌群落组成与结构的变化,从而揭示细菌和真菌在硝态氮同化过程中的作用。
4 展 望
尽管国内外关于外源碳对土壤硝态氮同化过程的影响研究非常有限,但是加入特定的碳源可以刺激硝态氮同化这已是不争的事实。硝态氮同化作为一个可降低土壤硝态氮浓度的保氮过程应该获得广泛的关注。但是,针对该过程,目前尚有以下问题值得进一步研究:(1)在大量碳源加入下,微生物同化硝态氮能力究竟有多大?(2)已被同化的硝态氮何时能再矿化,能矿化出来的比例是多少?(3)怎样才能操控硝态氮同化和再矿化过程,使得作物氮需求和土壤氮供应相匹配,进而降低氮损失?(4)外源碳影响硝态氮同化的微生物驱动机制是什么?(5)如何做到使土壤硝态氮浓度控制在一定范围,既能满足作物对氮的需求而又不造成土壤硝态氮过量累积?(6)在碳源充足的条件下,反硝化作用亦会增强,如何才能做到在提高硝态氮同化的同时避免反硝化氮损失?
[1] 中华人民共和国国家统计局. 国际统计年鉴.北京:中国统计出版社,2014 National Bureau of Statistics of the People’s Republic of China. International statistical yearbook(In Chinese).Beijing:China Statistics Press,2014
[2] Tilman D,Fargione J,Wolff B,et al. Forecasting agriculturally driven global environmental change.Science,2001,292(5515):281—284
[3] 蔡祖聪,颜晓元,朱兆良.立足于解决高投入条件下的氮污染问题.植物营养与肥料学报,2014,20(1):1—6 Cai Z C,Yan X Y,Zhu Z L. A great challenge to solve nitrogen pollution from intensive agriculture(In Chinese). Journal of Plant Nutrition and Fertilizer,2014,20(1):1—6
[4] 朱兆良,文启孝. 中国土壤氮素. 南京:江苏科学技术出版社,1992 Zhu Z L,Wen Q X. Nitrogen in soil of China(In Chinese). Nanjing:Jiangsu Science and Technology Press,1992
[5] Huber D,Warren H,Nelson D,et al. Nitrification inhibitors:New tools for food production. BioScience,1977,27(8):523—529
[6] 巨晓棠,刘学军,张福锁. 冬小麦/夏玉米轮作中NO3--N在土壤坡面的累积及移动. 土壤学报,2003,40(4):538—546 Ju X T,Liu X J,Zhang F S. Accumulation and movement of NO3-in soil profile in winter wheat-summer maize rotation system(In Chinese). Acta Pedologica Sinica,2003,40(4):538—546
[7] 巨晓棠,张福锁. 中国北方土壤硝态氮的累积及其对环境的影响. 生态环境,2003,12(1):24—28 Ju X T,Zhang F S. Nitrate accumulation and its implication to environment in north China(In Chinese). Ecology and Environment,2003,12(1):24—28
[8] Zhou J,Gu B,Schlesinger W H,et al. Significant accumulation of nitrate in Chinese semi-humid croplands. Scientific Reports,2016,6:25088. DOI:10.1038/srep25088
[9] Kramer S B,Reganold J P,Glover J D,et al. Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils. Proceedings of the National Academy of Sciences of the United States of America,2006,103(12):4522—4527
[10] Ju X T,Xing G X,Chen X P,et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences of the United States of America,2009,106(9):3041—3046
[11] Zhao X,Zhou Y,Wang S Q,et al.Nitrogen balance in a highly fertilized rice-wheat double-cropping system in Southern China. Soil Science Society of America Journal,2012,76(3):1068—1078
[12] Zerulla W,Barth T,Dressel J,et al. 3,4-Dimethylpyrazole phosphate(DMPP)-a new nitrification inhibitor for agriculture and horticulture:An introduction. Biology and Fertility of Soils,2001,34(2):79–84
[13] Qiao C L,Liu L L,Hu S J,et al. How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input.Global Change Biology,2015,21(3):1249—1257
[14] Ruser R,Schulz R. The effect of nitrification inhibitors on the nitrous oxide(N2O)release from agricultural soils-A review. Journal of Plant Nutrition and Soil Science,2015,178(2):171—188
[15] 孙志梅,武志杰,陈利军,等. 土壤硝化作用的抑制剂调控及其机理. 应用生态学报,2008,19(6):1389—1395 Sun Z M,Wu Z J,Chen L J,et al. Regulation of soil nitrification with nitrification inhibitors and related mechanisms(In Chinese). Chinese Journal of Applied Ecology,2008,19(6):1389—1395
[16] 孙志梅,武志杰,陈利军,等. 硝化抑制剂的施用效果、影响因素及其评价. 应用生态学报,2008,19(7):1611—1618 Sun Z M,Wu Z J,Chen L J,et al. Application effect,affecting factors,and evaluation of nitrification inhibitor:A review(In Chinese). Chinese Journal of Applied Ecology,2008,19(7):1611—1618
[17] Di H J,Cameron K C,McLaren R G. Isotopic dilution methods to determine the gross transformation rates of nitrogen,phosphorus,and sulfur in soil:A review of the theory,methodologies,and limitations. Australian Journal of Soil Research,2000,38(1):213—230
