长江流域表层沉积物中多环芳烃分布特征及来源解析
2016-12-12黄亮张经吴莹
黄亮,张经,吴莹
1. 九江学院化学与环境工程学院 江西省生态化工工程技术中心,九江 332005 2. 华东师范大学 资源与环境科学学院,上海 200062 3. 华东师范大学 河口海岸国家重点实验室,上海 200062
长江流域表层沉积物中多环芳烃分布特征及来源解析
黄亮1,2,*,张经3,吴莹3
1. 九江学院化学与环境工程学院 江西省生态化工工程技术中心,九江 332005 2. 华东师范大学 资源与环境科学学院,上海 200062 3. 华东师范大学 河口海岸国家重点实验室,上海 200062
长江流域沉积物多环芳烃分析表明,多环芳烃浓度总和(不包括苝)约为10.31~1 239 ng·g-1,与国内外其他区域相比,整体处于一个低至中等程度的污染水平。长江自上游至下游,沉积物中多环芳烃含量呈上升趋势,与沿途各省多环芳烃的排放状况相吻合。扬州(YZ)和湘江(XJ)采样点沉积物中多环芳烃含量最高,污染最严重。根据多环芳烃的比值特征,长江流域沉积物中多环芳烃主要受以煤、木材、油类的燃烧影响较大,还有部分来自油类的泄漏,极少量来自自然成因。
多环芳烃;长江;沉积物;分布;源解析
Received 26 November 2015 accepted 9 January 2016
多环芳烃(polycyclic aromatic hydrocarbons, PAHs)是指2个或2个以上苯环以稠环形式相连的化合物,是一类广泛存在于环境中的持久污染物[1]。它主要来源于各种化石燃料、生物质燃料的不完全燃烧、天然火灾、火山爆发、石油泄漏、植物及微生物的生物合成,以及沉积环境中的成岩作用过程中形成[1-4]。多环芳烃是一类强致癌剂和诱变剂,因而其在环境介质中的分布、迁移及生态风险已被广泛研究[5-8]。
长江作为世界最长的河流之一,伴随着经济的深入发展,人文活动对长江的改造及影响不断增加,导致水污染问题越来越突出,尤其是有机物污染呈恶化趋势,比如多环芳烃。据估算,长江流经的沿途各省排放的多环芳烃通量约为9.3×103t·y-1,占到全国总量的三分之一[9-10]。因此在长江某些江段的水体、颗粒物及沉积物中均检测出多环芳烃[11-13],但是在整个长江流域沉积物中多环芳烃的分布还未见报道。故此,本文选择长江流域为研究区域,探讨多环芳烃在该区域沉积物中的分布特征,并结合多环芳烃的分子标志物对其分布及污染来源进行初步分析。
1 材料与方法 (Materials and methods)
1.1 样品采集与前处理
长江流域表层沉积物样品采自2009年9—10月长江流域考察中于河流中心处(远离人类活动密集处,尽量减小人为影响)用抓斗采集表层沉积物,采样站位覆盖了长江干流(9个)和主要支流(11个)(图1)。采集1~2 kg沉积物样品后立即放入冰箱在-20 ℃下冷冻保存。回到实验室后,放入烘箱中60 ℃下干燥。随后将样品中明显的植物碎屑挑出,样品研磨过100目筛,待进一步分析处理。
称取20 g左右沉积物样品,加入氘代三联苯作回收率指示物,用二氯甲烷和甲醇(V:V,2:1)索式抽提48 h,烧瓶中事先加入活化铜片以去除样品中的硫。提取液经浓缩、转换溶剂,用去活化的硅胶层析柱(SiO2-10% H2O)分离净化,加20 mL正己烷洗脱。洗脱液旋转浓缩近干后,加入2 mL正戊烷后,再加入等体积N, N-二甲基甲酰胺(DMF)-5%H2O萃取,移取DMF层,共萃取2次;再在DMF中加入4 mL H2O后,用4 mL正己烷萃取2次收集PAHs,多环芳烃经浓缩后进行GC- MS分析。详细步骤参见Mandalakis等的方法[14]进行。
图1 长江流域采样站位示意图Fig. 1 The map of sampling stations in the Yangtze River from China
1.2 多环芳烃测定
定量测试由Aglient 6890气相色谱配5973N质谱检测器完成。进样口温度为290 ℃,无分流进样,进样量为1 μL,在DB-5MS毛细管柱(30 m×0.25 mm×0.25 μm)中分离。升温程序为初始温度为80 ℃,保持2 min,以6 ℃·min-1升到290 ℃,保持10 min。通过多环芳烃混合标准的保留时间鉴定谱峰。
以12个样品为一个批次,每批次中加入质量控制样品,包括空白样品和空白加标实验,所有空白样品均未检测到PAHs,并在所有样品中加入氘代三联苯作为回收率内标。加标空白除萘、苊、二氢苊及芴的回收率小于60%,其他PAHs的回收率在80%~110%之间,平行样的相对偏差不超过10%,因此在本论文讨论中的PAHs只包括菲(Phe)、蒽(An)、1-甲基菲(Mphe)、荧蒽(Fl)、芘(Py)、苯并[a]蒽(BaA)、屈(Chry)、苯并[b]荧蒽(BbF)、苯并[k]荧蒽(BkF)、苯并[e]芘(BeP)、苯并[a]芘(BaP)、苝(Pery)、茚并[1,2,3-cd]芘(Ip)、二苯并[a,h]蒽(DhA)、苯并[ghi]苝(BghiP),不包括低分子量的萘、苊、二氢苊及芴。
