生物医学电子学实验课程设计
2016-12-17周宇崔玉军王佩瑶刘嘉玥林启航郑
周宇 崔玉军 王佩瑶 刘嘉玥 林启航 郑政
【摘 要】为了加强对生物医学工程专业本科生的电子工程技术训练,对该专业的生物医学电子学实验进行课程设计。选取生物电位放大器作为实验主题;实验中,要求学生将基于电子设计自动化软件的设计仿真和实践操作相结合,完成生物电位放大器的设计工作、验证其功能、并对其重要性能进行测量;该实验安排在理论课早期集中精力完成。实践表明,学生经过生物医学电子学实验的训练,对电子工程技术中不同手段的特点有了更深刻的体会,对生物电位放大器的原理和性能有了更深入的理解。因此,该实验的课程设计是成功的。
【关键词】生物医学工程;生物医学电子学;生物电位放大器;电子设计自动化
【Abstract】In order to strengthen the electronic engineering technology training for Biomedical Engineering students, the Biomedical Electronics experiment course was designed for the students. The biological potential amplifier was selected as the experiment subject; In the experiment, student will be required to combine the simulation based on the electronic design automation software and practical operation to complete the design work of the biological potential amplifier, verify its function, and measure its important performance; the experiment was arranged in the early stage of the theoretical courses. Practice shows that the students have a more depth understanding of the characteristics of different methods in electronic engineering technology through the training of biomedical electronics experiments. Therefore, the curriculum design of the experiment is successful.
【Key words】Biomedical Engineering; Biomedical Electronics; Biological potential amplifier;Design automation
0 引言
生物医学工程专业涉及多种学科和技术,具有很强的综合性[1];但与此同时,该专业的本科生培养工作也具有很高的难度,原因就在于学生学习的内容多而不精,在择业时常常无法体现出能力优势。因此,从培养生物医学工程专业本科生的角度而言,应该在对学生进行综合素质培养的同时、加强特定专业技能的训练,为学生的就业和继续深造打下良好的专业基础[2]。
医学电子仪器方式是上海理工大学生物医学工程专业的一个重要方向,在课程设置上,专注于培养学生的电子工程技术[3]。这其中,生物医学电子学[4]是生物医学工程专业的重要专业课程之一,其教学目的是让学生掌握医学电子仪器中带有共性的电子器件、电子线路及电子学设计方法,因此是引导学生学习将电子工程技术应用于生物医学工程专业的重要环节。生物医学电子学实验是该课程的配套实验,目的是在于通过有代表性的实验课题,引导学生学以致用、将课堂内容融会贯通于实践之中。因此,生物医学电子学实验是生物医学工程专业的一门重要实验,需要进行慎重的实验选题、认真的实验设计和细致的实验安排。为此,进行了相关的课程设计和实践工作,详述如下。
1 课程设计思想
上海理工大学生物医学工程专业的生物医学电子学实验被安排于第五学期,和生物医学电子学理论课平行设置。此前,学生已经通过电路原理、模拟电子技术基础、数字电子技术基础和电子技术技能训练等课程的培养,具备了一定的电子工程技术基础。生物医学电子学实验的总课时为16学时,在有限的课时内,让学生得到最大程度的专业训练,具有一定难度。在此背景下,展开生物医学电子学实验的课程设计工作。
首先要解决的问题是实验选题。生物医学电子学实验的选题,应该能够突出生物医学电子学的特色,具有代表性。经过研究,多个生物医学电子学的相关教材中,都将生物电位放大器(Biopotential Amplifier),即仪表放大器(instrumentation amplifier),放在了相当重要的位置上[5]。生物电位放大器,是用于放大心电、肌电和脑电等信号的专用放大器;这些信号具有的特点包括:由生物体内的电活动产生、属于微弱的差分信号、非常容易被更加强烈的共模噪声淹没;而生物电位放大器具有很好的共模抑止特性,最适于放大这些存在于强烈共模噪声背景下的微弱差分信号[6];因此,生物电位放大器在生物医学电子学中占有重要地位,以生物电位放大器为主题开展生物医学电子学实验,不仅具有代表性,而且能够引导学生在前期的课程基础上有所提高。
