APP下载

基于功能性试验预测抗肿瘤药物敏感性研究进展

2017-01-13刘东岩叶开琴王宏志戴海明

转化医学电子杂志 2017年1期
关键词:敏感性通路化疗

刘东岩,叶开琴,王宏志,戴海明

(1中国科学院合肥物质科学研究院医学物理与技术中心,2中国科学院合肥肿瘤医院,安徽合肥230031)

·专家述评·

基于功能性试验预测抗肿瘤药物敏感性研究进展

刘东岩1,2,叶开琴1,2,王宏志1,2,戴海明1,2

(1中国科学院合肥物质科学研究院医学物理与技术中心,2中国科学院合肥肿瘤医院,安徽合肥230031)

随着肿瘤发病率的逐年升高,其治疗手段包括手术、放疗、传统化学治疗及分子靶向治疗等也逐步得到完善和发展.其中,抗肿瘤药物在治疗过程中发挥着重要作用.抗肿瘤药物包括传统的广谱性的化疗药物及特异性的分子靶向药物.然而,利用抗肿瘤药物进行治疗并不一定能达到预期的治疗效果,某些肿瘤化疗手段的响应率低于25%.因此,有必要对抗肿瘤药物的敏感性进行准确地预测,以提高抗肿瘤药物的响应率.肿瘤患者对药物的敏感性差异主要是由基因表达水平、基因突变、表观遗传、机体微环境等众多因素引起的.除了常用的肿瘤基因检测方法外,目前针对肿瘤药物的敏感性预测还包括利用功能性试验进行预测的方法:包括体外的基于能量代谢和基于细胞增殖与生存等的传统研究方法,基于动物模型的人源肿瘤组织异种移植的方法,也有最新发展的BH3 profiling等方法.本文将对这些基于功能性试验进行抗肿瘤药物敏感性预测的方法进行归纳,并总结这些检测方法的优势和不足,探索未来的抗肿瘤药物敏感性预测的研究趋势.

抗肿瘤药物;精准医疗;功能性试验;药物敏感性

0 引言

精准医疗是针对不同的患者,使用与疾病分子分型相对应的药物或其它治疗方法.换言之,就是用最适合的治疗方案对患者进行治疗[1].与传统的肿瘤分型和治疗相比,肿瘤的精准医疗就是通过分子生物学技术和手段对肿瘤作进一步的分子分型和细化,优化传统粗放的分型方法,制定适合不同患者的有针对性的临床治疗方案.实现肿瘤精准医疗的关键点之一就是预测抗肿瘤药物的敏感性.预测抗肿瘤药物敏感性的手段不仅包括依赖于荧光原位杂交(FISH)等技术的染色体易位分析;依赖于二代测序技术和一代测序技术的肿瘤相关基因突变位点分析;依赖于荧光定量PCR、免疫组化等方法的肿瘤相关基因表达水平分析;也包括依赖于各种功能性试验来检测肿瘤药物敏感性的方法等[1].

化疗药物是肿瘤治疗的重要手段之一,但由于个体差异等问题,同一化疗药物对不同患者疗效差异较大[2-3].此外,近来肿瘤靶向治疗领域研究进展迅速,这种以特定信号通路蛋白质和亚细胞结构作为靶标的肿瘤治疗方法,因其具有安全有效的特点,正得到越来越广泛的应用[4-5].患者在使用抗肿瘤药物时经常会产生疗效不佳以及耐药等问题.因此,在临床治疗中,对患者进行个体化药物敏感性试验则是尽可能减少上述问题发生的关键.各种功能性的肿瘤药物敏感性试验不仅包括早期的ATP含量测定[6]、四甲基偶氮唑盐比色法[7]、极限耐药分析(extreme drug resistance assay,EDRA)、人源器官培养(patient-derived organoids)和器官型培养(organotypic cultures),人源肿瘤组织异种移植(patient-derived tumor xenograft model,PDX)的方法等,也包括近年来逐步发展的一些新方法,比如动态BH3分析(dynamic BH3 profiling,DBP)等.这些方法,有些已进入临床试验阶段.本研究将对肿瘤药物敏感性实验方法进行相关文献综述.

1 传统体外方法测定抗肿瘤药物敏感性

1.1 基于能量代谢的研究方法基于能量代谢分析抗肿瘤药物敏感性的代表性方法是ATP含量分析方法(ATP assay).该方法是将肿瘤细胞经化疗药物干预后,加入荧光色素-荧光色素酶复合物,利用ATP与复合物结合后产生荧光,ATP含量与荧光强度成正比的特性,从而鉴定肿瘤细胞对药物敏感性的方法.Cree等[8]随机分配147例患者,分别接受经验式治疗和ATP含量分析治疗.干预后,经验组31.5%的患者部分或完全响应药物,ATP含量分析组40.5%的患者部分或完全响应药物,但组间比较,差异无统计学意义.Ugurel等[9]通过ATP含量分析将肿瘤患者分为化疗敏感组和化疗抵抗组,其总生存率分别为36.4%和14.6%(P=0.114),其生存周期分别为14.6个月和7.4个月(P=0.041).因此,ATP含量分析法能够对化疗药物的选择提供部分参考性,但该方法在临床上的应用仍有待于进一步验证.