2 结果与讨论(Results and discussion)
2.1 长江流域沉积物中PAHs含量与分布
图2和表1显示了多环芳烃(TPAH,不包括Pery在内的其余多环芳烃总和)在整个研究区域的变化状况,其浓度范围在10.31~1 239 ng·g-1之间,平均为(178.0±272.2) ng·g-1,这与许士奋等[15]的在长江南京段的研究(213.8~550.3 ng·g-1)接近,低于生物毒性影响实验获得的生物影响阀值低值(ERL=4 022 ng·g-1)[16]。其中,支流沉积物PAHs含量最高在XJ站,为512.1 ng·g-1;最低在GJ站,为10.31 ng·g-1。而干流含量最高在YZ站,为1 239 ng·g-1;最低在XLJ,为16.94 ng·g-1。从整体上看,长江自上游至下游,沉积物中多环芳烃含量呈上升趋势,与流域内各省多环芳烃的排放状况相吻合。如图3所示,尽管在上游的四川省的多环芳烃排放量最高,但是其地域广阔,致使其排放密度下降,对应的沉积物中PAHs也较低;而位于下游的各省市多环芳烃的排放量变化趋势并不明显,但是其面积相对狭小,以致排放密度呈上升趋势,尤其是上海,排放密度最高[17]。相对发达的工业、交通,城市和工业区及其周边区域的多环芳烃污染水平高于山区、远郊区和农业用地[18]。比如,XJ站于污染严重的湘江[19],YZ站位于经济发达的扬州,工业活动剧烈,因此这2个站位的PAHs含量较高。AQ站附近有大型的炼油厂,故PAHs含量亦相对较高(为460.7 ng·g-1)。GJ站位于经济欠发达的地区江西省,PAHs含量较低。位于长江口的XLJ站,附近有装卸沙石的码头,因此该站位的表层沉积物可能是来自运砂船只的泄漏,因而TPAH较低(29.07 ng·g-1),在此检出高含量的苝(占总量的84.1%),由于高含量的苝主要源于有机质成岩作用[20],也证明该站的沉积物可能主要来自运砂船只的泄漏。
图2 长江流域支流及干流沉积物中多环芳烃含量分布Fig. 2 Distribution of PAHs contents in sediments from main steam and tributary of the Yangtze River
图3 长江流域各省PAHs的排放量及排放密度,数据引自[17]Fig. 3 PAHs emissions and density of emission in the provinces along the Yangtze River[17]
站位SamplingstationPheAnFlPyBaAChryBbFBkFBaPIPDhABghiPMpheBePPeryTPAHYLJ8.681.516.544.082.962.793.421.592.812.45n.d.2.812.982.572.1245.18HSH15.512.7122.0415.046.575.905.572.474.643.57n.d.4.592.414.502.5698.82NLJ5.560.243.032.030.681.893.161.031.830.71n.d.0.742.462.200.4426.53DDH11.412.5220.5512.339.959.409.384.977.576.210.464.973.067.132.71111.61MJ16.082.3913.732.605.075.905.092.394.313.570.084.222.605.192.2976.23NX20.572.5818.9311.9910.3314.582.830.9510.6313.956.8810.9520.3813.956.11163.72CSH12.131.817.935.333.604.565.752.303.573.720.134.383.104.602.9066.25FJ31.353.2018.1913.429.1818.2218.645.679.6910.651.4212.255.0718.014.42180.85JLJ12.591.536.014.342.764.084.351.642.672.750.003.823.003.944.6656.76JJ8.071.235.793.502.883.481.870.632.832.830.523.197.253.741.7249.63WJ31.123.2731.5521.4014.4418.6223.639.2314.8619.7510.4315.2115.6416.896.43249.04WZ16.642.459.025.834.696.028.333.184.935.59n.d.6.2913.686.6189.5897.94XJ85.5614.3961.435.6538.0050.6254.6713.742.042.3658.253.03101.622.0416