APP下载

正弦定理教案设计

2017-01-15郑维芳

赢未来 2017年16期
关键词:正弦定理探索证明

郑维芳

摘要:引导学生通过观察、猜想、推导,由特殊到一般归纳出正弦定理。能用正弦定理解决一些简单的解三角形问题。通过参与、思考、交流,体验正弦定理的发现及探索过程,逐步培养学生探索精神和创新意识。

关键词:正弦定理;探索;证明;应用

一、教学内容分析

《正弦定理》是高中课程人教A版数学(必修5)第一章第一节内容,教学安排二个课时,本节为第一课时内容。学生在初中已经学习了直角三角形的边角关系。教师带领学生从已有知识出发,通过对实际问题的探索,构建数学模型,利用观察-猜想-验证-发现正弦定理,并从理论上加以证实,最后进行简单的应用。课本按照从简原则和最近发展区原则,采用“作高法”证明了正弦定理。教学过程中,为了发展学生思维,再引导学生从向量,作外接圆,三角形面积计算等角度找到证明的途径,让学生感受数学知识相互紧密联系的特点。

正弦定理是研究任意三角形边角之间关系的重要开端;用正弦定理解三角形,是典型的用代数的方法来解决的几何问题的类型;正弦定理作为三角形中的一个定理,在日常生活和工业生产中的应用又十分广泛。因此,正弦定理的地位体现在它的基础性,作用体现在它的工具性。

二、学生学情分析

我所任教的学校是一所普通高中,大多数学生基础相对薄弱,对一些重要的數学思想和数学方法的应用意识和技能还不高。正弦定理是学生在已经系统学习了初中平面几何,解直角三角形,高中的三角函数,平面向量等知识基础上进行的。虽然对于学生来说,有一定观察、分析、解决问题的能力,但正弦定理的发现,探索、证明还是有一定的难度,教师适当引导调动学生学习主动性,注重前后知识间的联系,激起学生学习新知的兴趣和欲望,发现并探索正弦定理。

三、教学目标定位

1、掌握正弦定理的内容及其证明方法;能用正弦定理解决一些简单的解三角形问题;

2、让学生从已有的几何知识出发,探究在任意三角形中,边与其对角的关系,引导学生通过观察、猜想、推导,由特殊到一般归纳出正弦定理,培养学生合情推理探索数学规律的数学思想能力。

3、通过参与、思考、交流,体验正弦定理的发现及探索过程,逐步培养学生探索精神和创新意识。

教学重点:正弦定理的探索与发现。

教学难点:正弦定理证明及简单应用。

四、教学策略

“数学教学是数学活动的教学”,“数学活动是思维的活动”,新课标也在倡导独立自主,合作交流,积极主动,勇于探索的学习方式。基于这种理念的指导,在教法上采用探究发现式课堂教学模式,在学法上以学生独立自主和合作交流为前提,在教师的启发引导下,以“正弦定理的发现”为基本探究内容,结合现代多媒体教学手段,通过观察猜想—验证--发现--证明--应用等环节逐步得到深化,体验数学知识的内在联系,增强学生由特殊到一般的数学思维能力,逐步培养学生探索精神和创新意识。

五、教学过程

教学后记

《正弦定理》是一节定理发现探索应用课。教学中,立足于“数学教学是数学活动的教学”这一基本理念,经历提出问题,分析问题,解决问题、简单应用等过程,使学生成为正弦定理的“发现者”和“创造者”,教学目标得到了较好的落实。教学中,力争倡导自主探索、合作交流的学习方式,以正弦定理的发现为契机,开展探究式教学模式,发挥多媒体在数学学习中的作用,鼓励学生在课本的基础上大胆创新,用多种方法证明了正弦定理,激发了学生思维,渗透了转化、化归、分类讨论、数形结合思想,发挥学生学习的主动性,使学生的学习过程成为在教师引导下的探究过程、再创造过程。

猜你喜欢

正弦定理探索证明
获奖证明
判断或证明等差数列、等比数列
数学“三角形”在高中物理解题中的应用
社会转型期行政权控制的路径探索
房地产项目策划课程案例教学探索与实施
“创新人才培养模式”下的实验教学改革探索
证明