1.2 基于细胞生存与增值的研究方法基于细胞生存与增值的研究方法常用的是四甲基偶氮唑盐比色法,其原理是在活细胞线粒体内,琥珀酸在琥珀酸脱氢酶(Succinatedehydrogenase,SDH)作用下脱氢,将可溶性的黄色唑盐还原为不可溶蓝紫色结晶甲瓒,沉积于细胞内.甲瓒可溶于二甲基亚砜(DMSO),通过在490 nm或570 nm处波长测定吸光值来间接反映活细胞数量.Xu等[7]将156例乳腺癌患者分为经验治疗组(n=73)和MTT预测组(n=83),随后对MTT组进行预测,剔除MTT组中化疗抵抗的患者(n= 10),保留预测敏感患者(n=73).结果显示,MTT组敏感者与经验治疗组对化疗药物总响应率分别为77%和44%(P<0.01),然而两组3年内总生存率为24.7%和19.1%,差异无统计学意义(P>0.05).目前该方法仍在进行临床测试.

1.3 EDRAEDRA通过高浓度化疗药物(可达血药浓度100倍)刺激肿瘤细胞,以氖-胸腺嘧啶(3HTdR)掺入肿瘤细胞DNA,通过DNA含量来反应存活细胞数,并由此判断肿瘤对何种药物耐受.Loizzi等[10]研究显示,EDRA指导组和经验治疗组的总响应率分别为65%和35%(P=0.02),预后1年生存率分别为68%和16%(P=0.0002).另一项研究[11]分析了EDRA检测的173例卵巢癌患者,发现由EDRA得到的对紫杉和铂类药物高耐药者5年生存率显著低于中低耐药者(30.9%VS 41.1%,P=0.014).EDRA在一定程度上能够对患者耐药性做出评价,但其局限于DNA和RNA合成旺盛的肿瘤,且由于使用放射性检测方法,对实验室要求较高.

1.4 人源类器官培养和器官型培养类器官培养是将患者来源的肿瘤细胞移植入含有大量生长因子的半固体细胞培养基中[12-13].该方法可以使肿瘤细胞在3D环境中生长,并能在理论上重构在组织中的三维生长结构.类器官法已经在胰腺癌[14]、直肠癌[13]、前列腺癌[15]中得到广泛研究.该方法优势在于肿瘤原代细胞的大多数突变得以保留[16].同时,类器官培养法能够保留正常上皮细胞,增殖迅速,对特殊组织器官成模率较高.其劣势在于多次培养后容易出现同质性细胞,这将造成肿瘤细胞构建主体3D环境以及基质细胞的丢失.

肿瘤细胞异质性是肿瘤预测和预后的重要影响因素[17],肿瘤微环境能够影响治疗效果[18].器官型培养是将肿瘤组织切片[19]、组织块等进行微流体芯片培养[20](相较于2D培养,这些肿瘤细胞能够产生内源性肿瘤微环境[21]),然后加入化疗药物进行药物敏感性测定[22].研究者在采用器官培养法时,加入肿瘤内蛋白或肿瘤患者血清可以构建异质性肿瘤微环境[23].这种方法能够更好地模拟肿瘤在体内的增殖、ATP利用率、通路活化等微环境,从而更好地预测抗肿瘤药物的敏感性.Hirt等[24]的研究表明在进行3D培养时,加入免疫细胞能够更精确地模拟肿瘤免疫系统互作的体内环境,预测结果中,阳性患者的临床用药反应率高达87%.

1.5 循环肿瘤细胞在过去的几十年中,循环肿瘤细胞(circulating tumour cells,CTCs)得到了广泛的研究[25-26].CTCs存在于患者的血液中,早期的研究通过将CTCs移植入小鼠体内,进行繁殖[27-28],但该方法成功率较低[29].目前经常采用的方法是利用微流体芯片对CTCs进行富集[30].CTCs只能进行悬浮培养而不能进行贴壁培养.这种悬浮培养特性,使得CTCs可以应用于微流体芯片进行不同药物的连续给药.对该方法进行适当比例的扩大,可以持续的利用CTCs进行药物筛选[31].但这种方法的最大缺点是CTCs较难获得,并且增殖较慢[32].鉴于肿瘤异质性,游离于体内的CTCs与原位肿瘤效果是否具有相同的药物敏感性模式,尚无确切结论[33].

