APP下载

巢湖生态系统中微量有机污染物的研究进展

2016-12-12贺勇徐福留何伟秦宁孔祥臻刘文秀王卿梅

生态毒理学报 2016年2期
关键词:巢湖悬浮物微量

贺勇,徐福留,何伟,秦宁,孔祥臻,刘文秀,王卿梅

北京大学城市与环境学院 地表过程分析与模拟教育部重点实验室,北京 100871



巢湖生态系统中微量有机污染物的研究进展

贺勇,徐福留,何伟,秦宁,孔祥臻,刘文秀,王卿梅

北京大学城市与环境学院 地表过程分析与模拟教育部重点实验室,北京 100871

本文综述了目前巢湖生态系统中微量有机污染物研究的主要进展。巢湖微量有机污染物研究起步较晚,但发展较快。目前已研究的微量有机污染物包括有机氯农药、多氯联苯、多环芳烃、多溴联苯醚、邻苯二甲酸酯、全氟烷基酸类物质、四溴双酚A、抗生素和有机磷农药。研究内容主要包括水、大气、降尘、沉积物、悬浮物、水生生物等多介质分布、来源解析、跨界面迁移、归趋模拟与风险评估等方面。期望本文的综述,可以为巢湖微量有机污染物风险管理和水质改善提供重要决策支撑,对于在其他湖泊开展此类研究有所裨益。

巢湖;微量有机污染物;多介质分布;来源解析;跨界面迁移;归趋模拟;风险评估

Received 30 November 2015 accepted 6 January 2016

许多微量有机污染物在环境介质中具有难降解性和持久性,在人等生物体内具有蓄积性,能够通过食物链进行放大和富集,对生态系统和人体健康造成了严重的影响[1]。近年来,微量有机污染物的研究受到了国内外广泛的关注[2-5]。开展微量有机污染物在环境介质中的残留水平、分布特征、迁移转化与生态风险等方面的研究,对深入认识其环境行为与生态效应以及污染控制具有重要的意义[5]。

巢湖位于长江中下游的安徽省境内,是其流域生活和生产的重要水源地,对其流域社会经济可持续发展具有战略意义[6]。然而,由于20世纪80年代以来巢湖流域城镇化和工业化的快速发展,巢湖水体中氮、磷污染严重,使其成为了中国典型的富营养化湖泊[7]。目前对巢湖的富营养化和重金属污染已经开展了许多研究[8-11],而对巢湖微量有机物污染的研究相对较少。为了推动巢湖微量有机物污染研究的进一步发展,以及巢湖微量有机污染物的风险管理和水质改善,有必要总结目前巢湖微量有机污染物的研究进展。

1 巢湖微量有机污染物研究的整体态势分析(The overall analysis of trace organic contaminants in Lake Chaohu)

巢湖微量有机污染物研究起步较晚,2011年才开始有相关文献报道,但这方面的研究发展较快,到2015年可以检索到30多篇论文(图1)。这些论文涉及的微量有机污染物包括:有机氯农药(OCPs)[7,13-20]、多氯联苯(PCBs)[21-22]、多环芳烃(PAHs)[23-28]、多溴联苯醚(PBDEs)[21,29-31]、邻苯二甲酸酯(PAEs)[33]、全氟烷基酸类物质(PFAAs)[6,34]、四溴双酚A (TBBPA)[35]、抗生素[36-38]和有机磷农药(OPs)[39-40](图2),研究内容主要包括水、大气、土壤、沉积物、悬浮物、降尘、水生生物等多介质分布、来源解析、跨界面迁移、归趋模拟与风险评估等方面(表1)。其中,大部分文献来自北京大学城市与环境学院研究组[13-20, 23-25, 28-30, 33-34, 41-42]。

图1 巢湖各类微量有机污染物研究论文年发表情况与逐年累计曲线Fig. 1 Annual published status of papers about various trace organic contaminates in Lake Chaohu and annually cumulative curve

表1 巢湖微量有机污染物的研究进展概览

注:■残留水平,▲时空分布,◆组成,●来源,☆吸附和降解,※沉积历史,◎相互作用分析,√已进行相关研究

Notes: ■residual, ▲spatial and temporal distribution,◆composition, ●sources, ☆adsorption and degradation, ※influence analysis, ◎interaction, √finished related research

图2 目前巢湖各类微量有机污染物研究论文情况统计图Fig. 2 Statistical chart of papers for currently various trace organic contaminates in Lake Chaohu

2 巢湖微量有机污染物研究进展(Progresses in the studies on trace organic contaminants in Lake Chaohu)

2.1 巢湖微量有机污染物的多介质分布

OCPs是一类在巢湖研究最多的持久性有机污染物(表1),对其在水[15-17]、大气[17-18]、悬浮物[17,20]和沉积物[7,16,19]中的分布特征有较多报道。水体中OCPs研究表明[15],其空间分布由高到低依次为:中部湖区>西部湖区>东部湖区;OCPs的主要成分为艾氏剂(aldrin),六氯环己烷(HCHs)和滴滴涕及其代谢产物(DDTs),它们的峰值分别出现在秋季、冬季、春夏季;β-HCH是主要的HCH同分异构体,α-HCH次之,两者之间存在较大的季节差异(图3)。巢湖悬浮物中OCPs主要以DDTs、HCB和HCHs为主[13,16,20],其中HCHs主要以γ-HCH为主,DDTs主要以p,p’-DDT为主[16];夏季悬浮物中OCPs含量最高[13,20],可能与降雨径流造成颗粒物增加以及藻类暴发造成颗粒物有机碳含量增加有关[20];悬浮物中OCPs含量高低空间分布为:东部湖区>西部湖区>中部湖区,与水体相反[13,16,20],可能是水体与悬浮物中OCPs的主要来源不同[20]。巢湖表层沉积物中OCPs主要以DDTs和HCHs为主,其中HCHs主要以β-HCH为主,DDTs主要以p,p’-DDD为主[16];空间分布上,差异明显,入湖河口沉积物OCPs污染最严重,湖泊沉积物中OCPs含量的空间变化为:西部湖心>东部水源区>东部湖区[16,19]。气相中OCPs主要由硫丹(endosulfan),DDTs和氯丹(chlordane)组成,