.90512.11HH7.660.391.391.030.250.57n.d.n.d.0.260.000.000.343.440.763.4216.94HS5.550.443.252.270.630.980.810.360.490.43n.d.0.453.331.224.4720.86GJ4.590.200.690.440.300.18n.d.n.d.n.d.n.d.n.d.n.d.1.57n.d.3.8610.31AQ56.138.2245.9132.5323.7135.4846.9515.2226.3729.6114.1428.3048.2235.92100.44460.69WH11.322.397.655.204.234.487.012.924.644.600.005.8111.265.2917.3380.43YZ49.229.09136.89120.8999.66103.39173.4331.981.9550.22390.7918.5842.981.951.951238.85XLJ8.590.532.501.680.571.351.840.430.000.920.000.895.061.33136.3629.06
注:TPAH指不包含Pery的其余多环芳烃之和。
Note: TPAH stands for the total contents of all PAHs without Pery.
图4 长江支流及干流沉积物中多环芳烃的环数分布Fig. 4 Distribution of rings of PAHs in sediments from main steam and tributary of the Yangtze River
从多环芳烃组成上看(如图4所示),位于上游支流各站(包括YLJ、HSH、NLJ、DDH、CSH、FJ、JLJ和WJ)的PAHs的组成非常相似,主要以下列顺序排列:四环>三环>五环>六环>苝。位于主流的各站位来说,NX、AQ和YZ三个站位的环数组成相似,以四环和五环为主,三环和六环较少;而JJ、WZ和HH等站位却主要以三环、四环为主,其次为五环和六环。另外在WZ、XLJ和GJ这3个站位还含有高含量的苝。
图5 长江支流及干流沉积物中Fl/(Fl+Py)与(a) An/(An+Phe);(b) BaA/(BaA+Chry);(c)IP/(IP+BghiP);(d) Mphe/Phe散点图Fig. 5 Plot of Fl/(Fl+Py) v.s. (a) An/(An+Phe); (b) BaA/(BaA+Chry); (c)IP/(IP+BghiP); (d) Mphe/Phe in sediments from main steam and tributary of the Yangtze River
2.2 多环芳烃的来源
不同来源的PAHs其组成并不一致,同时PAHs的同分异构体具有类似的物理化学性质,它们进入环境后的分配和稀释行为接近,因此常使用多环芳烃某些单体的比值来判断其来源,比如:An/(Phe+An)、Fl/(Fl+Py)、BaA/(BaA+Chry)和IP/(IP+BghiP)[21-24]。甲基多环芳烃主要来自低温燃烧及石油泄漏[25],因而有研究认为Mphe/Phe小于1及大于1分别代表燃烧源和石油源[24]。如图5所示,研究区域的大多数站位的Mphe/Phe比值都小于1,在0.34~0.99之间,说明这些站位的PAHs主要以热成因为主;NLJ、FJ、JLJ、XJ这些站位的比值都大于1,说明它们的PAHs可能混有油来源。所有站位的Fl/(Fl+Py)均大于0.5和IP/(IP+BghiP)大于0.2,说明该区域的PAHs主要来自木材、煤等及油类的燃烧[24]。少量站位,例如HH、FJ、XLJ、NLJ的BaA/(BaA+Chry)在0.2~0.35之间,显示混合源的特征[24]。综上所述,研究区域表层沉积物的PAHs主要来以源于煤、木材、油类的燃烧为主,还有部分来自油类的泄漏,极少量来自自然成因。这也符合Xu等[17]的研究,他们证实中国的多环芳烃主要来自生物质燃料、煤的燃烧,分别占到总量的60%和20%
表2 世界其他地区河流、湖泊及近岸沉积物中多环芳烃含量比较
2.3 与国内外其他地区沉积物中多环芳烃含量的比较
长江流域沉积物与国内外其他湖泊、河流、近岸沉积物中多环芳烃的比较见表2。本研究区域的多环芳烃与厦门西港(195~675 ng·g-1)[26]、闽江口(174~817 ng·g-1)[27]、安徽巢湖(116.0~2 832 ng·g-1)[28]等地处于一个水平,要高于淮河(淮南-蚌埠段)(5~78 ng·g-1)[29]、江苏云龙湖(5~19 ng·g-1)[30]和台州湾海域(85~168 ng·g-1)[29],但要远远低于一些高度工业化和城市化的河口和海岸带地区,例如欧洲波罗的海(3~30 100 ng·g-1)[31]、美国纽约港(1 900~70 000 ng·g-1)[32]、新加波海岸(13 630~ 84 920 ng·g-1)[33]等。综上所述长江流域的PAHs污染程度的国际对比处于一个低至中等程度的污染。