2 人源化动物模型预测抗肿瘤药物敏感性

在当前的肿瘤研究中,肿瘤细胞系应用广泛.但随着传代次数的增加,不仅会导致肿瘤细胞的生物学属性、基因等发生改变[34],而且单独培养的肿瘤细胞与体内复杂环境中的肿瘤细胞存在明显差异.因此,仅仅依靠肿瘤细胞株来进行抗肿瘤药物敏感性试验是不可靠的.人源化肿瘤动物模型(patient-derived xenograft model,PDX)是指将患者来源的肿瘤细胞移植到其它动物(常用小鼠)体内生长,并用于药物敏感性试验或其它研究的一种方法.PDX模型未经体外传代培养,保存了体内肿瘤的表征与特性,其肿瘤间质和干细胞成分构建的微环境可以一定程度继续存在,相对更接近于临床用药的实际情况[35].

PDX模型常见的有皮下移植、肾包膜移植、原位移植[36].皮下移植是将病人源肿瘤移植到鼠一侧肩胛背部皮下,其操作简单,便于肿瘤观察,但由于皮下移植环境与肿瘤生长微环境(诸如肿瘤相关基质,血液供应等)差异较大,且成瘤率相对较低,因此,该模型无法更为准确地表现肿瘤的真实病理情况[37].在肿瘤细胞移植到肾包膜后,可以利用肾包膜下基质进行增殖,浸润和侵袭.PDX肾包膜移植模型成瘤率较高.但肾包膜内微环境与肿瘤微环境仍有不同,且肾包膜较为脆弱,对手术操作要求高,免疫缺陷鼠容易感染,无法直观地对肿瘤大小进行观察,这些问题都制约了肾包膜模型的应用[38].原位移植是将肿瘤移植到免疫缺陷鼠的相应靶器官.原位移植部位血液供应相对丰富,所提供的肿瘤微环境较上述两种环境更为接近真实病理状态,可以良好的展示肿瘤的近端浸润和远处转移的特性.但其部位特殊,操作要求高,只适用于部分肿瘤[39].个性化移植模型是在移植肿瘤细胞的过程中将其同一部位的其他细胞共同移植,亦或导入人体相应疾病基因或相关基质成分,从而更为接近真实肿瘤的发生和转移情况[40-42].

然而,PDX模型在临床上大规模使用仍有一定的局限性.第一,PDX模型中,影响成瘤率因素很多,包括原发肿瘤的组织类型、病理分期、取材部位、移植部位、移植方法、取材方法及宿主的选择等[36,43-44],使得某些肿瘤PDX的成瘤率不到10%;第二,建立PDX模型的成本相对较高;第三,PDX的时间滞后性.在临床个性化治疗中,PDX的实验周期较长,其间患者的病情发展情况与模型是否一致,无法确定[45];第四,PDX模型因为建模周期长,也存在人源性肿瘤间质的丢失或基因排序改变等问题[46].

当前,生物标志物和活体成像技术[47-49]与PDX的联合运用在临床前研究中崭露头角.而鉴于原位移植和肾包膜移植的不易观察性,活体成像则能够良好展示肿瘤发展情况.PDX以其更为接近真实病理状态的优势,为肿瘤的个性化治疗、临床前研究和药物筛选提供了良好的思路.尽管存在建模成本高等问题,但随着技术的不断完善,相信PDX模型拥有良好的应用前景.

3 新型功能性试验方法预测肿瘤药物敏感性

除了上述常用的预测肿瘤药物敏感性的方法外,近年来,随着肿瘤分子生物学研究的不断深入,利用各种新型的功能性试验来预测肿瘤药物敏感性的方法也在实验室和临床前期得到了广泛的验证.

3.1 单通路或多通路活化分析单通路活化分析主要是分析特定通路分子参与程度,其能够在分子水平上将患者分类.研究者开发了能够测定患者活细胞或活细胞裂解物中靶标参与情况的分析方法.相较于静态测量药物对通路的影响,该方法能够直接预测患者对药物的响应.比如,在BRAF突变的黑色素瘤患者中,MAPK通路大量激活,使用针对该通路的特异性抑制剂包括BRAF突变的抑制剂或MEK的抑制剂来检测肿瘤细胞信号通路的改变,可以将肿瘤细胞的通路进行归属,从而预测抗肿瘤药物的敏感性[50].研究者还采用激酶底物反应方法分析患者组织裂解物中通路活化情况.该方法可区分黑色素瘤的多数基因型(TP53、NRAS、CDKN2A、BRAF突变)[51],但只有在裂解物暴露于BRAF抑制剂进行分析时,才能区分上述基因型[52].

多通路分析较单通路分析能够更好地预测肿瘤药物敏感性.早期采用多参数荧光细胞分选研究急性粒细胞白血病(acute myelocytic leukemia,AML)患者信号通路的变化,由此对患者样品中的亚群和患者进行分类[53].该方法已经在进行临床试验,用来识别成人和儿童AML患者对生长因子或化疗调节通路的响应情况[54-55].

