一种应用于低功耗植入式医疗芯片的无线能量管理单元
2017-01-21夏瑞威赵亚高海军
夏瑞威++赵亚++高海军
摘 要:针对低功耗无线供能植入式医疗系统,采用SMIC 0.18 m CMOS工艺设计出一种无片外电容的无线能量管理单元。其中,电荷泵整流器采用二极管连接低阈值本征MOS管以提高其整流效率。通过电源抑制增强电路提高带隙基准源的电源抑制能力,另外,通过前馈消除技术提高低压差线性稳压器的PSR,并利用零极点追踪补偿技术增强LDO的稳定性。仿真结果表明,BGR输出为1.17 V,静态电流为36 A,PSR为-97 dB@DC、-40 dB@500MHz。LDO输出为1.43 V,静态电流为30 A ,PSR优于-85 dB@ DC、-60 dB@500 MHz,可提供负载电流为0.2 mA,在负载变化范围内相位裕度均大于60度。
关键词:低功耗;无线供能;电荷泵整流器;低压差线性稳压器;带隙基准电压源;电源抑制
中图分类号:TM44;TN722;TP393 文献标识码:A 文章编号:2095-1302(2016)12-00-04
0 引 言
近几年,受益于集成电路工艺技术与片上系统(System on Chip,SOC)的不断发展,射频识别、微传感网络以及环境感知等智能技术得到了飞速发展。其中,对于无线供能植入式芯片的能量管理、功耗等问题受到了持续关注与研究。当能量采集完成后,如何管理该能量是下一代被动与半被动植入式医疗设备的要点之一。
在低功耗植入式芯片中,如低噪声放大器、模数转换器等对工作电压及其纹波都有一定的要求,因此须通过无线能量管理单元(Wireless Power Management Unit,WPMU)将其电源性能优化。在被动式芯片中,电荷泵整流器(Charge Pump Rectifier,CPR)、带隙基准源(Bandgap Reference,BGR)、低压差线性稳压器(Low Dropout Regulator,LDO)是WPMU的重要组成单元[1]。芯片工作时,人体各种低频信号(EEG、ECG)会通过相应的耦合方式传输到电源通路上,从而产生低频噪声,因此必须采用相关技术获得高电源抑制比电源。论文首先通过电荷守恒定理对传统Dickson电路进行动态分析及能量转换效率的改进;然后采用电源抑制增强(Power Supply Rejection Boosting,PSRB)与前馈消除(Feed-forword Cancellation,FWC)等技术分别提高BGR、LDO在运放工作带宽内的电源抑制力(Power Supply Rejection,PSR),并在输出节点并联电容以滤除超高频纹波;最后为保证LDO在负载变化时的稳定性,利用零极点追踪补偿来满足相位裕度的要求。
论文对高性能无线能量管理单元预设指标为:
(1)CPR在输入500 mV交流小信号时能输出2 V电压并驱动200 A的电流。
(2)BGR输出电源抑制比在LDO的工作范围内尽可能大于60 dB,以减小对LDO的影响。
(3)LDO输出电源抑制比在生物信号频率处(01 kHz)及CPR输入信号处大于60 dB,从而提供负载电路高性能的工作电压。
(4)在满足以上性能的情况下,尽可能减小电路工作时的静态电流。
1 无线能量管理单元的基本原理
图1所示为论文采用的无线供能能量管理单元拓扑结构。由图1可知,WPMU主要包含CPR、BGR、LDO及保护电路(PRO)等模块。芯片通过片外天线采集到由基站发射的高频无线能量信号,CPR将信号整流后进行升压,产生纹波较大的电压,并将该能量储存到Cs中。由BGR与LDO所组成的环路通过负反馈输出纹波较小的VDD来驱动负载电路。其中BGR为LDO提供一个精准稳定的参考电压,因此BGR的性能影响着LDO输出电压的性能。芯片中的保护电路包括过温保护电路、过压保护电路、限流电路,其主要目的在于意外情况下对电路关断,实现对电路的保护。
设计能量管理单元时,在无线供能的环境下要注意相关性能的优化,而这又伴随着其它性能的牺牲,下面将详细分析论文采用的CPR、BGR、LDO设计原理及电路结构。
3 版图及后仿真结果
