扒楼沟剖面二叠系辫状河砂体构型与非均质性特征
2017-01-17陈世悦李天宝梁绘媛
王 越, 陈世悦, 李天宝, 梁绘媛, 王 剑
(1.中国石油大学地球科学与技术学院,山东青岛 266580; 2.中国石化胜利油田分公司,山东东营 257015;3.新疆油田公司实验检测研究院,新疆克拉玛依 834000)
扒楼沟剖面二叠系辫状河砂体构型与非均质性特征
王 越1, 陈世悦1, 李天宝1, 梁绘媛2, 王 剑3
(1.中国石油大学地球科学与技术学院,山东青岛 266580; 2.中国石化胜利油田分公司,山东东营 257015;3.新疆油田公司实验检测研究院,新疆克拉玛依 834000)
通过露头实测、精细解剖与岩相分析等方法,结合岩石薄片与物性资料,对山西保德扒楼沟剖面二叠系山西组辫状河砂体的构型与非均质性特征进行系统研究。结果表明:辫状河主要发育河道和心滩2种成因砂体,河道砂体的垂向岩相组合为Ge-St,心滩砂体的垂向岩相组合为Ge-Sm-M-Sm-Sp-M-Sp或Ge-Sm-St-Sm-St-Sp-M-Sp;辫状河砂体可划分为5级构型单元,由小到大分别是层系、层系组、心滩/河道增生单元、心滩/辫状河道、单期河道,河道砂体由多个增生单元在垂向上加积构成,心滩砂体由多个增生单元与串沟砂体在垂向上加积构成,内部发育泥质夹层;心滩砂体物性优于河道砂体,非均质性相对较弱,整体可以作为优质储层,而河道砂体仅在靠近河心的部位物性较好,可作为优质储层;心滩砂体内规模较大的泥质夹层附近和河道砂体的边部及中上部可聚集剩余油,且心滩砂体内剩余油储量相对河道砂体较大。
扒楼沟剖面; 辫状河; 河道; 心滩; 砂体构型; 非均质性; 剩余油分布
辫状河砂体规模大、物性好,是优质的油气储集砂体,其内部复杂的构型与非均质性特征直接控制着剩余油的分布。开展砂体构型及非均质性研究对剩余油的预测和挖潜具有重要的意义,是提高油田采收率、最大限度开发油气资源的关键所在[1-3]。近年来,众多学者通过野外露头[4-6]、现代沉积[7-11]及密井网资料[12-16]对辫状河砂体构型及内部泥质夹层分布规律进行了详细研究,为砂体中剩余油的开采提供了可靠依据,但是仍然存在以下两方面问题:①目前关于辫状河砂体构型特征的研究多侧重于心滩砂体,而河道砂体内部构型单元具有怎样的几何属性及叠置关系,需要进一步研究;②前人针对辫状河砂体的纵向非均质性特征较多,而对于砂体在横向上具有怎样的非均质性特征,有待进一步探索。笔者以扒楼沟剖面二叠系山西组辫状河砂体实测和精细解剖为基础,通过岩相分析、薄片鉴定及物性测试,定量表征辫状河砂体内部构型单元的几何属性及横向非均质性特征,确定优质储层发育位置,为辫状河砂体内剩余油预测和挖潜提供依据。
1 研究区概况
扒楼沟剖面位于山西保德县城东南约25 km,该地区上古生界出露齐全且剖面发育良好,地层接触关系清楚,为露头研究创造了良好的条件(图1)。二叠系山西组为目的层段,主要发育灰色—浅黄色含砾粗砂岩、中粗砂岩,夹有薄层灰黑色炭质泥岩、泥岩及煤层,厚度一般为50~60 m,按岩性组合、沉积旋回及含煤性自下而上分为4个小层,即山22、山21和山12、山11小层。山12小层发育厚层辫状河砂体,宽度约150 m,厚度约13 m,整体表现为下粗上细的正粒序结构,底部发育大型冲刷面,下部发育大型槽状交错层理与块状层理,上部发育小型槽状交错层理与板状交错层理。
图1 研究区位置及山西组综合柱状图Fig.1 Location of study area and composite histogram of Shanxi Formation
2 成因砂体
2.1 岩相类型
岩相反映了沉积体形成的水动力条件、搬运方式及沉积作用机制等[17-18],是划分沉积微相、识别成因砂体的重要依据。通过对扒楼沟剖面山西组辫状河露头的岩性、粒度、沉积构造和颜色等特征分析总结,共识别出5种岩相类型(表1、图2)。
表1 岩相类型划分及成因解释Table 1 Type division and genetic explantion of lithofacies
图2 扒楼沟剖面山西组辫状河露头典型岩相类型Fig.2 Typical lithofacies types of braided river outcrop of Shanxi Formation in Palougou profile