单通路或多通路分析法旨在通过不同亚群患者在肿瘤发生或给药干预的情况下,体内响应通路不同,进行分类,以此达到个性化给药的目的.

3.2 DBP分析大多数化疗药物可以引起肿瘤细胞凋亡,其中很大一部分是通过线粒体细胞凋亡途径来实现的[56].细胞凋亡有死亡受体途径和线粒体途径[57-58].其中,线粒体途径是由Bcl-2蛋白质家族调控的[58-59].Bcl-2家族分为三类:促凋亡多结构域蛋白质Bak、Bax和Bok,这类蛋白质活化后可以直接引起线粒体外膜的通透[60];抗凋亡蛋白质包括Bcl-2、Bcl-xL、Mcl-1等;以及仅含BH3结构域(BH3-only)蛋白质包括Bim、Bid、Bad和Puma等[61-64].其中,BH3-only蛋白质不仅可以直接激活Bak,Bax,引发细胞凋亡[65-66];也可以与Bcl-2等抗凋亡蛋白质结合,从而抑制Bcl-2等抗凋亡蛋白质与Bak、Bax结合,间接激活线粒体凋亡通路.

Bcl-2、Bcl-xL和Mcl-1等抗凋亡蛋白质是抗肿瘤药物的重要靶点.目前,BCL-2抑制剂Venetoclax[67]已经通过FDA批准用于治疗含染色体17p缺失的慢性淋巴细胞性白血病,其它的BH3类似物也正在进行临床试验.Letai等在研究细胞凋亡机制的基础上,创建了用于预测抗肿瘤药物敏感性的BH3分析方法[68-69].该方法在临床前的多项试验中显示了良好的结果,包括针对卵巢癌、多发性骨髓瘤、白血病等的多种化疗药物的敏感性预测[70-72].基于该方法的研究说明了该方法在临床上的潜在应用前景:对伊马替尼敏感的慢性粒细胞白血病肿瘤细胞,临床中与之相对应的患者同样对伊马替尼敏感;类似地,对顺铂类敏感的卵巢癌患者在应用顺铂化疗时,其生存率也相对于不敏感的患者有所提高[70].

研究人员还在此基础上研发出一种在体外快速检测药物响应的DBP分析方法[73-74].这种方法缩短了检测时间,并且能够在一定程度上弥补第一代体外检测的不足.该方法通过不同药物与肿瘤细胞共孵育使线粒体发生凋亡前的响应,随后加入不同BH3小肽诱发线粒体去极化.通过检测线粒体去极化过程,来预测药物诱导细胞凋亡效果.因为Bad BH3和Hrk BH3与不同的抗凋亡蛋白质的结合能力不同,其中Bad可以与Bcl-2及Bcl-xL有强结合力,而Hrk只与Bcl-xL有强结合力.利用这个特点,基于Bad BH3小肽和Hrk BH3小肽所引起的细胞色素C释放的差可以用于预测Venetoclax的敏感性[75].该方法在一项临床前的急性白血病药物敏感性研究中可以预测Venetoclax的敏感性[76].然而,在后来的一项Venetoclax单药治疗急性髓细胞性白血病的II期临床试验中,该方法所得到的BH3分析的结果与患者生存时间的相关性并不十分显著[77].因此,临床上抗肿瘤药物的敏感性预测的复杂程度远比预想的要复杂,该方法在临床上的推广还有待进一步考察.

3.3 Bak细胞内状态分析因为线粒体细胞凋亡在抗肿瘤药物引起细胞死亡过程中发挥着重要作用,而Bak又是线粒体凋亡途径中关键的凋亡效应分子,Bak在细胞内的活化状态也与BH3类似物的敏感性密切相关.研究[78]发现,当细胞内Bak处于与Bcl-2或者Bcl-xL的结合状态时,肿瘤细胞对Bcl-2/Bcl-xL抑制剂Navitoclax敏感,当细胞内Bak处于与Mcl-1的结合状态时,肿瘤细胞对Mcl-1抑制剂A-1210477敏感.该方法也为BH3分析方法提供了一种新的可能的机制,即BH3小肽除了可以通过直接置换直接激活分子来起作用,也可以通过替换已经在细胞内自活化的Bak来引起肿瘤细胞的凋亡[78].由于A-1210477对Mcl-1较弱的抑制能力及对Mcl-1的半衰期的影响[79],A-1210477并不足以在临床上推广.然而,随着新一代Mcl-1抑制剂S63845的发现[80],其大大增强了对Mcl-1的抑制效率,该方法是否能预测新型Mcl-1抑制剂的敏感性还有待进一步考察.更重要的是,该方法能否推广到更多的抗肿瘤药物敏感性预测中还有待进一步研究.