其次要解决的问题是实验设计。围绕生物电位放大器这个主题开展实验设计工作,需要使实验具有一定深度,但同时又要保证大部分同学有能力在限定的课时内完成任务。经过反复论证设计,最终决定生物电位放大器相关实验由两部分组成:基于电子设计自动化(Electronic design automation, EDA)软件的设计仿真实验和动手实践实验。在第一部分实验中:学生基于LM324[7]完成生物电位放大器的设计工作;仿真验证设计结果;仿真测试其差模增益幅频响应曲线[8]。在第二部分实验中:学生在面包板上动手搭建生物电位放大器;并在实验室中,使用各种设备测试差模增益幅频响应曲线。上述实验设计的优点在于:通过设计仿真工作,让同学们尽快掌握生物电位放大器的原理,同时,基于EDA软件开展电路工作,符合发展趋势[9];通过设计仿真和动手实践相结合,互为验证,比较差异,容易引发思考,更加深刻的体会电子工程技术中不同手段的特点;对生物电位放大器的重要参数进行仿真、测量和总结,有利于学生们在更深地程度上掌握生物电位放大器。
最后要解决的问题是实验安排。由于生物医学电子学实验是生物医学电子学理论课程的配套实验,因此在进度安排上必须要统筹考虑;此外,实验设计决定了生物医学电子学实验适宜集中精力完成,而不是分散到每周进行,集中完成实验能够取得更好的效果。为此,在生物医学电子学理论课程中,生物电位放大器相关内容被安排在课程的早期进行讲解;紧随其后,利用课余和周末时间,在一周内完成生物医学电子学实验。这样安排的好处是:学生能够在课程的开始阶段,就体会到了如何将理论应用于实际,引发学习兴趣。
2 实验内容展示
下面以一位学生的实验情况为例,说明课程设计效果。
1)生物电位放大器的设计和仿真
a)生物电位放大器的设计:
基于lm324设计一个基于三运放的仪表放大器,用于生物电位测量,仿真电路原理图如图1所示。增益公式如公式(1)所示,其中:R1、R2、R5和R6都选用10KΩ的电阻;R3和R4都选用24KΩ的电阻;Rg为增益电阻,当Rg为无穷大时,(这里选用600MΩ),增益约为1倍,当Rg为5.6kΩ时,增益约为10倍,当Rg为470时,增益约为100倍,当Rg为47时,增益约为1000倍。
A=(2*R3/Rg+1)*R2/R1(1)
b)对所设计的生物电位放大器进行仿真,验证其功能
如图1所示:使用+Vdm/2和-Vdm/2两个信号源组合成模拟心电信号的差模输入信号Vdm,峰值为10mV,频率为18Hz;使用Vcm仿真工频干扰产生的共模信号,峰值为500mV,频率为50Hz。取Rg为5.6kΩ,输入、输出信号对比图如图2所示。由图可见,差模输入信号被放大约10倍,但50Hz共模输入信号在输出信号中全无踪迹,因此该生物电位放大器正确的实现了预期目的:放大差模信号、抑制共模信号。
c)对所设计的生物电位放大器进行仿真,测量其性能,频率范围设定在0.1Hz-5MHz之间:
对图1的生物电位放大器进行仿真,测量其差模增益频率响应,如图3所示。图中从上到下的短划线、虚线、点划线和实线分别代表差模增益约为1000倍、100倍、10倍和1倍时的幅频响应。由图3可见,放大倍数越小时的幅频响应截止频率约高:差模增益约1000倍时,幅频响应在1kHz左右就开始截止;差模增益约100倍时,幅频响应在10kHz左右开始截止;差模增益约10倍时,幅频响应在100kHz左右开始截止;差模增益约1倍时,幅频响应在1MHz左右开始截止。
2)生物电位放大器的实践实验
动手实现所设计的生物电位放大器。使用的器材包括:面包板、lm324、10KΩ电阻、24KΩ电阻、5.6KΩ电阻、470Ω电阻、47Ω电阻和导线等,电阻均为5%精度;使用的仪器包括SPF05数字合成函数信号发生器、DS1000数字示波器和电源。测试所得到差模增益频响曲线如图4所示。其中,差模增益随频率变化的趋势与仿真所得的结果基本类似,除了差模增益为1时的截止频率出现在了100kHz左右。
3)实验分析
相比于实际实现的生物电位放大器,仿真实验而得的结果具有更好、更理想的特点。其原因在于:仿真时避免了器件差异造成的影响,需要匹配的电阻和运放可以做到完全匹配,同时也避免了人为测量失误造成的影响,因此可以排除随机误差。仿真实验更容易实施,对于理解理论课内容大有裨益;但动手实验更加真实,且可以提高动手能力、积累实验经验,对于理解真实情况、解决实际问题非常有好处;两者可以互为补充。
3 结论
为了避免生物医学工程专业本科生培养博而不精的问题,在对学生进行综合素质培养的同时,应该加强特定专业技能的训练;上海理工大学生物医学工程专业医学电子仪器方向在课程设置上专注于培养学生的电子工程技术;生物医学电子学实验作为该专业的重要课程生物医学电子学的配套实验,在引导学生“入门”、引发专业兴趣等方面,具有重要作用;为此,对该实验进行了相关的课程设计工作。实践表明,通过生物医学电子学实验的训练,学生对专业的认知程度、对技术的理解程度和对知识的掌握程度,都得到了提升,这些能力的加强有助于学生对其它专业课程的学习和掌握。因此,该实验的课程设计是成功的,今后将沿此方向继续推进。
【参考文献】
[1]尤富生.麻省理工学院教育理念及对生物医学工程专业的启示[J].医疗卫生装备,2016,37(1).
[2]赵晓明.生物医学电子综合实验系统设计[J].实验技术与管理,2013,30(7).
[3]周宇.医学仪器设计原理课程构建的心电检测系统[J].实验室研究与探索,2012(2).
[4]马长升.生物医学电子学的回顾与展望[J].中国医疗设备,2008,23(3).
[5]Webster, J.G.Medical Instrumentation: Application and Design[M]. 3rd ed. John Wiley & Sons,2009.
[6]Franco, S.基于运算放大器和模拟集成电路的电路设计[M].2ed.西安交通大学出版社,2009.
[7]Instruments. T. LM324 Quadruple Operational Amplifier. Available from: http://www.ti.com/product/lm324.
[8]童诗白,华成英.模拟电子技术基础[M].5 ed.高等教育出版社,2015.
[9]秦毅男.基于PSpice的电子电路仿真与设计[J].现代电子技术,2006,29(14).
[责任编辑:朱丽娜]