灌浆期高温干旱胁迫对小麦籽粒淀粉积累的影响
2016-12-29岳鹏莉王晨阳卢红芳刘卫星胡阳阳
岳鹏莉,王晨阳,2,卢红芳,刘卫星,马 耕,王 强,胡阳阳
(1.河南农业大学农学院,河南郑州 450002; 2.国家小麦工程技术研究中心,河南郑州 450002)
灌浆期高温干旱胁迫对小麦籽粒淀粉积累的影响
岳鹏莉1,王晨阳1,2,卢红芳1,刘卫星1,马 耕1,王 强1,胡阳阳1
(1.河南农业大学农学院,河南郑州 450002; 2.国家小麦工程技术研究中心,河南郑州 450002)
为探讨花后高温和干旱逆境胁迫对小麦淀粉组分的影响,采用盆栽和人工气候室相结合的方式研究了灌浆期短暂高温、干旱及其复合胁迫对两个不同品质类型小麦品种籽粒总淀粉、直链淀粉和支链淀粉含量的影响。结果表明,小麦籽粒淀粉的积累量符合Logistic方程,但逆境胁迫会缩短籽粒淀粉积累持续时间,降低其积累速率,使其最终淀粉积累量减少。与对照相比,高温、干旱及其复合胁迫显著降低两个小麦品种籽粒的支链淀粉和总淀粉含量,直链淀粉含量受影响较小,淀粉的直/支比增加。高温、干旱及其复合胁迫下,洛麦24的千粒重分别较对照下降42.03%、21.95%和50.01%,产量分别较对照下降57.88%、40.75%和61.08%;郑麦366的千粒重分别较对照下降34.39%、7.64%和43.16%,产量分别较对照下降41.58%、30.97%和48.49%。综上所述,高温、干旱胁迫抑制支链淀粉积累是造成产量下降的重要原因;复合胁迫对小麦籽粒淀粉积累量的影响大于干旱或高温单独胁迫;高温胁迫的影响大于干旱;洛麦24较郑麦366对高温和干旱胁迫更敏感。
小麦;高温;干旱;淀粉;产量
淀粉是小麦籽粒的重要组成部分,占整个籽粒干重的 65%~75%[1]。小麦籽粒中的淀粉按葡萄糖分子的链接方式分为直链和支链淀粉两部分。研究表明,淀粉总含量及其组分对小麦加工品质与面食评分均有明显影响[2-4]。在小麦生育过程中,开花至成熟是小麦籽粒与品质形成的关键阶段,该期间遭受高温或干旱胁迫会降低小麦产量,并导致籽粒品质变劣。在实际生产上,我国北方冬小麦生育后期常遭遇极端的短期高温或干旱,而且高温与干旱常相伴叠发,导致小麦产量下降,并影响面粉加工与食用品质[5-7]。研究证明,小麦籽粒灌浆期遭受极端高温时,籽粒淀粉合成酶活性下降,积累时间缩短,淀粉组分改变[8],而且不同品种对高温胁迫的响应存在差异[9]。另有研究表明,小麦灌浆期遭受干旱,籽粒总淀粉含量和支链淀粉含量显著降低,淀粉直/支比改变,导致品质变化[10]。戴廷波等[11]研究表明,在高温与干旱双重胁迫下,高温对小麦的影响大于干旱,且二者存在互作效应。
目前,围绕小麦生育后期单一逆境危害(如高温或干旱)协迫对小麦产量、产量构成因素、面粉及加工品质的影响已有不少研究报道[12-13],但有关多因素复合危害的研究相对较少。由于在我国北方麦区小麦生育后期,短期极端高温天气与干旱常同时发生,关于二者复合胁迫对小麦产量和品质影响的研究相对较少。本试验采用盆栽结合人工气候室进行小麦生育后期逆境胁迫的模拟,研究小麦灌浆期高温、干旱及其复合胁迫对小麦籽粒淀粉积累量和产量的影响,以期为小麦抗逆调优栽培提供理论依据。
1 材料与方法
1.1 试验材料与设计
试验选用中筋小麦洛麦24(蛋白质含量14%,湿面筋含量30%)和强筋小麦郑麦366(蛋白质含量16%,湿面筋含量33%)为供试材料,于2014-2015年度以盆栽方式在河南农业大学科教试验园区进行,采用两因素(品种和胁迫)裂区设计,其中,品种为主区,胁迫为副区,设干旱、高温和复合胁迫,以大田生长为对照。每处理10盆。
试验用盆高为27 cm,盆口直径为24 cm。试验用土为耕层土壤,其有机质含量为18 g·kg-1,全氮和碱解氮含量分别为1 g·kg-1和58 mg·kg-1,速效磷含量为68 mg·kg-1,速效钾含量为205 mg·kg-1,pH值为8,田间持水量为26%,每盆土重10 kg。于2014年10月18日播种,播种前每盆施纯氮1.15 g、P2O51.35 g、K2O 1.15 g作为基肥,三叶期每盆定苗12株;拔节期结合浇水每盆追施尿素2.5 g。胁迫处理(花后10 d)以前,各盆栽在大田条件下生长,定期浇水保持土壤相对含水量在75%左右。