4 结论与展望

随着肿瘤分子生物学的深入研究,肿瘤的精准医疗也是势在必行.需要指出的是,目前的肿瘤精准医疗研究过分侧重测序在肿瘤精准医学中的地位,而忽视了利用功能性试验来预测抗肿瘤药物的敏感性.一方面,目前多种预测抗肿瘤药物敏感性的功能性方法正在进行临床测试,有些已经取得了非常好的效果,所以在今后的临床应用上将有十分广阔的前景;另一方面,因为影响肿瘤药物敏感性的因素较多,肿瘤药物敏感性研究方法众多,若能将多种方式结合,针对不同类型的肿瘤或者抗肿瘤药物选择更适合的预测方法,相信会找到最佳的肿瘤治疗方案.同时需要指出的是,作为后期将服务于临床的检测方法,不应该追求检测了多少个项目,而应该考虑如何能用最少的检测成本获取最佳的治疗方案.

[1]Friedman AA,Letai A,Fisher DE,et al.Precision medicine for cancer with next-generation functional diagnostics[J].Nat Rev Cancer,2015,15(12):747-756.

[2]Burstein HJ,Mangu PB,Somerfield MR,et al.American Society of Clinical Oncology clinical practice guideline update on the use of chemotherapy sensitivity and resistance assays[J].J Clin Oncol,2011,29(24):3328-3330.

[3]Samson DJ,Seidenfeld J,Ziegler K,et al.Chemotherapy sensitivity and resistance assays:a systematic review[J].J Clin Oncol,2004,22(17):3618-3630.

[4]Kreiter S,Vormehr M,van de Roemer N,et al.Mutant MHC class II epitopes drive therapeutic immune responses to cancer[J].Nature,2015,520(7549):692-696.

[5]Hanahan D,Weinberg RA.Hallmarks of cancer:the next generation[J].Cell,2011,144(5):646-674.

[6]Kurbacher CM,Cree IA,Bruckner HW,et al.Use of an ex vivo ATP luminescence assay to direct chemotherapy for recurrent ovarian cancer[J].Anticancer Drugs,1998,9(1):51-57.

[7]Xu JM,Song ST,Tang ZM,et al.Predictive chemotherapy of advanced breast cancer directed by MTT assay in vitro[J].Breast Cancer Res Treat,1999,53(1):77-85.

[8]Cree IA,Kurbacher CM,Lamont A,et al.A prospective randomized controlled trial of tumour chemosensitivity assay directed chemotherapyversus physician's choice in patients with recurrent platinum-resistant ovarian cancer[J].Anticancer Drugs,2007,18(9):1093-1101.

[9]Ugurel S,Schadendorf D,Pföhler C,et al.In vitro drug sensitivity predicts response and survival after individualized sensitivity-directed chemotherapy in metastatic melanoma:a multicenter phase II trial of the Dermatologic Cooperative Oncology Group[J].Clin Cancer Res,2006,12(18):5454-5463.

[10]Loizzi V,Chan JK,Osann K,et al.Survival outcomes in patients with recurrent ovarian cancer who were treated with chemoresistance assay-guided chemotherapy[J].Am J Obstet Gynecol,2003,189(5): 1301-1307.

[11]Matsuo K,Bond VK,Eno ML,et al.Low drug resistance to both platinum and taxane chemotherapy on an in vitro drug resistance assay predicts improved survival in patients with advanced epithelial ovarian,fallopian and peritoneal cancer[J].Int J Cancer,2009,125(11):2721-2727.

[12]Sato T,Vries RG,Snippert HJ,et al.Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J].Nature,2009,459(7244):262-265.

[13]Sato T,Stange DE,Ferrante M,et al.Long-term expansion of epithelial organoids from human colon,adenoma,adenocarcinoma,and Barrett's epithelium[J].Gastroenterology,2011,141(5):1762-1772.

[14]Boj SF,Hwang CI,Baker LA,et al.Organoid models of human and mouse ductal pancreatic cancer[J].Cell,2015,160(1-2):324-338.

[15]Gao D,Vela I,Sboner A,et al.Organoid cultures derived from patients with advanced prostate cancer[J].Cell,2014,159(1):176-187.

[16]van de Wetering M,Francies HE,Francis JM,et al.Prospective derivation of a living organoid biobank of colorectal cancer patients[J].Cell,2015,161(4):933-945.

[17]Mengelbier LH,Karlsson J,Lindgren D,et al.Intratumoral genome diversity parallels progression and predicts outcome in pediatric cancer[J].Nat Commun,2015,6:6125.

[18]Junttila MR,de Sauvage FJ.Influence of tumour micro-environment heterogeneity on therapeutic response[J].Nature,2013,501(7467): 346-354.

[19]Kenny HA,Lal-Nag M,White EA,et al.Quantitative high throughput screening using a primary human three-dimensional organotypic culture predicts in vivo efficacy[J].Nat Commun,2015,6:6220.

[20]Vaira V,Fedele G,Pyne S,et al.Preclinical model of organotypic culture for pharmacodynamic profiling of human tumors[J].Proc Natl Acad Sci U S A,2010,107(18):8352-8356.