2.2 成因砂体
山12小层以辫状河砂体沉积为主,包括河道和心滩2种成因砂体,两者在外部几何形态、内部结构与岩相特征等方面存在显著差异。
2.2.1 河 道
露头上可见辫状水道砂体呈底凸顶平的外部几何形态,长度约为60.5 m,厚度约为9.3 m,其岩相组合为Ge-St(表2、图3(a))。辫状水道底部可见明显的冲刷面,冲刷面上发育滞留砾岩相,夹有植物茎干化石,砾石最大粒径约为7 cm,平均粒径约为3 cm(图2(a));下部过渡为槽状交错层理中粗砂岩相,层理规模较大,层系宽约3 m,高约0.5 m(图2(b)),上部发育槽状交错层理中细砂岩相,层理规模变小,层系宽度约为1.5 m,高度约为0.3 m(图2(c)),反映了水动力条件较强,且向上逐渐减弱。
2.2.2 心 滩
心滩砂体呈底平顶凸的外部几何形态,长度约为90.8 m,厚度约为13.2 m,其岩相组合为Ge-Sm-M-Sm-Sp-M-Sp或Ge-Sm-St-Sm-St-Sp-M-Sp(表2、图3(b)、(c))。心滩底部发育滞留砾岩相,由次棱角状—次圆状、分选中等、平均粒径为1.5 cm的砾石组成,厚度一般为10~20 cm(图2(d));下部发育块状层理粗砂岩,厚度约为5~6 m(图2(e)),夹有灰绿色薄层泥岩(图2(f)),即落淤层;上部发育槽状交错层理中粗砂岩相,为强水流冲裂心滩形成的冲沟沉积(图2(g));顶部发育多组低角度下截型板状交错层理中细砂岩相,纹层界面倾角一般为14°~20°,层系厚度10~20 cm(图2(h)),内部夹有薄层灰绿色泥岩(图2(i))。
表2 扒楼沟剖面山西组辫状河砂体构型特征Table 2 Architectural characteristics of braided river sand body of Shanxi Formation in Palougou profile
图3 扒楼沟剖面山西组辫状河砂体岩相组合垂向序列Fig.3 Lithofacies combination characteristics of braided river sand body of Shanxi Formation in Palougou profile
3 砂体构型特征
通过对扒楼沟剖面山12小层辫状河砂体进行详细观察及实测,根据砂体规模可以划分为5级构型单元,由小到大分别是层系、层系组、心滩/河道增生单元、心滩/辫状河道、单期河道,分别被不同级别的界面所限定(表2)。该辫状河砂体长度约为150 m,厚度约为13 m,走向为E-W向,近似垂直于主物源方向[19-20],其整体为一个单期河道,由1个河道砂体与1个心滩砂体侧向拼接构成(图4)。
表3 扒楼沟剖面山西组辫状河砂体构型单元与界面级次划分Table 3 Architectural elements and bounding surfacies of braided river sand body of Shanxi Formation in Palougou profile
河道砂体由3个河道增生单元在垂向上加积构成,在增生单元的底部可见较明显的冲刷面。下部河道增生单元宽厚比较小,呈底凸顶凹状,发育滞留砾岩相与大型槽状交错层理中粗砂岩相,反映河流发展早期水动力条件较强。上部河道增生单元宽厚比较大,呈底凸顶平状,发育小型槽状交错层理中细砂岩相,反映河流发展后期水动力强度减弱。
心滩砂体由若干个心滩增生单元与串沟砂体在垂向上加积构成,内部夹有平水期形成的细粒悬浮沉积物。心滩底部的增生单元宽度约为90 m,厚度约为4 m,发育滞留砾岩相与块状层理中粗砂岩相,为河流形成早期强水动力条件下粗碎屑物质快速堆积的产物;上部心滩增生单元在剖面上表现为底平顶凸,宽度一般为12~52 m,厚度为1.5~3.2 m,宽厚比较下部增生单元减小,发育块状层理中粗砂岩相与板状交错层理中细砂岩相。串沟为平水期小规模流水在心滩顶部冲出的沟道,常分布在靠近心滩中部的位置,剖面上表现为底凸顶平,厚度约为2 m,宽度为19~28 m,发育槽状交错层理中粗砂岩相。