胁迫处理期间,11:00-16:00对照的平均温度为29.32 ℃。干旱处理(DS)于高温处理前7 d进行遮雨控制水分,每天随机选取10 盆采用称重法测定土壤相对含水量,并于高温处理时达到55%的轻度干旱水平,高温处理结束后恢复正常供水。于花后10 d进行高温处理(HT),将长势均匀一致的供试盆栽移到人工气候室,38 ℃高温处理4 d,每天处理5 h(11:00-16:00),采用称重法控制土壤相对含水量在75%左右。高温+干旱复合胁迫(HT+DS)为干旱处理同时进行高温胁迫处理。处理结束后将全部材料转移至大田,生长至成熟。于开花期选取同一天开花、长势均匀一致的麦穗进行标记。
1.2 测定项目与方法
于高温、干旱处理前和结束后,各处理随机取10个已标记穗子,之后每4 d取样一次直至成熟。穗子取回立即剥取小麦籽粒,105 ℃杀青20 min, 60 ℃烘至恒重。烘干籽粒用高速万能粉碎机(天津泰斯特仪器有限公司)磨粉,用于直链和支链淀粉含量的测定[14],总淀粉含量为两者之和。以花后天数(t)作为自变量,每次测得的淀粉含量作为依变量(Y),用Logistic方程Y=K/(1+eA+Bt) 来拟合小麦籽粒总淀粉、直链淀粉和支链淀粉的积累过程[15],其中,K为理论最大淀粉积累量,A、B为其参数,通过对方程一阶求导,可得到淀粉积累速率方程Vt=KeA+Bt/(1+eA+Bt)。以此推导出淀粉积累特征参数:淀粉积累起始势C0=K/(1+eA)(反映淀粉积累潜势),积累活跃生长期D=[ln(1/9)-A]/B(达到总积累量的90%所经历的时间),积累速率达到最大时的日期Tmax=-A/B,最大积累速率Rmax=-K×B/4,平均积累速率Rmean=K/D。
成熟期每处理选取3盆计产、考种。
1.3 数据处理
数据整理及作图采用Microsoft Excel进行,用 SPSS 19.0 对数据进行方差分析。
2 结果与分析
2.1 灌浆期干旱、高温及其复合胁迫对成熟期籽粒淀粉含量的影响
由表1可见,干旱、高温及其复合胁迫均显著降低了小麦籽粒支链淀粉和总淀粉含量,对直链淀粉含量的影响相对较小,使淀粉直/支比显著增加(郑麦366干旱处理除外)。干旱、高温及其复合胁迫下,洛麦24直链淀粉含量分别较对照下降4.57%、11.95%和14.77%,后两者与对照的差异显著,支链淀粉含量分别较对照下降19.50%、30.72%和37.35%,差异均显著,总淀粉含量分别较对照下降15.51%、25.70%和31.31%,差异均显著;郑麦366直链淀粉含量分别较对照下降3.01%、7.53%和10.92%,后者与对照的差异显著,支链淀粉含量分别较对照下降17.18%、28.93%和30.13%,差异均显著,总淀粉含量分别较对照下降13.68%、23.65%和25.39%,差异均显著。结果表明,高温胁迫对2个小麦品种淀粉含量的影响明显大于干旱胁迫,且复合胁迫具有显著的叠加效应;干旱、高温胁迫对中筋品种洛麦24淀粉含量的影响较大。
表1 灌浆期干旱、高温及其复合胁迫下小麦籽粒的淀粉含量
Table 1 Effect of heat and drought stress and their combination on starch in wheat grains during grain filling stage
品种Cultivar处理Treatment直链淀粉Amylose支链淀粉Amylopectin总淀粉Totalstarch直/支Amylose/Amylopectin洛麦24 Luomai24CK17.74a48.61a66.35a0.37cDS16.93ab39.13b56.06b0.43bHT15.62b33.68c49.30c0.46bHT+DS15.12b30.45d45.58d0.50a郑麦366 Zhengmai366CK17.12a47.26a64.37a0.36bDS16.60ab43.28b59.88b0.38bHT15.83ab37.14c52.97c0.42aHT+DS15.25b36.51c51.76c0.43a