[21]Ridky TW,Chow JM,Wong DJ,et al.Invasive three-dimensional organotypic neoplasia from multiple normal human epithelia[J].Nat Med,2010,16(12):1450-1455.

[22]Nagourney RA,Blitzer JB,Shuman RL,et al.Functional profiling to select chemotherapy in untreated,advanced or metastatic non-small cell lung cancer[J].Anticancer Res,2012,32(10):4453-4460.

[23]Majumder B,Baraneedharan U,Thiyagarajan S,et al.Predicting clinical response to anticancer drugs using an ex vivo platform that captures tumour heterogeneity[J].Nat Commun,2015,6:6169.

[24]Hirt C,Papadimitropoulos A,Mele V,et al.“In vitro”3D models of tumor-immune system interaction[J].Adv Drug Deliv Rev,2014,79-80:145-154.

[25]Smerage JB,Barlow WE,Hortobagyi GN,et al.Circulating tumor cells and response to chemotherapy in metastatic breast cancer: SWOG S0500[J].J Clin Oncol,2014,32(31):3483-3489.

[26]Cristofanilli M,Budd GT,Ellis MJ,et al.Circulating tumor cells, disease progression,and survival in metastatic breast cancer[J].N Engl J Med,2004,351(8):781-791.

[27]Baccelli I,Schneeweiss A,Riethdorf S,et al.Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay[J].Nat Biotechnol,2013,31(6):539-544.

[28]Hodgkinson CL,Morrow CJ,Li Y,et al.Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer[J].Nat Med,2014,20(8):897-903.

[29]Zhang L,Ridgway LD,Wetzel MD,et al.The identification and characterization of breast cancer CTCs competent for brain metastasis[J].Sci Transl Med,2013,5(180):180ra48.

[30]Yu M,Bardia A,Aceto N,et al.Cancer therapy.Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility[J].Science,2014,345(6193):216-220.

[31]Brouzes E,Medkova M,Savenelli N,et al.Droplet microfluidic technology for single-cell high-throughput screening[J].Proc Natl Acad Sci U S A,2009,106(34):14195-14200.

[32]Yu M,Stott S,Toner M,et al.Circulating tumor cells:approaches to isolation and characterization[J].J Cell Biol,2011,192(3): 373-382.

[33]Tannock IF,Hickman JA.Limits to Personalized Cancer Medicine[J].N Engl J Med,2016,375(13):1289-1294.

[34]Daniel VC,Marchionni L,Hierman JS,et al.A primary xenograft model of small-cell lung cancer reveals irreversible changes in gene expression imposed by culture in vitro[J].Cancer Res,2009,69(8):3364-3373.

[35]Tentler JJ,Tan AC,Weekes CD,et al.Patient-derived tumour xenografts as models for oncology drug development[J].Nat Rev Clin Oncol,2012,9(6):338-350.

[36]Hidalgo M,Amant F,Biankin AV,et al.Patient-derived xenograft models:an emerging platform for translational cancer research[J].Cancer Discov,2014,4(9):998-1013.

[37]Morton CL,Houghton PJ.Establishment of human tumor xenografts in immunodeficient mice[J].Nat Protoc,2007,2(2):247-250.

[38]Mohseni MJ,Amanpour S,Muhammadnejad S,et al.Establishment of a patient-derived Wilms'tumor xenograft model:a promising tool for individualized cancer therapy[J].J Pediatr Urol,2014,10(1): 123-129.

[39]Hoffman RM.Patient-derived orthotopic xenografts:better mimic of metastasis than subcutaneous xenografts[J].Nat Rev Cancer,2015,15(8):451-452.

[40]Thibaudeau L,Taubenberger AV,Holzapfel BM,et al.A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone[J].Dis Model Mech,2014,7(2):299-309.

[41]Wu M,Jung L,Cooper AB,et al.Dissecting genetic requirements of human breast tumorigenesis in a tissue transgenic model of human breast cancer in mice[J].Proc Natl Acad Sci U S A,2009,106(17): 7022-7027.

[42]Melkus MW,Estes JD,Padgett-Thomas A,et al.Humanized mice mount specific adaptive and innate immune responses to EBV and TSST-1[J].Nat Med,2006,12(11):1316-1322.

[43]Weroha SJ,Becker MA,Enderica-Gonzalez S,et al.Tumorgrafts as in vivo surrogates for women with ovarian cancer[J].Clin Cancer Res,2014,20(5):1288-1297.

[44]Siolas D,Hannon GJ.Patient-derived tumor xenografts:transforming clinical samples into mouse models[J].Cancer Res,2013,73(17):5315-5319.

[45]Orsulic S,Li Y,Soslow RA,et al.Induction of ovarian cancer by defined multiple genetic changes in a mouse model system[J].Cancer Cell,2002,1(1):53-62.

[46]Kresse SH,Meza-Zepeda LA,Machado I,et al.Preclinical xenograft models of human sarcoma show nonrandom loss of aberrations[J].Cancer,2012,118(2):558-570.

