三论“智能科学与技术”
2016-12-19钟义信
钟义信
摘要:当前人们对于“智能科学与技术”的理解存在巨大差异,这对本学科的发展可能造成不利影响。本文为此针对“智能科学与技术”的内涵提出自己的看法与同人切磋,以期达成尽可能准确的共识。
关键词:智慧;智能;人类智能;人工智能
0引言
不久前刚结束的围棋人机大战,使人工智能受到人们空前广泛的关注。它一方面表明智能科学与技术的发展极为迅速,同时也激起了社会对智能科学技术及其人才培养十分强烈的期待。人们对“中国大脑”计划的热议达到了前所未有的程度,“中国制造2025”计划正在快速推进,我国自主研制的智能服务机器人正在走向服务领域的许多行业,国内许多企业自发兴起的“机器换人”浪潮正高歌猛进。国务院政府工作报告中提出的“互联网+”虽然被人们解释为互联网向各领域的强势渗透,但是更多的有识之士却把“+”理解为“升级”,即“计算机互联网络”向“人工智能互联网络”的升级,而这正好与“中国大脑”计划相呼应!
为了适应这种发展的需要,努力办好“智能科学与技术”专业,北京邮电大学智能科学与技术研究中心曾经对设置了本专业的全国各主要高校做了一次普遍性的专业调查,结果发现,各校对于“智能科学与技术”专业的理解差异非常巨大。最狭义的理解,是把本专业看做是“计算机科学与技术的一个分支”;最广义的理解,是把它看做是“从理工到人文和社会几乎无所不包的综合学科”。
从科学研究和长远发展的观点来看,这样发散的理解会有利于人们解放思想,激励创新,把本学科的研究做深做透做到位。不过,从当前的本学科教育教学来说,这样分散的理解可能使“智能科学与技术”学科的人才培养工作迷失方向。
1基本模型
为了准确理解“智能科学与技术”学科,首先需要建立“智能科学与技术”学科的基本模型,这样才能从学科整体上厘清它的基本概念、基本原理和基本规律,规制过于宽泛和过于狭窄的偏差。图1就是为此而设计的基本模型。
在图1中,底部的椭圆代表外部环境的客体事物,也就是需要研究的“问题”;其上的整个部分代表主体及其与客体相互作用的过程:主体接受来自客体所产生的“本体论信息”,经过主体思考之后产生与客体交互的“智能行为”反作用于客体,解决问题。就在这个主客相互作用的过程中,主体充分展现了自己的智慧能力。其中的主体可以是人类个体,也可以是人类群体。因此,这是研究“智能科学与技术”的基本模型。
不断提升自己生存与发展的水平,这既是人类与生俱来的目标,也是人类永不枯竭的动力。为了实现这个目标,人类就要运用自己的智慧和知识不断去发现应当解决而且可能解决的问题,在此基础上努力去解决所发现的问题,不断前进。
人类的这种智慧能力包含两个相互联系相互作用相辅相成的部分:其一是根据人类所追求的目标和现有的知识去发现问题、定义问题和预设问题求解目标的能力,这是人类在长期实践过程中积累起来的一种内隐性的智慧能力,所以称为隐性智慧;其二是在隐性智慧所确定的工作框架内,在求解目标的引导下,运用相关信息和知识去生成解决问题的策略,成功解决问题实现求解目标的能力,这是一种外显性和操作性的智慧能力,所以称为显性智慧。
在图1的模型中,隐性智慧具体表现为“主体所定义的问题、主体的知识库里已经拥有的知识、主体为求解问题所预设的求解目标(也存在知识库内)”,这三者就构成了主体为求解问题所设置的初始工作框架。显性智慧则具体表现为图1中的“感知、认知、基础意识、情感生成、理智生成、综合决策、策略执行、效果检验以及反馈学习优化”所代表的问题求解过程。
由于隐性智慧是人类内隐性的智慧,需要明确的目标、足够的知识、很强的直觉能力、丰富的想象能力、甚至需要灵感和顿悟能力,才能创造性地发现值得解决的问题,所以,隐性智慧难以用人造机器去模拟。然而,由于显性智慧具有外显性和操作性特征,主要具备获取信息、生成知识、生成和执行策略的能力,因此,显性智慧有可能被人造机器所模拟。在约定俗成的学术语汇中,“智慧”比较抽象,带有形而上的色彩;而“智能”则比较具体,带有形而下的特点。于是,人类的显性智慧也常常被称为“人类智能”。
鉴于人类显性智慧与隐性智慧之间存在不可分割的深刻内在联系,人们就把研究和探索“人类隐性智慧和显性智慧奥秘”的科学技术称为“智能科学技术”,而把其中着重研究和模拟“人类显性智慧(人类智能)能力”的科学技术称为“人工智能”科学技术,或者就简称为“人工智能”。换言之,人工智能是“智能科学与技术”的一部分。
图1的基本模型及其相关解释启示我们:“智能科学与技术”的内涵既具有极强的基础性,涉及与物质资源同样基础的信息资源;又具有极强的深刻性,涉及人类创造性智慧的深邃奥秘;还具有极强的应用性,涉及极其广泛的应用领域。