CK:对照;DS:干旱;HT:高温。同列数据后不同字母表示相同品种不同处理间差异显著(P<0.05)。下同。
CK:Control;DS:Drought stress;HT:Hight temperature.Different letters following values at the same column mean significant difference among treatments for the same cultivar(P<0.05).The same below.
2.2 灌浆期干旱、高温及其复合胁迫对籽粒直链淀粉积累动态的影响
由图1和表2可见,小麦籽粒直链淀粉含量在花后10~26 d急剧增加,26 d后增加趋缓,于成熟期达最大值,其积累过程符合Logistic方程Y=K(1+eA+Bt)(R2均大于0.95)。干旱、高温及其复合胁迫下,洛麦24的K值与对照相比分别减少3.96%、10.73%和11.54%,Rmean分别减少5.26%、10.78%和16.53%;郑麦366的K值分别较对照减少2.93%、6.27%和9.39%,Rmean分别较对照减少7.45%、12.06%和15.90%。高温及复合胁迫下淀粉积累提前结束,灌浆期缩短4 d。可见,高温胁迫对小麦籽粒淀粉积累的影响大于干旱,高温、干旱复合胁迫具有明显的叠加效应;2个品种相比,洛麦24受干旱、高温胁迫影响较大。
表2 灌浆期干旱、高温及其复合胁迫下小麦籽粒直链淀粉积累的特征参数
Table 2 Characteristic parameters of amylose accumulation in wheat grains under heat and drought stress and their combination
品种Cultivar处理TreatmentR2K/%ABTmax/dRmax/(%·d-1)Rmean/(%·d-1)C0D/d洛麦24CK0.992917.914.061-0.25116.21.1261.2830.303414.0Luomai24DS0.986617.203.933-0.24116.31.0351.2160.330214.1HT0.984615.993.997-0.24716.20.9891.1450.288314.0HT+DS0.985315.843.805-0.22417.00.8871.0710.345014.8郑麦366CK0.992817.314.414-0.26716.51.1551.2080.207114.3Zhengmai366DS0.990716.804.369-0.25417.21.0651.1180.210015.0HT0.970716.224.538-0.26017.51.0531.0620.171615.3HT+DS0.963615.684.449-0.25217.60.9891.0160.181215.4
K:生长终值量;A、B:参数;C0:积累起始势;D:积累活跃生长期;Tmax:积累速率最大期;Rmax:最大积累速率;Rmean:平均积累速率。表3、表4同。
K:Final amount of growth;A、B:Parameter;C0:Initial potential of accumulation;D:Active growth phase of accumulation;Tmax:Date of maximum accumulation;Rmax:Maximum accumulation rate;Rmean:Average accumulation rate.The same as in table 3 and table 4.