[47]Wu JB,Shao C,Li X,et al.Near-infrared fluorescence imaging of cancer mediated by tumor hypoxia and HIF1α/OATPs signaling axis[J].Biomaterials,2014,35(28):8175-8185.

[48]Luo S,Zhang E,Su Y,et al.A review of NIR dyes in cancer targeting and imaging[J].Biomaterials,2011,32(29):7127-7138.

[49]Yang X,Shi C,Tong R,et al.Near IR heptamethine cyanine dye-mediated cancer imaging[J].Clin Cancer Res,2010,16(10):2833-2844.

[50]Hilhorst R,Houkes L,Mommersteeg M,et al.Peptide microarrays for profiling of serine/threonine kinase activity of recombinant kinases and lysates of cells and tissue samples[J].Methods Mol Biol,2013,977:259-271.

[51]Tahiri A,Røe K,Ree AH,et al.Differential inhibition of ex-vivo tumor kinase activity by vemurafenib in BRAF(V600E)and BRAF wild-type metastatic malignant melanoma[J].PLoS One,2013,8(8):e72692.

[52]Schayowitz A,Bertenshaw G,Jeffries E,et al.Functional profiling of live melanoma samples using a novel automated platform[J].PLoS One,2012,7(12):e52760.

[53]Irish JM,Hovland R,Krutzik PO,et al.Single cell profiling of potentiated phospho-protein networks in cancer cells[J].Cell,2004,118(2):217-228.

[54]Kornblau SM,Minden MD,Rosen DB,et al.Dynamic single-cell network profiles in acute myelogenous leukemia are associated with patient response to standard induction therapy[J].Clin Cancer Res,2010,16(14):3721-3733.

[55]Lacayo NJ,Alonzo TA,Gayko U,et al.Development and validation of a single-cell network profiling assay-based classifier to predict response to induction therapy in paediatric patients with de novo acute myeloid leukaemia:a report from the Children's Oncology Group[J].Br J Haematol,2013,162(2):250-262.

[56]Hata AN,Engelman JA,Faber AC.The BCL2 Family:Key Mediators of the Apoptotic Response to Targeted Anticancer Therapeutics[J].Cancer Discov,2015,5(5):475-487.

[57]van Delft MF,Huang DC.How the Bcl-2 family of proteins interact to regulate apoptosis[J].Cell Res,2006,16(2):203-213.

[58]Dai H,Meng WX,Kaufmann SH.BCL2 Family,Mitochondrial Apoptosis,and Beyond[J].Cancer Transl Med,2016,2(1):7-20.

[59]Wang C,Youle RJ.The role of mitochondria in apoptosis[J].Annu Rev Genet,2009,43:95-118.

[60]Llambi F,Wang YM,Victor B,et al.BOK Is a Non-canonical BCL-2 Family Effector of Apoptosis Regulated by ER-Associated Degradation[J].Cell,2016,165(2):421-433.

[61]Strasser A,Cory S,Adams JM.Deciphering the rules of programmed cell death to improve therapy of cancer and other diseases[J].EMBO J,2011,30(18):3667-3683.

[62]Czabotar PE,Lessene G,Strasser A,et al.Control of apoptosis by the BCL-2 protein family:implications for physiology and therapy[J].Nat Rev Mol Cell Biol,2014,15(1):49-63.

[63]Moldoveanu T,Follis AV,Kriwacki RW,et al.Many players in BCL-2 family affairs[J].Trends Biochem Sci,2014,39(3):101-111.

[64]Renault T,Chipuk J.Death upon a kiss:mitochondrial outer membrane composition and organelle communication govern sensitivity to BAK/BAX-dependent apoptosis[J].Chem Biol,2014,21(1):114-123.

[65]Dai H,Smith A,Meng XW,et al.Transient binding of an activator BH3 domain to the Bak BH3-binding groove initiates Bak oligomerization[J].J Cell Biol,2011,194(1):39-48.

[66]Dai H,Pang YP,Ramirez-Alvarado M,et al.Evaluation of the BH3-only protein Puma as a direct Bak activator[J].J Biol Chem,2014,289(1):89-99.

[67]Khaled S,Al Malki M,Marcucci G.Acute Myeloid Leukemia: Biologic,Prognostic,and Therapeutic Insights[J].Oncology(Williston Park),2016,30(4):318-329.

[68]Letai A,Bassik MC,Walensky LD,et al.Distinct BH3 domains either sensitize or activate mitochondrial apoptosis,serving as prototype cancer therapeutics[J].Cancer Cell,2002,2(3):183-192.

[69]Certo M,Del Gaizo Moore V,Nishino M,et al.Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members[J].Cancer Cell,2006,9(5):351-365.

[70]Ni Chonghaile T,Sarosiek KA,Vo TT,et al.Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy[J].Science,2011,334(6059):1129-1133.