综上可知:
(1)长江流域沉积物中多环芳烃处于一个低至中等程度的污染水平,TPAH在10.31~1 239 ng·g-1之间,且自上游至下游,其含量呈上升趋势,这与流域内各省多环芳烃的排放状况、具体站位的环境状况有关。
(2)通过多环芳烃组成特征判断,研究区域沉积物中多环芳烃的来源主要来以源于煤、木材、油类的燃烧为主,还有部分来自油类的泄漏,极少量来自自然成因。
(3)与国内外其他河流、湖泊及海湾沉积物多环芳烃含量相比,研究区域沉积物中多环芳烃处于低至中等污染水平。
[1] Youngblood W W, Blumer M. Polycyclic aromatic hydrocarbons in the environment: Homologous series in soils and recent marine sediments [J]. Geochimica et Cosmochimica Acta, 1975, 39(9): 1303-1314
[2] Wakeham S G, Schaffner C, Giger W. Polycyclic aromatic hydrocarbons in recent lake sediments-II. Compounds derived from biogenic precursors during early diagenesis [J]. Geochimica et Cosmochimica Acta, 1980, 44(3): 415-429
[3] Mcdonald J D, Zielinska B, Fujita E M, et al. Fine particle and gaseous emission rates from residential wood combustion [J]. Environmental Science and Technology, 2000, 34(11): 2080-2091
[4] Zou L Y, Zhang W, Atkiston S. The characterisation of polycyclic aromatic hydrocarbons emissions from burning of different firewood species in Australia [J]. Environmental Pollution, 2003, 124(2): 283-289
[5] 杨清书, 麦碧娴, 罗孝俊, 等. 珠江澳门水域水柱多环芳烃初步研究[J]. 环境科学研究, 2004, 17(3): 28-33
Yang Q S, Mai B X, Luo X J, et al. Preliminary study of polycyclic aromatic hydrocarbons of water column in Macau coastal waters [J]. Research of Environmental Sciences, 2004, 17(3): 28-33 (in Chinese)
[6] 王超, 杨忠芳, 夏学齐, 等. 中国不同地区典型河流中多环芳烃分布特征研究[J]. 现代地质, 2012, 26: 400-406
Wang C, Yang Z F, Xia X Q, et al.Distribution and sources of PAHs in typical Chinese rivers [J]. Geoscience, 2012, 26: 400-406 (in Chinese)
[7] Melnyk A, Dettlaff A, Kuklińska K, et al. Concentration and sources of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in surface soil near a municipal solid waste (MSW) landfill [J]. Science of the Total Environment, 2015, 530-531: 18-27
[8] Lafontaine S, Schrlau J, Butler J, et al. Relative influence of trans-pacific and regional atmospheric transport of PAHs in the Pacific Northwest, U.S. [J]. Environmental Science and Technology, 2015, 49(23): 13807-13816, DOI: 10.1021/acs.est.5b00800.