图4 扒楼沟剖面山西组辫状河砂体构型特征与发育模式Fig.4 Architectural characteristics and development mode of braided river sand body of Shanxi Formation in Palougou profile
4 砂体非均质性
在砂体构型研究的基础上,通过在河道与心滩砂体底部进行横向连续取样,对各砂体物性与岩性特征开展研究,分析整个辫状河砂体的横向非均质性,确定优质储层发育位置。
河道砂体孔隙度一般为9.66%~11.60%,平均值为10.44%,渗透率一般为(0.002 7~0.006 7)×10-3μm2,平均值为0.003 8×10-3μm2,渗透率均质系数为0.57,变异系数为0.85。心滩砂体孔隙度一般为10.76%~12.67%,平均值为11.46%,渗透率一般为(0.006 5~0.011 9)×10-3μm2,平均值为0.008 5×10-3μm2,渗透率均质系数为0.71,变异系数为0.48(表4)。通过对比可知心滩砂体孔隙度、渗透率明显大于河道砂体,而且渗透率均质系数较大、变异系数较低,表明心滩砂体物性优于河道砂体,且非均质性相对较弱。
河道以中细粒长石质岩屑砂岩、中粗粒岩屑砂岩为主,从河道边部向河心方向岩石粒度变粗,杂基含量减少,孔渗性能变好;心滩砂体岩石粒度较河道砂体有所变粗,以中粗粒岩屑砂岩、中粗粒长石质岩屑砂岩为主,横向上岩石粒度变化不大,杂基含量较少,孔渗性能整体较好(图5)。结合物性与岩性特征分析可知,在辫状河沉积中河道砂体非均质程度较强,仅在靠近河心部位物性较好,可作为优质储层;心滩砂体物性优于河道砂体,非均质程度相对较弱,整体可作为优质储层。
表4 扒楼沟剖面山西组辫状河道与心滩砂体物性特征Table 4 Physical properties of the braided river channel and channel bar of Shanxi Formation in Palougou profile
图5 扒楼沟剖面山西组辫状河道与心滩砂体物性及岩性特征对比Fig.5 Physical properties and lithology comparison of braided river channel and channel bar of Shanxi Formation in Palougou profile
5 剩余油分布预测
在河道砂体与心滩砂体之间不发育泥质夹层,因此辫状河砂体整体上为一个泛连通体,但两种砂体在构型及非均质性特征方面存在显著差异,导致在注水开发过程中具有不同的水驱波及特征和剩余油分布特征。河道砂体在靠近河心的部位物性较好,且在纵向上不发育泥质夹层,因此底水和注入水容易在河心附近向上突进,造成油层快速水淹,形成强水淹层。在河道的边部和中上部砂体物性相对较差,底水锥进和注入水速度较慢,水淹程度较低,分布有一定量的剩余油。心滩砂体物性整体较好,但内部发育水平分布的泥质落淤层,其对底水和注入水的垂向遮挡作用明显,导致心滩的砂体的水淹程度低于河道砂体,在规模较大的泥质夹层附近分布有剩余油。综合考虑心滩砂体与河道砂体的规模、构型特征及非均质性特征,认为河道砂体内剩余油储量较小,而心滩砂体内剩余油储量相对较大。
6 结 论
(1)扒楼沟剖面二叠系山西组辫状河发育河道和心滩两种成因砂体,河道砂体在剖面上呈底凸顶平状,长度约为60.5 m,厚度约为9.3 m,其岩相组合为Ge-St;心滩砂体在剖面上呈底平顶凸状,长度约为90.8 m,厚度约为13.2 m,发育Ge-Sm-M-Sm-Sp-M-Sp和Ge-Sm-St-Sm-St-Sp-M-Sp两种岩相组合类型。
(2)辫状河砂体可划分为5级构型单元,由小到大分别是层系、层系组、心滩/河道增生单元、心滩/辫状河道、单期河道。河道砂体由多个增生单元在垂向上加积构成,增生单元自下而上宽厚比值变大。心滩砂体由多个增生单元与串沟砂体在垂向上加积构成,心滩增生单元呈底平顶凸的外部几何形态;串沟砂体表现为底凸顶平的外部几何形态,常分布在靠近心滩中部的位置。
(3)河道砂体的横向非均质性相对较强,在其边部的岩石粒度较细,杂基含量较高,物性较差;在靠近河心的位置,岩石粒度较粗,杂基含量较低,物性较好,可作为优质储层。心滩砂体岩石粒度比河道砂体粗,储层物性优于河道砂体,横向非均质性相对较弱,整体可作为优质储层。