因此,为了研究与学习“智能科学与技术”,人们应当具备人文社会科学、基础自然科学和应用技术科学的知识与能力,应当自觉遵循“文理交互,理工融通”的交叉科学理念。虽然我国高校仍有文科、理科、工科之分,但是,为了培养有发展能力和创新能力的人才,还是要在发挥各校特色的同时努力贯彻“文理交互,理工融通”的方针。这是智能科学与技术学科的鲜明特点,需要引起教学与研究人员的高度关注。
2基本方法
概念是学科的基石。从图1的基本模型可以看出,“智能科学与技术”包含了许多重要的新概念。除了上面已经讨论过的隐性智慧和显性智慧的基础概念之外,还有信息(包括本体论信息和认识论信息,特别是其中的语法信息、语义信息和语用信息)、知识(包括本能性知识、经验性知识、规范性知识、常识性知识、知识的内部生态系统和外部生态系统)、基础意识、情感、理智、智能策略、智能行为等一系列基本概念。
考虑到本文篇幅的限制,同时也考虑到读者可以很容易从现有文献中详细了解到这些概念,因此,这里只予以列举,而不准备展开具体的讨论。有需要的读者可以参阅相关文献。
这里需要特别关注的,是研究和学习“智能科学与技术”所需要确立的新的科学观和方法论问题。只有掌握了这些新的科学观和方法论,才能准确地理解“智能科学与技术”的基本概念、基本内容和基本规律。
有比较才能有鉴别,事物总是相比较而存在。了解“智能科学与技术”所需要的科学观和方法论的便捷方法之一,就是把它们同读者已经熟悉的“物质科学与技术”的科学观和方法论进行对比。众所周知,智能系统是一类开放的复杂信息系统,因此,这里的比较对象也要选择相对比较复杂的物质系统。表1就是这种比较的一些结果。
由表1可知,“物质科学技术”所采用的科学观包括(1)物质观:认为研究的对象是物质的;(2)结构观:认为研究的关注点应当是物质的结构;(3)孤立观:认为所研究的物质对象是与其它对象没有关联的;(4)静止观:认为所研究的物质对象是静止的,至少在研究期内是静止的。
基于这样的科学观,在处理比较复杂的物质对象的时候,物质科学技术所采用的方法论就是“分解一分析”,更具体地说就是“分而治之,各个击破,直接还原”。也就是人们所熟悉的“还原论”。
和“物质科学与技术”的情形不同,“智能科学与技术”的科学观包括(1)信息观:认为所研究的对象是信息;(2)系统观:认为研究的关注点应当是系统化的信息,即必须同时关注信息的形式、内容和价值;(3)生态观:认为信息不是孤立的或静止的,而是生长发展的;(4)机制观:认为信息的生长发展必然存在一定的机制。
基于这样的科学观,“智能科学与技术”所采用的方法论就是“转换—创生”。更具体一些说,就是“智能科学与技术”基本模型(图1)所展示的“信息转换与智能创生定律”。其中,“信息转换”是手段,“智能创生”是目的。
十分清楚,“物质科学与技术”的“分而治之”方法论体现了它的“物质观、结构观、孤立观和静止观”;“智能科学与技术”的“转换创生”方法论体现了它的“信息观、系统观、生态观和机制观”。
这个对比告诉我们,由于研究对象不同,导致学科的性质也不相同,我们不能把自己所熟悉的“物质科学与技术”的科学观和方法论统统照搬到“智能科学与技术”学科领域。虽然在研究局部细节问题的时候,这两种科学观和方法论的差异表现的不是很明显,但是在研究系统全局问题的时候,这种差别就会变得十分显著。这也是值得“智能科学与技术”的研究者和学习者特别关注的特点。
事实上,“人工智能”的研究就经历了一场方法论的变革。按照“分解—分析”的方法论思想,人工智能被分解为结构模拟(人工神经网络)、功能模拟(物理符号系统)和行为模拟(感知动作系统)三大学派,结果长期不能互相融通。20世纪末和21世纪初,一些研究人员提出“新的集成”和“现代方方法”试图找到三者融通的具体方法,但是都没有取得成功。2007年,本文作者按照“转换—创生”方法论思想提出了机制模拟的智能生成方法,结果发现:结构模拟(人工神经网络)、功能模拟(物理符号系统)和行为模拟(感知动作系统)分别是机制模拟的A、B、C型,从而实现了人工智能模拟方法的统一,见表2。
由此可见,以往人们把人工神经网络课程、物理符号系统课程(即普遍流行的人工智能和专家系统课程)、感知动作系统课程(即智能机器人或智能体课程)分开讲授或者只讲授其中一门或两门课程的做法是不合理的。
同时,我们一直把图1的模型称为“智能科学与技术的基本模型”。不过,如果注意到“智能科学与技术”的科学观一信息观,系统观,生态观和机制观,那么,我们也可以把图1称为“生态意义上的信息科学与技术基本模型”。这是因为,虽然在经典意义上的信息科学与技术基本模型只能覆盖到图1模型中的信息层次,但在生态学意义上,知识和智能都是信息的生态学产物,因此生态学意义上的信息科学与技术基本模型就覆盖了图1模型的全体。在生态学的意义上,“智能科学与技术”基本模型与“信息科学与技术”基本模型就合二为一:自顶向下观察,图1就是“智能科学与技术”的基本模型;自底向上观察,图1就是“信息科学与技术”的基本模型。于是有:
智能科学与技术=生态学意义的信息科学与技术
如果把“智能科学与技术”模型中的“由信息转换为知识”和“由信息、知识和目标转换为智能”这两个核心部分命名为“核心智能科学与技术”,把非生态学意义上的信息科学与技术命名为“常规信息科学与技术”,那么,也可以有:
智能科学与技术=核心智能科学与技术+常规信息科学与技术
在我国教育部的学科目录中,“智能科学与技术”其实就是“核心智能科学与技术”,目录中的“信息科学与技术”其实就是“常规(非生态学意义的)信息科学与技术”,后者又被划分成“通信”、“计算”、“自动化”、“物联网”、“信息安全”这样一些更加狭窄而且相互交叠的二级学科,显然有待进一步合理化。
3基本课程
北京邮电大学智能科学与技术研究中心最近实施的全国高校智能科学与技术专业教学计划调查表明,我国多数学校的教学计划确实体现了“计算机科学与技术的一个分支学科”的特点,很少学校的教学计划能够表现“文理相交,理工融通”的交叉科学精神。这就提出了一个尖锐的问题,如果真的把“智能科学与技术学科”办成“计算机科学与技术学科”的一个分支学科,那么,这样的“智能科学与技术学科”还有存在的理由吗?
由以上分析的“智能科学与技术”的基本模型和基本方法可以知道,为了学习、理解和掌握“智能科学与技术”学科,人们的知识结构必须包含社会科学、人文科学、基础科学、应用技术的基础知识与综合能力。
为此,由中国人工智能学会教育工作委员会和清华大学出版社计算机分社共同组建的“全国高校智能科学与技术专业系列教材规划与编审委员会”(以下简称编委会)提出了如下的本学科核心课程和相应的核心教材。
(1)一年级第一学期的课程智能科学与技术导论是一个引导型课程,旨在以准确而通俗的概念、全面而浅近的思路、亲切而富有感染力的语言,引导刚刚踏入校门的新生了解:什么是“智能科学与技术”?为什么要学习“智能科学与技术”?怎样才能学好“智能科学与技术”?
(2)二年级第一学期的课程脑与认知科学基础是本学科特需的自然科学基础(脑科学)和社会科学基础(认知科学),旨在为学生提供关于人类智能的脑科学基础知识和人类认知能力的科学知识,特别是关于“脑结构如何产生认知能力(物质如何生成精神)”的科学机理。
(3)二年级第二学期的课程不确定性数学引论是本学科特需的数学基础知识课程,旨在为学生提供关于“智能科学与技术”领域必然涉及到的各种不确定性(包括随机不确定性、模糊不确定性、粗糙不确定性以及非线性引起的混沌不确定性)的描述与处理知识,特别要阐明这些不确定性的根源、相互关系、描述和处理方法。
(4)三年级第一学期的课程机器智能是本学科的专业基础课程,旨在用“智能科学与技术”的方法论阐述人类智能的各种模拟方法(包括结构模拟、功能模拟、行为模拟和机制模拟),以及这些不同模拟方法之间的相互关系和统一的途径,为学生学习机器(人造系统)智能奠定理论和方法的基础。
(5)四年级第一学期的课程《科技史与方法论》,由于智能科学技术本身富有科学观和方法论的特色,因此这是一门具有本学科特色的总结性课程,旨在为学生提供关于科学技术发展史(特别是智能科学技术发展史)所展现的科学观和方法论知识,使学生能够从“智能科学与技术”的学科知识基础上站立起来,具有纵观和把握智能科学技术发展规律的能力,使学生的学术眼界能够“形成于课堂,而又远远超越课堂”。
编委会认为,这些核心课程的综合(加上各个学校的人文社会科学通识课程和各有特色的专业课程),将为学习者提供必要的“文理相交,理工融通”的交叉学科思维素质和能力。无论是理科型学校还是工科型学校,都要在保证上述核心课程优质教学的基础上努力发挥自己的特色,而不应当削弱这些核心课程的教学质量。
5结语
“智能科学与技术”是一门新学科,又是一门具有信息与智能时代标志性意义的学科。正确认识和定位这一学科的性质和作用,深入理解和领会这门学科的科学观和方法论思想,系统掌握这门学科的核心课程体系的知识与能力,才能培养出优秀的“智能科学与技术”学科后备人才。
显然,“智能科学与技术”学科既不是“计算机科学与技术的分支学科”,也不可能是“从理工到人文和社会几乎无所不包的综合学科”。本文阐述的基本模型、基本观念、基本方法以及在此基础上建议的核心课程体系,为认识和定位智能科学与技术学科提供了基本思路,希望引起广泛的研讨,以求达成尽可能好的共识。
(编辑:史志伟)