CK0、DS0、HT0、(HT+DS)0:测量值; CK1、DS1、HT1、(HT+DS)1:理论值; 下同。
CK0、DS0、HT0、(HT+DS)0:Measurement value; CK1、DS1、HT1、(HT+DS)1:Theoretical value;The same as in Fig.2 and Fig.3.
图1 灌浆期干旱、高温及其复合胁迫对小麦籽粒直链淀粉积累动态的影响
Fig.1 Effect of heat and drought stress and their combination on the content of amylose in wheat grains during grain filling stage
2.3 灌浆期干旱、高温及其复合胁迫对小麦籽粒支链淀粉积累动态的影响
从图2和表3可以看出,花后支链淀粉含量不断上升,花后10~26 d增加较快,其积累过程符合Logistic方程Y=K(1+eA+Bt)(R2均大于0.95)。干旱、高温及其复合胁迫下,洛麦24的K值分别较对照下降19.53%、32.77%和36.69%,Rmean分别下降15.90%、20.95%和26.63%。而郑麦366的K值较分别较对照下降6.48%、19.69%和21.54%,Rmean分别下降9.13%、13.03%和16.88%。说明高温对籽粒支链淀粉积累的影响较干旱大,且高温干旱复合胁迫有明显的叠加效应。两品种相比,中筋品种洛麦24对逆境胁迫更为敏感。
2.4 灌浆期干旱、高温及其复合胁迫对小麦籽粒总淀粉积累动态的影响
由图3可见,花后10~26 d籽粒总淀粉含量迅速增加,且各处理间差异逐渐增大,花后26 d后增加趋于缓慢,并于成熟期达到峰值。Logistic方程Y=K(1+eA+Bt)可较好地拟合总淀粉含量的积累过程(表4)。由总淀粉积累特征参数可以看出,对于洛麦24而言,K值在干旱、高温及其复合胁迫下分别较对照下降15.42%、26.36%和29.70%;Rmean值分别较下降12.21%、16.92%和22.48%;郑麦366K值在干旱、高温及其复合胁迫下分别较对照下降6.38%、16.35%和18.02%;Rmean值分别下降8.47%、11.85%和15.86%。干旱、高温胁迫对总淀粉积累的影响表现为高温干旱复合胁迫>高温>干旱;两品种相比,洛麦24所受影响较郑麦366大。
表3 灌浆期干旱、高温及其复合胁迫下小麦籽粒支链淀粉积累特征参数
Table 3 Characteristic parameters of amylopectin accumulation in wheat grains under heat and drought stress and their combination
品种Cultivar处理TreatmentR2K/%ABTmax/dRmax/(%·d-1)Rmean/(%·d-1)C0D/d洛麦24CK0.993153.454.074-0.19121.32.5552.7970.893619.1Luomai24DS0.994143.013.611-0.17620.51.8962.3521.131418.3HT0.985335.934.162-0.22618.52.0262.2110.550916.3HT+DS0.950533.843.721-0.19918.71.6842.0520.800216.5郑麦366CK0.991553.733.982-0.18022.12.4162.6950.984019.9Zhengmai366DS0.983450.254.005-0.17622.72.2152.4490.899220.5HT0.960543.154.093-0.19920.62.1432.3440.708018.4HT+DS0.963742.164.328-0.20621.02.1712.2400.548818.8
图2 灌浆期干旱、高温及其复合胁迫对小麦籽粒支链淀粉积累动态的影响
Table 4 Characteristic parameters of total starch accumulation in wheat grains under heat and drought stress and their combination
品种Cultivar处理TreatmentR2K/%ABTmax/dRmax/(%·d-1)Rmean/(%·d-1)C0D/d洛麦24CK0.997470.283.96-0.2019.73.544.021.313317.5Luomai24DS0.996259.443.64-0.1919.02.853.531.515116.8HT0.988751.754.08-0.2317.72.993.340.860715.5HT+DS0.968349.403.75-0.2118.02.573.121.138015.8郑麦366CK0.994369.293.97-0.2020.23.403.841.281918.1Zhengmai366DS0.990364.874.02-0.1920.73.153.511.149018.5HT0.972957.964.20-0.2219.33.153.380.856917.1HT+DS0.971256.814.32-0.2219.83.103.230.745617.6