(4)河道砂体内水淹程度较高,剩余油储量较小,主要分布在河道砂体的边部和中上部;心滩砂体水淹程度相对较低,剩余油储量相对较大,主要分布在规模较大的泥质夹层附近。
[1] 封从军,鲍志东,杨玲,等.三角洲前缘水下分流河道储集层构型及剩余油分布[J].石油勘探与开发,2014,41(3):323-329. FENG Congjun, BAO Zhidong, YANG Ling, et al. Reservoir architecture and remaining oil distribution of deltaicfront underwater distributary channel[J]. Petroleum Exploration and Development,2014,41(3):323-329.
[2] 周银邦,吴胜和,计秉玉,等. 曲流河储层构型表征研究进展[J].地球科学进展, 2011,26(7):695-702. ZHOU Yinbang, WU Shenghe, JI Bingyu, et al. Research progress on the characterization of fluvial reservoir architecture[J]. Advances in Earth Science, 2011,26(7):695-702.
[3] 闫百泉,张鑫磊,于利民,等.基于岩心及密井网的点坝构型与剩余油分析[J].石油勘探与开发,2014,41(5):597-604. YAN Baiquan, ZHANG Xinlei, YU Limin, et al. Point bar configuration and residual oil analysis based on core and dense well pattern [J]. Petroleum Exploration and Development, 2014,41(5):597-604.
[4] 陈彬涛,于兴河,王天奇,等.砂质辫状河岩相与构型特征:以山西大同盆地中侏罗统云冈组露头为例[J].石油与天然气地质,2015,36(1):111-117. CHEN Bintao, YU Xinghe, WANG Tianqi, et al. Lithofacies and architecture characteristics of sandy braided river deposits: a case from outcrops of the Middle Jurassic Yungang Formation in the Datong Basin, Shanxi province[J]. Oil & Gas Geology, 2015,36(1):111-117.
[5] 杨丽莎,陈彬滔,李顺利,等.基于成因类型的砂质辫状河泥岩分布模式:以山西大同侏罗系砂质辫状河露头为例[J].天然气地球科学,2013,24(1):93-98. YANG Lisha, CHEN Bintao, LI Shunli, et al. Pattern of genesis-based mudstone distribution for sandy braided river:a case of sandy braided-river outcrop, Datong, Shanxi province, China[J].Natural Gas Geoscience, 2013,24(1):93-98.
[6] 李海燕,高阳,王延杰,等. 辫状河储集层夹层发育模式及其对开发的影响:以准噶尔盆地风城油田为例[J]. 石油勘探与开发,2015,42(2):364-373. LI Haiyan, GAO Yang, WANG Yanjie, et al. Intercalation pattern and its impact on development of braided river: a case of Fengcheng Oilfield, Junggar Basin, NW China[J]. Petroleum Exploration and Development, 2015,42(2):364-373.