[71]Vo TT,Ryan J,Carrasco R,et al.Relative mitochondrial priming of myeloblasts and normal HSCs determines chemotherapeutic success in AML[J].Cell,2012,151(2):344-355.

[72]Touzeau C,Ryan J,Guerriero J,et al.BH3-profiling identifies heterogeneous dependency on Bcl-2 family members in Multiple myeloma and predicts sensitivity to BH3 mimetics[J].Leukemia,2016,30(3):761-764.

[73]Del Gaizo Moore V,Letai A.BH3 profiling--measuring integrated function of the mitochondrial apoptotic pathway to predict cell fate decisions[J].Cancer Lett,2012,332(2):202-205.

[74]Montero J,Sarosiek KA,DeAngelo JD,et al.Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy[J].Cell,2015,160(5):977-989.

[75]Chonghaile TN,Roderick JE,Glenfield C,et al.Maturation stage of T-cell acutelymphoblasticleukemiadeterminesBCL-2versus BCL-XL dependence and sensitivity to ABT-199[J].Cancer Discov,2014,4(9):1074-1087.

[76]Pan R,Hogdal LJ,Benito JM,et al.Selective BCL-2 inhibition by ABT-199 causes on-target cell death in acute myeloid leukemia[J].Cancer Discov,2014,4(3):362-375.

[77]Konopleva M,Pollyea DA,Potluri J,et al.Efficacy and biological correlates of response in a phase II study of venetoclax monotherapy in patients with acute myelogenous leukemia[J].Cancer Discov,2016,6(10):1106-1117.

[78]Dai H,Ding H,Meng XW,et al.Constitutive BAK activation as a determinant of drug sensitivity in malignant lymphohematopoietic cells[J].Genes Dev,2015,29(20):2140-2152.

[79]Leverson JD,Zhang H,Chen J,et al.Potent and selective smallmolecule MCL-1 inhibitors demonstrate on-target cancer cell killing activity as single agents and in combination with ABT-263(navitoclax)[J].Cell Death Dis,2015,6:e1590.

[80]Kotschy A,Szlavik Z,Murray J,et al.The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models[J].Nature,2016,538(7626):477-482.

Research progress on the prediction of sensitivity of anti-cancer agents based on functional assays

LIU Dong-Yan1,2,YE Kai-Qin1,2,WANG Hong-Zhi1,2,DAI Hai-Ming1,2
1Center of Medical Physics and Technology,Hefei Institutes of Physical Science,Chinese Academy of Sciences,2Cancer Hospital,Chinese Academy of Sciences,Hefei 230031,China

With increasing rate of tumor incidence,its treatments including surgery,radiotherapy,traditional chemotherapy and molecular targeted therapy also have been gradually improved and perfected,in which anti-cancer agents are playing a particularly important role.Anti-cancer agents include traditional chemotherapy agents and molecular-targeted drugs,etc.However,anti-cancer agents are not always effective,and the response rate of chemotherapeutic strategy of certain tumours is less than 25%.Therefore,it is necessary to predict the sensitivity of anti-cancer agents accurately.Whether a cancer cell is sensitive or not to a certain anti-cancer agent is mainly determined by many aspects,including gene expression levels,gene mutations,epigenetics,microenvironments of body,and so on.Besides usually adopted methods for detection of cancer genes,some functional tests are taken now for predicting sensitivities of anti-cancer agents,including ATP-assays,MTT assays,patient-derived tumor xenograft(PDX)mouse models,newly developed of BH3 profiling assays,and so on.In this paper,we will review recent advances in these functional assays,discuss the strengths and disadvantages of theses assays,and explore the trends of research on sensitivities of anti-cancer agents.

anti-cancer agents;precision medicine;functional assays;drug sensitivity

R96

A

2095-6894(2017)01-01-06

2016-11-19;接受日期:2016-12-06

中国科学院百人计划项目及国家自然基金面上项目(81572948)

刘东岩.硕士.研究方向:抗肿瘤药物敏感性.

E-mail:liudy209@163.com

戴海明.博士,教授.研究方向:肿瘤细胞凋亡基础及应用.

E-mail:daih@cmpt.ac.cn

猜你喜欢

敏感性通路化疗
CT联合CA199、CA50检测用于胰腺癌诊断的敏感性与特异性探讨
中西医结合护理在肿瘤化疗中的应用
氧化槐定碱体内体外通过AKT/mTOR通路调控自噬抑制HBV诱发肝纤维化
小檗碱治疗非酒精性脂肪肝病相关通路的研究进展
经前烦躁障碍症发病与四氢孕酮敏感性中西医研究进展
教育类期刊编辑职业敏感性的培养
梁拱组合体系桥地震响应对拱梁刚度比的敏感性分析
跟踪导练(二)(3)
A kind kid helps a classmate beat cancer Aka
SphK/S1P信号通路与肾脏炎症研究进展