图3 灌浆期干旱、高温及其复合胁迫对小麦籽粒总淀粉积累动态的影响
2.5 灌浆期高温、干旱及其复合胁迫对小麦籽粒产量的影响
从表5可见,灌浆期干旱、高温及其复合胁迫下,两个品种的穗粒重均显著下降,从而使小麦的千粒重和产量显著降低。干旱、高温及其复合胁迫下,洛麦24千粒重分别较对照下降21.97%、42.03%和50.09%,产量(每盆)分别下降40.75%、57.88%和61.08%;与对照相比,郑麦366千粒重分别下降7.62%、34.39%和43.16%,产量分别下降31.49%、43.71%和50.96%。可见,洛麦24受高温胁迫的影响大于郑麦366;不同处理间比较,高温胁迫对产量的影响大于干旱胁迫,且复合胁迫具有一定的叠加效应。
表5 灌浆期高温、干旱及其复合胁迫对小麦粒重及产量的影响
Table 5 Effect of heat and drought stress and their combination on 1 000-grain weight and yield
品种Cultivar处理Treatment每盆穗数Spikesperpot千粒重1000-grainweight/g穗粒重Grainweightperspike/g每盆产量Grainyieldperpot/g洛麦24Luomai24CK39.33a37.45a1.12a48.84aDS36.50a29.23b0.78b28.94bHT37.67a21.71c0.60c20.57cHT+DS38.00a18.69c0.42d19.01c郑麦366Zhengmai366CK39.25a38.88a1.20a48.47aDS38.00a35.91b1.08b33.46bHT37.33a25.51c0.83c27.49cHT+DS39.25a22.10d0.67d23.95d
3 讨 论
作为小麦籽粒的重要成分,淀粉含量与组成对面粉及面食加工品质有很大的影响[16]。在小麦籽粒形成与灌浆过程中,环境因素诸如高温、干旱均会影响籽粒总淀粉含量、直链淀粉含量和支链淀粉含量,并最终决定了淀粉性状的优劣。有研究表明,就对淀粉组分的影响看,逆境胁迫对支链淀粉影响更大[11]。小麦籽粒灌浆阶段最适宜的温度为20~24 ℃,超过30 ℃的高温则会使淀粉积累受抑[17-18]。研究发现,高温和干旱降低了花后物质的同化量,从而降低了粒重和淀粉含量[19],且高温与干旱胁迫对小麦籽粒淀粉的影响具有互作或叠加效应[20]。Logistic方程模拟表明,高温及干旱胁迫下小麦籽粒淀粉积累时间缩短、积累速率降低,这是导致直链、支链淀粉最终积累量降低的主要原因;最大积累速率的出现时间和积累持续期的调节作用甚微。可见淀粉最终积累量的多寡主要由积累速率的高低和积累持续期决定。说明逆境胁迫对小麦淀粉最终积累量的影响可能是通过调控直链、支链淀粉积累时间和积累速率来实现的。本研究表明,灌浆期高温、干旱及复合胁迫均使小麦籽粒总淀粉和支链淀粉含量显著下降,但对直链淀粉的影响较小,从而导致直/支比升高。同时,高温对淀粉含量积累的影响大于干旱胁迫,且复合胁迫影响最大,表现出高温和干旱的显著叠加效应。
在小麦生长发育过程中,温度和水分是关键的生态因子,对籽粒灌浆进程及籽粒品质和产量形成有着极大影响。土壤水分的亏缺可以加速籽粒灌浆进程,缩短灌浆持续时间[21],而在小麦生育后期发生干旱胁迫则会引起植株过早衰老、生育时期缩短,从而使粒重和产量显著降低[22-23]。高温对小麦产量的影响主要是降低粒重[24-25]。有研究表明,灌浆期高温降低了小麦叶片的光合能力,使叶光合同化效率下降,从而使籽粒中光合产物的积累量严重降低,并明显缩短胚乳细胞分裂期,使小麦花后籽粒淀粉积累时间缩短,进而导致籽粒充实不良,最终导致粒重显著降低[12,26-27]。本试验中,高温、干旱及其复合胁迫均使两个品种的穗粒重降低,从而使千粒重和产量下降。灌浆期高温和干旱胁迫对小麦粒重和产量的影响与淀粉积累受抑密切相关[28-29]。本研究表明,高温、干旱及其复合胁迫均使小麦籽粒下降,其中高温与干旱具有显著的叠加效应,且不同品种间存在较大差异,中筋小麦洛麦24产量受逆境胁迫抑制较大,更明确的生理机制还有待更深入研究。
[1]DALE E M,HOUSLEY T L.Sucrose synthase activity in developing wheat endosperms differing in maximum weigh [J].PlantPhysiology,1986,82:7.