[7] 廖保方,张为民,李列,等.辫状河现代沉积研究与相模式:中国永定河剖析[J]. 沉积学报,1998,16(1):34-39. LIAO Baofang, ZHANG Weimin, LI Lie, et al. Study on modern deposit of a braided stream and faces model: taking the Yongding River as an example[J]. Acta Sedimentologica Sinica, 1998,16(1):34-39.
[8] BRISTOW C S. Sedimentary structure exposed in bar tops in the Brahmaputra River, Bangladesh[C]//Best J L, Bristow C S. Braided rivers: Geological Society of London special publication 75. London: The Geological Society of London, 1993:277-289.
[9] THORNE C R, RUSSEL A P G, ALAM M K. Planform pattern and channel evolution of the Brahmaputra River, Bangladesh[M]//Best J L, Bristow C S. Braided rivers: Geological Society of London special publication 75. London: The Geological Society of London, 1993:257-276.
[10] ASHWORTH P J, BEST J L, RODEN J E, et al. Morphological evolution and dynamics of a large, sand braid-bar, Jamuna River, Bangladesh[J]. Sedimentology, 2000,47(3):533-555.
[11] BEST J L, ASHWORTH P J, BRISTOW C S, et al. Three-dimensional sedimentary architecture of a large,mid-channel sand braid bar, Jamuna River, Bangladesh[J]. Journal of Sedimentary Research, 2003,73(4):516-530.
[12] 刘钰铭,侯加根,王连敏,等.辫状河储层构型分析[J].中国石油大学学报(自然科学版),2009,33(1):7-11. LIU Yuming, HOU Jiagen, WANG Lianmin, et al. Architecture analysis of braided river reservoir[J].Journal of China University of Petroleum(Edition of Natural Science),2009,33(1):7-11.
[13] 刘钰铭,侯加根,宋保全,等.辫状河厚砂层内部夹层表征:以大庆喇嘛甸油田为例[J].石油学报,2011,32(5):836-841. LIU Yuming, HOU Jiagen, SONG Baoquan, et al. Characterization of interlayers within braided-river thick sandstones: a case studyon the Lamadian Oilfield in Daqing[J]. Acta Petrolei Sinica,2011,32(5):836-841.
[14] 牛博,高兴军,赵应成,等.古辫状河心滩坝内部构型表征与建模:以大庆油田萨中密井网区为例[J]. 石油学报,2015,36(1):89-100. NIU Bo, GAO Xingjun, ZHAO Yingcheng, et al. Architecture characterization and modeling of channel bar in paleo-braided river: a case of sandy of dense well pattern area of Sazhong in Daqing Oilfield[J].Acta Petrolei Sinica,2015,36(1):89-100.
[15] 赵伦,王进财,陈礼,等.砂体叠置结构及构型特征对水驱规律的影响:以哈萨克斯坦南图尔盖盆地Kumkol油田为例[J].石油勘探与开发,2014,41(1):86-94. ZHAO Lun, WANG Jincai, CHEN Li, et al. Influences of sandstone superimposed structure and architecture on waterfloodingmechanisms: a case study of Kumkol Oilfield in the South Turgay Basin, Kazakhstan[J]. Petroleum Exploration and Development, 2014,41(1):86-94.
[16] 袁新涛,吴向红,张新征,等.苏丹Fula油田辫状河储层内夹层沉积成因及井间预测[J]. 中国石油大学学报(自然科学版),2013,37(1):8-12,34. YUAN Xintao, WU Xianghong, ZHANG Xinzheng, et al. Sedimentary origin and interwell prediction of interbeds in braided river reservoir,Fula Oilfield in Sudan[J]. Journal of China University of Petroleum(Edition of Natural Science), 2013,37(1):8-12,34.