[9] 张彦旭. 中国多环芳烃的排放、大气迁移及肝癌风险[D]. 北京: 北京大学, 2010
Zhang Y X. Polycylic aromatic hydrocarbons in China: Emission, atmospheric transport and lung cancer risk [D]. Beijing: Beijing University, 2010 (in Chinese)
[10] Streets D G, Gupta S, Waldhoff S T, et al. Black carbon emissions in China [J]. Atmospheric Environment, 2001, 35(25): 4281-4296 (in Chinese)
[11] 冯承莲, 夏星辉, 周追, 等. 长江武汉段水体中多环芳烃的分布及来源分析[J]. 环境科学学报, 2007, 27(11): 1900-1908
Feng C L, Xia X H, Zhou Z, et al. Distribution and sources of polycyclic aromatic hydrocarbons in the Wuhan section of the Yangtze River [J]. Acta Scientiae Circumstantiae, 2007, 27(11): 1900-1908 (in Chinese)
[12] 沈小明, 吕爱娟, 沈加林, 等. 长江口启东--崇明岛航道沉积物中多环芳烃分布来源及生态风险评价[J]. 岩矿测试, 2014(3): 374-380
Shen X M, Lv A J, Shen J L, et al. Distribution characteristics, sources and ecological risk assessment of polycyclic aromatic hydrocarbons in waterway sediments from Qidong and Chongming Island of Yangtze River Estuary [J]. Rock and Mineral Analysis, 2014(3): 374-380 (in Chinese)
[13] 刘敏, 侯立军, 邹惠仙, 等. 长江口潮滩表层沉积物中多环芳烃分布特征[J]. 中国环境科学, 2001, 21(4): 343-346
Liu M, Hou L J, Zou H X, et al. Distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) in surface sediments of tidal flats of the Yangtze Estuary [J]. China Environmental Science, 2001, 21(4): 343-346 (in Chinese)
[14] Mandalakis M, Zebühr Y, Gustafsson Ö. Efficient isolation of polyaromatic fraction from aliphatic compounds in complex extracts using dimethylformamide-pentane partitionings [J]. Journal of Chromatography A, 2004, 1041(1-2): 111-117
[15] 许士奋, 蒋新, 王连生, 等. 长江和辽河沉积物中的多环芳烃类污染物[J]. 中国环境科学, 2000, 20(2): 128-131
Xu S F, Jiang X, Wang L S, et al. Polycyclic aromatic hydrocarbons (PAHs) pollutants in sediments of the Yangtse River and the Liaohe River [J]. China Environmental Science, 2000, 20(2): 128-131 (in Chinese)
[16] 占新华, 周立祥. 多环芳烃(PAHs)在土壤-植物系统中的环境行为[J]. 生态环境, 2003, 12(4): 487-492
Zhan X H, Zhou L X. Environmental behavior of PAHs in soil-plant system [J]. Ecology and Environment, 2003, 12(4): 487-492 (in Chinese)
[17] Xu S, Liu W, Tao S. Emission of polycyclic aromatic hydrocarbons in China [J]. Environmental Science and Technology, 2005, 40(3): 702-708
[18] Nadal M, Schuhmacher M, Domingo J L. Levels of PAHs in soil and vegetation samples from Tarragona County, Spain [J]. Environmental Pollution, 2004, 132(1): 1-11
[19] 吕殿青, 欧阳峣. 湘江流域生态环境状况的分析评价[J]. 湖南商学院学报, 2011, 18(5): 55-60
Lv D Q, Ou Y R.Analysis and evaluation of ecological environment in Xiangjiang River valley [J]. Journal of Hunan Business College, 2011, 18(5): 55-60 (in Chinese)
[20] Baumard P, Budzinski H, Michon Q, et al. Origin and bioavailability of PAHs in the Mediterranean Sea from mussel and sediment records [J]. Estuarine, Coastal and Shelf Science, 1998, 47(1): 77-90
[21] Simoneit B R T. Application of molecular marker analysis to vehicular exhaust for source reconciliations [J]. International Journal of Environmental Analytical Chemistry, 1985, 22(3-4): 203-232
[22] Bin Abas M R, Simoneit B R T, Elias V, et al. Composition of higher molecular weight organic matter in smoke aerosol from biomass combustion in Amazonia [J]. Chemosphere, 1995, 30(5): 995-1015
[23] Soclo H H, Garrigues P, Ewald M. Origin of polycyclic aromatic hydrocarbons (PAHs) in coastal marine sediments: Case studies in Cotonou (Benin) and Aquitaine (France) Areas [J]. Marine Pollution Bulletin, 2000, 40(5): 387-396
[24] Yunker M B, Macdonald R W, Vingarzan R, et al. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition [J]. Organic Geochemistry, 2002, 33(4): 489-515
[25] Mai B X, Qi S H, Zeng E Y, et al. Distribution of polycyclic aromatic hydrocarbons in the Coastal Region off Macao, China: Assessment of input sources and transport pathways using compositional analysis [J]. Environmental Science and Technology, 2003, 37(21): 4855-4863
[26] Zhou J L, Hong H, Zhang Z, et al. Multi-phase distribution of organic micropollutants in Xiamen Harbour, China [J]. Water Research, 2000, 34(7): 2132-2150