[2] 姚大年,刘广田.淀粉理化特性、遗传规律及小麦淀粉与品质的关系[J].粮食与饲料工业,1997,20(2):36.
YAO D N,LIU G T.Physiochemical characteristics and genetics laws of starch as well as the relationship of wheat starch to qualities [J].CerealandFoodIndustry,1997,20(2):36.
[3] ODA M,YASUDA Y,OKAZAKI S,etal.A method of flour quality assessment for Japanese noodles [J].CerealChemistry,1980,57(4):253.
[4] TOYOKAWA H,RUBENTHALER G L,POWERS J R,etal.Japanese noodle quality,I.Flour components [J].CerealChemistry,1989,66(4):382.
[5] 田良才,张明仪,李晋川.高温胁迫-小麦超高产的主要障碍[J].山西农业科学,1995,23(2):14.
TIAN L C,ZHANG M Y,LI J C.High temperature stress-main barrier of high productivity on wheat [J].JournalofShanxiAgriculturalSciences,1995,23(2):14.
[6] 邹 琦.小麦的高温伤害与高温适应[J].植物学报,1987,30(4):387.
ZOU Q.Heat injury and heat acclimation in wheat plants [J].JournalofIntegrativePlantBiology,1987,30(4):387.
[7] 张平平,何中虎,夏先春,等.高温胁迫对小麦蛋白质和淀粉品质影响的研究进展[J].麦类作物学报,2005,25(5):129.
ZHANG P P,HE Z H,XIA X C,etal.Effect of heat stress on wheat protein and starch quality [J].JournalofTriticeaeCrops,2005,25(5):129.
[8] JENNER C F.The physiology of starch and protein deposition in the endosperm of wheat [J].AustralianJournalofPlantPhysiology,1991,18:211.
[9] 闫素辉,尹燕枰,李文阳,等.灌浆期高温对小麦籽粒淀粉的积累、粒度分布及相关酶活性的影响[J].作物学报,2008,34(6):1092.
YAN S H,YIN Y P,LI W Y,etal.Effect of high temperature during grain filling on starch accumulation,starch granule distribution,and activities of related enzymes in wheat grains [J].ActaAgronomicaSinica,2008,34(6):1092.
[10] 许振柱,于振文,张永丽.土壤水分对小麦籽粒淀粉合成和积累特性的影响[J].作物学报,2003,29(4):595.
XU Z Z,YU Z W,ZHANG Y L,etal.The effects of soil moisture on grain starch synthesis and accumulation of winter wheat [J].ActaAgronomicaSinica,2003,29(4):595.
[11] 戴廷波,赵 辉,荆 奇,等.灌浆期高温和水分逆境对冬小麦籽粒蛋白质和淀粉含量的影响[J].生态学报,2006,26(11):3670.
DAI T B,ZHAO H,JING Q,etal.Effects of high temperature and water stress during grain filling on grain protein and starch formation in winter wheat [J].ActaEcologicaSinica,2006,26(11):3670.
[12] 王 珏,封超年,郭文善,等.花后高温胁迫对小麦籽粒淀粉积累及晶体特性的影响[J].麦类作物学报,2008,28(2):260.
WANG Y,FENG C N,GUO W S,etal.Effects of high temperature after anthesis on starch traits of grain in wheat [J].JournalofTriticeaeCrops,2008,28(2):260.