[17] 陈彬滔,于兴河,潘树新,等.准噶尔盆地南缘头屯河组曲流河沉积特征与成因砂体对比方法[J].天然气地球科学,2013,24(6):1132-1139. CHEN Bintao, YU Xinghe, PAN Shuxin, et al. Sedimentary characteristics and sedimentogenic-based sandbodies correlation methods of meandering river in Toutunhe Formation, southern margin of Junggar Basin[J]. Natural Gas Geoscience, 2013,24(6):1132-1139.
[18] 谭程鹏,于兴河,李胜利,等.辫状河-曲流河转换模式探讨:以准噶尔盆地南缘头屯河组露头为例[J].沉积学报,2014,32(3):450-458. TAN Chengpeng, YU Xinghe, LI Shengli, et al. Discussion on the model of braided river transform to meandering river: as an example of Toutunhe Formation in Southern Junggar Basin[J]. Acta Sedimentologica Sinica, 2014,32(3):450-458.
[19] 王国茹. 鄂尔多斯盆地北部上古生界物源及层序岩相古地理研究[D]. 成都:成都理工大学, 2011. WANG Guoru. The study of sources and sequence-lithofaces Palaeogeography of Upper Palaeozoic, Northern Ordos[D].Chengdu: Chengdu University of Technology,2011.
[20] 李明瑞. 鄂尔多斯盆地北部上古生界主要含气砂体沉积特征及储层控制因素研究[D].成都:成都理工大学,2011. LI Mingrui. Depositional character and control factors of reservoir sandbody in major gas-bearing interval of upper Paleozoic in North Ordos Basin[D]. Chengdu: Chengdu University of Technology,2011.
(编辑 徐会永)
Braided river sand body architecture and heterogeneity of Permian in Palougou outcrop
WANG Yue1, CHEN Shiyue1, LI Tianbao1, LIANG Huiyuan2, WANG Jian3
(1.School of Geosciences in China University of Petroleum, Qingdao 266580, China;2.ShengliOilfield,SINOPEC,Dongying257015,China;3.ExperimentalTestingInstituteofXinjiangOilfield,Karamay834000,China)
Through field measurement, sand body anatomy, lithofacies analysis, and with the aid of thin sections and physical data, the architecture and heterogeneity characteristics of the braided river sand bodies of Shanxi Formation of Permian in the Palougou profile in Baode county, Shanxi province, were systematically studied. The results show that two kinds of genetic sand bodies, channel and channel bar are mainly developed in braided rivers. The vertical lithofacies combinations in channel sand body and channel bar sand body are Ge-St and Ge-Sm-M-Sm-Sp-M-Sp or Ge-Sm-St-Sm-St-Sp-M-Sp, respectively; Braided river sand bodies can be further divided into five levels of architectural elements, which are bed, bed set, channel bar/channel accretion, channel bar/braided channel, and braided river from small to large. Channel sand body is usually composed of several accretions superimposed vertically, while channel bar sand body is composed of several accretions and chute sand bodies superimposed vertically, with mud layers in it. Channel bar sand body has better physical properties and weaker heterogeneity than channel sand body, and therefore, the whole channel bar can be high quality reservoir. On the other hand, channel sand body only has good physical properties near the river center which may become potential reservoir. Remaining oil mainly accumulates near large scales of mud layers in the channel bar, and in the side and upper part of the channel sand body, but with large deposition potentials in the channel bar.
Palougou profile; braided river; channel; channel bar; sand body architecture; heterogeneity; remaining oil distribution
2016-06-05
“十二五”国家油气重大专项(2011ZX05013-002)
王越(1988-),男,博士研究生,研究方向为层序地层学及沉积学。E-mail:620788364@qq.com。
1673-5005(2016)06-0001-08
10.3969/j.issn.1673-5005.2016.06.001
TE 121.3
A
王越,陈世悦,李天宝,等. 扒楼沟剖面二叠系辫状河砂体构型与非均质性特征[J].中国石油大学学报(自然科学版),2016,40(6):1-8.
WANG Yue, CHEN Shiyue, LI Tianbao, et al. Braided river sand body architecture and heterogeneity of Permian in Palougou outcrop [J]. Journal of China University of Petroleum(Edition of Natural Science),2016,40(6):1-8.