[27] 袁东星, 杨东宁, 陈猛, 等. 厦门西港及闽江口表层沉积物中多环芳烃和有机氯污染物的含量及分布[J]. 环境科学学报, 2001, 21(1): 107-112
Yuan D X, Yang D N, Chen M, et al. Concentrations and distribution of polycyclic aromatic hydrocarbons and organo-chlorides in surface sediment of Xiamen Western Harbour and Minjiang Estuary [J]. Acta Scientiae Circumstantiae, 2001, 21(1): 107-112 (in Chinese)
[28] 宁怡, 柯用春, 邓建才, 等. 巢湖表层沉积物中多环芳烃分布特征及来源[J]. 湖泊科学, 2012, 24(6): 891-898
Ning Y, Ke Y C, Deng J C, et al. Distribution and sources of polycyclic aromatic hydrocarbons (PAHs) in surface sediment in Lake Chaohu [J]. Journao of Lake Science, 2012, 24(6): 891-898 (in Chinese)
[29] 王庆, 丁毅, 李玉成, 等. 淮河淮南-蚌埠段沉积物中的多环芳烃污染性状研究[J]. 宿州学院学报, 2007, 22(6): 103-106
Wang Q, Ding Y, Li Y C, et al. Study on pollution characteristics of PAHS in sediments from the Huainan and Bangbu sections of Huaihe River [J]. Journal of Shuzhou University, 2007, 22(6): 103-106 (in Chinese)
[30] 丁文文, 韦萍. 徐州市云龙湖沉积物中多环芳烃的污染研究[J]. 安徽农业科学, 2008, 35(34): 11197-11198
Ding W W, Wei P. Study on the pollution of polycyclic aromatic hydrocarbons in the sediment of Yunlong Lake in Xuzhou City [J]. Journal of Anhui Agricultural Science, 2008, 35(34): 11197-11198 (in Chinese)
[31] Baumard P, Budzinski H, Garrigues P , et al. Polycyclic aromatic hydrocarbons in recent sediments and mussels (Mytilus edulis) from the Western Baltic Sea: Occurrence, bioavailability and seasonal variations [J]. Marine Environmental Research, 1999, 47(1): 17-47
[32] Yan B, Abrajano T A, Bopp R F, et al. Combined application of δ13C and molecular ratios in sediment cores for PAH source apportionment in the New York/New Jersey harbor complex [J]. Organic Geochemistry, 2006, 37(6): 674-687
[33] Basheer C, Obbard J P, Lee H K. Persistent organic pollutants in Singapore's coastal marine environment: Part II, sediments [J]. Water Air and Soil Pollution, 2003, 149: 315-325
[34] Li G, Xia X, Yang Z, et al. Distribution and sources of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River, China [J]. Environmental Pollution, 2006, 144(3): 985-993
◆
Distribution and Sources of Polycyclic Aromatic Hydrocarbons in Surface Sediments from the Yangtze River
Huang Liang1,2,*, Zhang Jing3, Wu Ying3
1. Jiangxi Province Engineering Research Center of Ecological Chemical Industry, College of Chemistry and Environmental Engineering, Jiujiang University, Jiujiang 332005, China 2. School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200062, China 3. State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China
Polycyclic aromatic hydrocarbons (PAHs) were determined in surface sediments from the Yangtze River basin. Total PAH concentrations (TPAH, perylene not included) varied from 10.31 ng·g-1to 1 239 ng·g-1, indicating a moderate to low level when compared with samples from the other regions worldwide. Concentrations of TPAH in sediments increased from the upper to the lower reaches, suggesting its emission along the Yangtze River. PAHs contents in sediments from the two highly polluted stations of YZ (Yangzhou) and XJ (Xiangjiang) were highest. According to the PAH ratio index calculations, these PAH molecules were primarily derived from petroleum combustion, biomass combustion and coal burning, followed by oil spillage, and the contribution of the direct input from nature origin was quite minor.
PAHs; Yangtze River; sediment; distribution; source
10.7524/AJE.1673-5897.20151126006
国家自然科学基金(41076052)
黄亮(1978-), 男, 江西九江人, 讲师, 在读博士, 研究方向为环境地球化学,Email: huangliang2002@126.com
2015-11-26 录用日期:2016-01-09
1673-5897(2016)2-568-07
X171.5
A
黄亮, 张经, 吴莹. 长江流域表层沉积物中多环芳烃分布特征及来源解析[J]. 生态毒理学报,2016, 11(2): 566-572
Huang L, Zhang J, Wu Y. Distribution and sources of polycyclic aromatic hydrocarbons in surface sediments from the Yangtze River [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 566-572 (in Chinese)