[13] 谷艳芳,丁圣彦,高志英,等.干旱胁迫下冬小麦光合产物分配格局及其与产量的关系[J].生态学报,2010,30(5):1167.
GU Y F,DING S Y,GAO Z Y,etal.The pattern of photosynthate partitioning in drought-stressed winter wheat and its relationship with yield [J].ActaEcologicaSinica,2010,30(5):1167.
[14] 何照范.粮油籽粒品质及其分析技术[M].北京:农业出版社,1985:290.
HE Z F.Analysis Technique for Grain Quality in Cereals and Oils [M].Beijing:Agriculture Press,1985:290.
[15] 李世清,邵明安,李紫燕,等.小麦籽粒灌浆特征及影响因素的研究进展[J].西北植物学报,2003,23(11):2031.
LI S Q,SHAO M A,LI Z Y,etal.Review of characteristics of wheat grain fill and factors to influence it [J].ActaBotanicaBoreali-OccidentaliaSinica,2003,23(11):2031.
[16] 杜 朝,杨学举,刘桂茹,等.小麦面粉淀粉特性与烘烤品质关系的研究[J].河北农业大学学报,2002,25(4):29.
DU C,YANG X J,LIU G R,etal.Studies on the relations between starch properties of wheat flour and baking quality [J].JournalofAgriculturalUniversityofHebei,2002,25(4):29.
[17] 刘 萍,郭文善,浦汉春,等.灌浆期短暂高温对小麦淀粉形成的影响[J].作物学报,2006,32(2):182.
LIU P,GUO W S,PU H C,etal.Effects of transient high temperature during grain filling period on starch formation in wheat [J].ActaAgronomicaSinica,2006,32(2):182.
[18] GUEDIRA M,PAULSEN G M.Accumulation of starch in wheat grain under different shoot/root temperatures during maturation [J].FunctionalPlantBiology,2002,29:495.
[20] NAKAMURA Y,YUKI K,PARK S Y.Carbohydrate metabolism in the developing endosperm of rice grains [J].PlantCellPhysiology,1989,56:833.
[19] 苗建利,王晨阳,郭天财,等.高温与干旱互作对两种筋力小麦品种籽粒淀粉及其组分含量的影响[J].麦类作物学报,2008,28(2):254.
MIAO J L,WANG C Y,GUO T C,etal.Drought stresses on content and composition of grain starch in two wheat cultivars with different gluten strength [J].JournalofTriticeaeCrops,2008,28(2):254.
[21] 吴少辉,高海涛,王书子,等.干旱对冬小麦粒重形成的影响及灌浆特性分析[J].干旱地区农业研究,2002,20(2):49.
WU S H,GAO H T,WANG S Z,etal.Analysis on the effect of drought on the grain weight grow and the character of the grain filling of winter wheat [J].AgriculturalResearchintheAridAreas,2002,20(2):49.
[22] 王晨阳,马冬云,朱云集,等.冬小麦不同水氮运筹对面条煮制品质的影响[J].中国农业科学,2004,37(2):256.
WANG C Y,MA D Y,ZHU Y J,etal.Effects of different irrigation and nitrogen application regimes in winter wheat on cooking qualities of Chinese noodle [J].ScientiaAgriculturaSinica,2004,37(2):256.
[23] 王晨阳,郭天财,彭 羽,等.花后灌水对小麦籽粒品质性状及产量的影响[J].作物学报,2004,30(10):1031.
WANG C Y,GUO T C,PENG Y,etal.Effects of post-anthesis irrigation on grain quality indices and yield in winter [J].ActaAgronomicaSinica,2004,30(10):1031.
[24] KOPOBHH A H.Effects of low and high temperature during grain filling period on yield in spring wheat [J].OverseasAgronomyTriticeaeCrops,1983,5:35.
[25] 敬海霞,王晨阳,左学玲,等.花后高温胁迫对小麦籽粒产量和蛋白质含量的影响[J].麦类作物学报,2010,30(3):459.
JING H X,WANG C Y,ZUO X L,etal.Effect of post-anthesis high temperature stress on grain yield and protein content of different wheat cultivars [J].JournalofTriticeaeCrops,2010,30(3):459.