采用SMIC 0.18 m CMOS工艺,在Cadence下对电路进行仿真验证,无线能量管理单元的版图如图7所示,其中包含了CPR、BGR、LDO及PRO等模块,芯片的尺寸大小为277 m×656 m。
电路在工作时要避免反馈环路发生震荡,必须保证LDO环路的相位裕度,论文在tt、ff、ss三个工艺角下对其进行不同负载电流(0200 A)的仿真,仿真结果如表1所列。该结果表明在负载电流0200 A内,由于零极点追踪补偿的作用,相位裕度均大于60度,根据奈奎斯特稳定判据,LDO环路能在负载变化的范围内稳定工作。
图8所示为BGR、LDO的PSR仿真波形,从图中可以看出,BGR采用PSRB技术后,PSR在低频降低了近25 dB。当LDO采用FWC技术时,电源抑制在低频段得到了显著提升,电路空载时,在100 Hz内提升了近20 dB,满载时提升了近40 dB。
图912给出了WPMU中CPR与LDO的相关瞬态仿真结果,当输入频率为500 MHz、幅度为0.5 V的正弦波时,电路建立时间约为13 s,CPR的纹波约为5 mV,而LDO的输出电压纹波减小至2.3 V,即高频处PSR约为-66 dB。因此论文采用的LDO在生物信号频率处(DC-10 kHz)与输入信号频率处(100 MHz以上)具有较好的PSR。表2对相关文献与本文设计进行性能比较,可以看出,该电源管理单元能输出性能更好的工作电压。
4 结 语
论文针对CPR、LDO、BGR进行研究,设计了一种应用于低功耗无线供能植入式医疗芯片的能量管理单元。采用SMIC 0.18 m CMOS工艺提供的本征MOS管使CPR的效率得到提升。利用PSRB将BGR的PSR在低频处从-75 dB降低到-95 dB,这是优化LDO电源抑制能力的基本前提。通过FWC、零极点追踪补偿改善LDO的PSR与稳定度,在驱动0.2 mA的负载电流时,PSR为-85 dB@DC,而相位裕度在负载范围内均大于60度,该性能可适用于对电源性能要求较高的模块。
参考文献
[1]郭文雄.应用于植入式经皮能量传输的集成电路研究与设计[D].广州:华南理工大学,2013.
[2]Pierre Favrat, Philippe Deval, Michel J.Declercq. A High-Efficiency CMOS Voltage Doubler[J]. IEEE Journal of Solid-State Circuits, 1998, 33(3) : 410-416.
[3]To shiyuki Umeda, Hiroshi Yoshida, Shuichi Sekine, et al. A 950-MHz Rectifier Circuit for Sensor Network Tags With 10-m Distance[J]. IEEE Journal of Solid-State Circuits, 2006, 41(1): 35-41.
[4]Keith Sanborn, Dongsheng Ma, Vadim Ivanor. A Sub-1-V Low-Noise Bandgap Voltage Referen-ce[J]. IEEE Journal of Solid-State Circuits, 2007, 42(11) : 2466-2481.
[5]Mohamed El-Nozahi, Ahmed Amer, Joselyn Torres, et al. High PSR LOW Drop-Out Regulator With Feed-Forward Ripple Cancellation Techniq-ue[J]. IEEE Journal of Solid-State Circuits, 2010, 45(3) : 565-577.
[6]王忆.高性能低压差线性稳压器研究与设计[D].杭州:浙江大学,2010.
[7]温晓珂.应用于射频SOC芯片的低噪声高PSRR的LDO的设计[D]. 上海:复旦大学,2011.
[8]韩晓婧,张子佑,刘锋.一种毫微功耗的微弱能量收集电路设计[J].物联网技术,2016,6(9):90-93.