[18] Murphy D V,Recous S,Stockdale E A,et al. Gross nitrogen fluxes in soil:Theory,measurement and application of15N pool dilution techniques. Advances in Agronomy,2003,79:69—118
[19] Zhang J B,Cai Z C,Cheng Y,et al. Denitrification and total nitrogen gas production from forest soils of Eastern China. Soil Biology and Biochemistry,2009,41(12):2551—2557
[20] Stark J M,Hart S C. High rates of nitrification and nitrate turnover in undisturbed coniferous forests.Nature,1997,385(2):61—64
[21] Burger M,Jackson LE.Microbial immobilization of ammonium and nitrate in relation to ammonification and nitrification rates in organic and conventional cropping systems. Soil Biology and Biochemistry,2003,35(1):9—36
[22] 程谊,张金波,蔡祖聪.土壤中无机氮的微生物同化和非生物固定作用研究进展. 土壤学报,2012,49(5):1030—1036 Cheng Y,Zhang J B,Cai Z C. A research progress on biotic and abiotic inorganic n immobilization in soils(In Chinese). Acta Pedologica Sinica,2012,49(5):1030—1036
[23] Jansson S L,Hallam M J,Bartholomew W V.Preferential utilization of ammonium over nitrate by micro-organisms in the decomposition of oat straw. Plant and Soil,1955,6(4):382—390
[24] Rice C W,Tiedje J M. Regulation of nitrate assimilation by ammonium in soils and in isolated soil microorganisms. Soil Biology and Biochemistry,1989,21(4):597—602
[25] Recous S,Mary B,Faurie G. Microbial immobilization of ammonium and nitrate in cultivated soils. Soil Biology and Biochemistry,1990,22(7):913—922
[26] Shi W,Norton J M. Microbial control of nitrate concentrations in an agricultural soil treated with dairy waste compost or ammonium fertilizer. Soil Biology and Biochemistry,2000,32(10):1453—1457
[27] Shi W,Miller B E,Stark J M,et al. Microbial nitrogen transformations in response to treated dairy waste in agricultural soils. Soil Science Society of America Journal,2004,68(6):1867—1874
[28] Zhang J B,Zhu T B,Meng T Z,et al. Agricultural land use affects nitrate production and conservation in humid subtropical soils in China. Soil Biology and Biochemistry,2013,62:107—114
[29] Cresswell R C,Syrett P J. Ammonium inhibition of nitrate uptake by the diatom,Phaeodactylum tricornutum. Plant Science Letters,1979,14(4):321—325
[30] Lindell A F,Post D. Ecological aspects of ntcA gene expression and its use as an indicator of the nitrogen status of marine Synechococcus spp. Applied and Environmental Microbiology,2001,67(8):3340—3349
[31] Davidson E A,Stark J M,Firestone M K. Microbial production and consumption of nitrate in an annualgrassland. Ecology,1990,71(5):1968—1975
[32] Romero C M,Engel R,Chen C C,et al. Microbial immobilization of nitrogen-15 labelled ammonium and nitrate in an agricultural soil. Soil Science Society of America Journal,2015,79(2):595—602
[33] Cheng Y,Zhang J B,Müller C,et al.15N tracing study to understand the N supply associated with organic amendments in a vineyard soil. Biology and Fertility of Soils,2015,51(8):983—993
[34] Cheng Y,Cai Z C,Chang S X,et al. Wheat straw and its biochar have contrasting effects on inorganic N retention and N2O production in a cultivated Black Chernozem. Biology and Fertility of Soils,2012,48(8):941—946
[35] Nishio T,Komada M,Arao T,et al. Simultaneous determination of transformation rates of nitrate in soil.Jarq-Japan Agricultural Research Quarterly,2001,35(1):11—17
[36] Boyle S A,Yarwood R R,Bottomley P J,et al.Bacterial and fungal contributions to soil nitrogen cycling under Douglas fir and red alder at two sites in Oregon. Soil Biology and Biochemistry,2008,40(2):443—451
[37] Laughlin R J,Stevens R J,Müller C,et al. Evidence that fungi can oxidize NH4+to NO3-in a grassland soil.European Journal of Soil Science,2008,59(2):285—291
[38] Herold M B,Baggs E M,Daniell T J. Fungal and bacterial denitrification are differently affected by longterm pH amendment and cultivation of arable soil. Soil Biology and Biochemistry,2012,54:25—35