[26]郭文善,施劲松,彭永欣,等.灌浆期高温对小麦光合产物运转的影响[J].核农学报,1998,12(1):21.
GUO W S,SHI J S,PENG Y X,etal.Effect of high temperature on transportation of assimilate from wheat flag leaf during grain filling stage [J].JournalofNuclearAgriculturalSciences,1998,12(1):21.
[27] DON C,LOOKHART G,NAEEM H,etal.Heat stress and genotype affect the gluten in particles of the gluten in macropolymer-gel fraction [J].JournalofCerealSciences,2005,42:69.
[28] 范雪梅,姜 东,戴廷波,等.花后干旱和渍水对不同品质类型小麦籽粒品质形成的影响[J].植物生态学报,2004,28(5):680.
FAN X M,JIANG D,DAI T B,etal.Effects of post-anthesis drought and waterlogging on the quality of grain formation in different wheat varieties [J].ChineseJournalofPlantEconogy,2004,28(5):680.
[29] JENNER C F.The physiology of starch and protein deposition in the endosperm of wheat [J].AustralianJournalofPlantPhysiology,1991,18:211.
Effect of Heat and Drought Stress on Starch Accumulation During Grain Filling Stage
YUE Pengli1,WANG Chenyang1,2,LU Hongfang1,LIU Weixing1,MA Geng1,WANG Qiang1,HU Yangyang1
(1.College of Agriculture,Henan Agriculture University,Zhengzhou,Henan 450002,China;2.National Engineering Research Center for Wheat,Zhengzhou,Henan 450002,China)
High temperature(HT),drought stress(DS) and their combination(HT+DS) after anthesis affected the starch concentration and its components as well as the starch characteristics significantly in wheat grains. A pot experiment was performed at the scientific & educational station of Henan agricultural university in 2014-2015 wheat growing season. Luomai 24 and Zhengmai 366,wheat cultivars with different gluten-strengths,were grown in 24 cm pots with 10 kg loam soil. The experiment was arranged with a completely randomized design with three replicates. Plants were initially grown in the field environment and then transferred to a greenhouse for HT treatment. HT treatment began from the 10th day to 13th day after anthesis with a high temperature of 38 ℃ from 11:00 am to 16:00 pm,and after that pots were returned to the field environment. The results showed that the starch accumulation amount in wheat grain depended on the accumulation duration and rate. HT,DS and HT+DS all caused decrease of both starch accumulation duration and accumulation rate,which resulted in the decrease of final starch accumulation quantity. Compared with the CK,the concentration of amylopectin and total starch were all decreased significantly under stress treatments,the amylose was less sensitive to the stress treatments,which led to an increase in the ratio of amylose to amylopectin.Compared with the CK,HT,DS and HT+DS decreased the 1 000-grain weight of Luomai 24 by 42.03%,21.95% and 50.01%,respectively; and decreased grain yield per pot by 57.88%,40.75% and 61.08%,respectively. As for Zhengmai 366,HT,DS and HT+DS decreased 1 000-grain weight by 34.39%,7.64%,43.16%,and declined grain yield per pot by 41.58%,30.97% and 48.49%,respectively. Consequently,the inhibition of starch accumulation was one of the important influence factors for the decline of wheat grain weight,and which affected the wheat grain yield ultimately.HT treatments had a greater effect than DS on the starch quality,Luomai 24 was more sensitive to HT and DS than Zhengmai 366.
Wheat; High temperature; Drought stress; Starch; Grain yield
时间:2016-11-04
2016-03-30
2016-04-21
国家科技支撑计划项目(2015BAD26B01,2013BAC09B01);河南省小麦产业技术体系岗位专家项目(S2010-01-G07);河南省教育厅科学技术研究重点项目(14A210012)
E-mail: ypl1412@163.com
王晨阳(E-mail: xmzxwang@163.com)
S512.1;S311
A
1009-1041(2016)11-1489-08
网络出版地址:http://www.cnki.net/kcms/detail/61.1359.S.20161104.0925.022.html