[39] 黄莹,龙锡恩. 真菌对土壤N2O释放的贡献及其研究方法. 应用生态学报,2014,25(4):1213—1220 Huang Y,Long X E. Contribution of fungi to soil nitrous oxide emission and their research methods A review(In Chinese). Chinese Journal of Applied Ecology,2014,25(4):1213—1220
[40] Myrold D D,Posavatz N R. Potential importance of bacteria and fungi in nitrate assimilation in soils. Soil Biology and Biochemistry,2007,39(7):1737—1743
[41] Marzluf G A. Genetic regulation of nitrogen metabolism in the fungi. Microbiology and Molecular Biology Reviews,1997,61(1):17—32
[42] Bååth E,Anderson T H. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biology and Biochemistry,2003,35(7):955—963
[43] Marstorp H,Guan X,Gong P. Relationship between dsDNA,chloroform labile C and ergosterol in soils of different organic matter contents and pH. Soil Biology and Biochemistry,2000,32(6):879—882
(责任编辑:陈荣府)
Role of Microbial Assimilation of Soil NO3-in Reducing Soil NO3-Concentration
CHENG Yi1HUANG Rong1YU Yunfei2WANG Shenqiang1†
(1 State Key Laboratory of Soil and Sustainable Agriculture,Institute of Soil Science,Chinese Academy of Sciences,Nanjing 210008,China)
(2 Jiangsu Agriculture Commission,Nanjing 210036,China)
NO3-accumulation in the soil would trigger N losses through runoff,leaching and N2O emission. It is,therefore,of particular importance to take appropriate nitrogen(N)management strategies to reduce soil NO3-accumulation,and hence to enhance N use efficiency and reduce N losses to the environment.Application of nitrification inhibitor(NI)has been demonstrated to be effective in reducing soil NO3-concentration,NO3-leaching and N2O emission,and simultaneously increasing crop yield. However,there is an indisputable fact that NI application increases ammonia(NH3)emission and causes NI contamination.As a matter of fact,soil NO3-concentration varies with NO3-generation(nitrification)and consumption(assimilation)rates in aerobic conditions. Under the influence of the viewpoint that soil microbes prefer NH4+-N for their growth,it is commonly held that soil microbes rarely use NO3-in farmlands. Consequently,the study on processes of soil microbial NO3-assimilation has been neglected to a certain extent. The process of soil microbial NO3-assimilation is found to be unique in advantage. It turns NO3-into microbial biomass N for temporary storage before mineralization to be available to crops for a longer season or crops in the following season. There is no doubt that soil microbial NO3-immobilization is stimulated by specific extraneous C input,which deserves more attention in future studies concerning how to reduce soil NO3-accumulation. Further studies should primarily focus on the following several aspects:(1)to elucidate mechanism of the microbe driving NO3-assimilation under elevated C availability,(2)to explore how to control microbial assimilation and remineralization of NO3-to match soil N supply with crop N demand and reduce N losses,and(3)to explore how to avoid stimulating denitrification and associated N losses while enhancing microbial NO3-assimilation under the condition of sufficient C supply.
NO3-accumulation;NO3-immobilization;Nitrification inhibitor;Carbon source
S153
A
10.11766/trxb201706010145
* 国家自然科学基金项目(41671231,41571294)和国家重点研发计划项目(2017YFD0200106,2017YFD0800103)资助Supported by the National Natural Science Foundation of China(Nos. 41671231and 41571294)and the National Key Research and Development Program of China(Nos. 2017YFD0200106 and 2017YFD0800103)
† 通讯作者 Corresponding author,E-mail:sqwang@issas.ac.cn
程 谊(1983—),男,安徽绩溪人,博士,副研究员,主要从事土壤氮素循环及其农业与生态环境效应研究。E-mail:ycheng@issas.ac.cn
2017-06-01;
2017-08-11;优先数字出版日期(www.cnki.net):2017-08-18