图3 巢湖水体有机氯农药含量的时空分布(整理自Liu等[15])Fig. 3 Temporal-spatial distributions of OCPs in the water of Lake Chaohu (redrew from Liu et al. [15])

冬季以HCHs和六氯苯(HCB)为主,其他3个季节以硫丹和DDTs为主;OCPs含量在夏季明显高于冬季,在中部湖区高于其他湖区;大气颗粒相中OPCs,在秋季主要为HCHs和DDTs,在其他3个季节主要为DDTs[17-18]。对巢湖降尘中OCPs的研究表明[14],降尘中OCPs以DDTs、异狄氏剂、艾氏剂、HCHs和硫丹为主;春季、夏季、秋季和冬季的主要OCPs污染物分别为艾氏剂、硫丹、DDTs和异狄氏剂;HCHs主要的同分异构体为α-HCH,p,p’-DDE是DDT的主要代谢产物;春季降尘中OCPs残留水平最高,不同季节的变化范围为10.06~171.24 ng·g-1,年平均值为51.54 ng·g-1。

巢湖PCBs分布研究仅限于沉积物。整个湖区沉积物中PCBs的污染在夏季自西向东递减,tri-PCB和tetra-PCB是巢湖沉积物中PCBs的主要组成[22];在秋季,南淝河河口沉积物中PCBs含量最高,在临近西南农业区PCBs含量最低[21];对于整个湖泊来说,西部湖区含量高于东部湖区[21]。

PBDEs是一类应用广泛的溴代阻燃剂[60],过去30年间,随着中国经济的快速增长,PBDEs的污染在城市和乡村地区日趋严重[29]。由于PBDEs亲脂性较强,因而易分布于悬浮物和沉积物中[30]。巢湖PBDEs分布研究主要集中在水体、悬浮物和沉积物。水体中,PBDEs的浓度由高到低依次为:十五里河 > 南淝河 >派河 > 双桥河 >杭埠-丰乐河> 柘皋河。巢湖水体PBDEs主要成分为BDE-209、BDE-99、BDE-153和BDE-47。悬浮物中Σ14BDE的含量为232.5 ng·g-1,以BDE-47为主,东部湖区含量较高,中西部湖区含量明显降低[30]。巢湖沉积物中PBDEs主要是BDE-47,空间分布特征为:西部湖区>东部湖区>>裕溪河河口>南淝河河口>杭埠河河口[30-31]。

由于PFAAs具有亲水与亲脂性、稳定性和高表面活性[68],在生产生活中具有非常广泛的应用[74],因而这类物质在环境中普遍存在[80]。国外对PFAAs在水体和生物体中的分布及风险已经有许多报道[68-71],国内对全氟化合物的污染特征也有相关报道[72-74]。巢湖PFAAs分布研究主要集中在水体和沉积物。在巢湖水体PFAAs中,以全氟辛酸(PFOA)、全氟丁酸(PFBA)和全氟己酸(PFHxA)为主;夏季至秋季,污染水平升高,于8月份达到峰值,然后缓慢下降,而从冬季到春季污染水平则呈下降趋势;水体中PFOA平均含量的空间分布趋势为:东部湖区>西部湖区>东部河流>西部河流,而全氟辛烷磺酸(PFOS)空间分布趋势与PFOA相反[34]。巢湖沉积物中全氟烷基类物质(ΣPFASs)的分布在空间上有自西向东递减的趋势;在入湖河流中,随着河流的流向,沉积物中ΣPFASs的浓度逐渐降低,然而在河流流经市区段却急剧增大;ΣPFASs含量湖泊沉积物高于河流沉积物[6]。

抗生素是一类人和动物抵抗病菌的药物,被广泛应用于药品和饲料添加剂中[36],全球的年消耗量在100 000~200 000吨[81]。然而,抗生素难以在生物体内被完全吸收[82],会被排泄到环境中造成污染,在国内外很多地区都能被频繁地检测到[75-76]。巢湖地区抗生素分布的报道较少,且集中在水体。抗生素在巢湖水体中含量最高的为强力霉素,其次为磺胺甲恶唑、氧氟沙星和诺氟沙星[37-38]。时间上,冬季污染水平明显高于其他季节[36];空间上,西部湖区污染水平高于东部湖区[36-38]。南淝河和十五里河是抗生素进入巢湖水体的两条主要途径,抗生素主要来源于合肥市的污水排放[36,38]。

作为重要的增塑剂,PAEs在聚氯乙烯材料和农膜中被广泛应用[57-58]。巢湖PAEs分布研究主要集中在水体。巢湖水体中PAEs主要成分为邻苯二甲酸二正丁酯(DnBP),空间上,在西部湖区浓度最高,在东部饮用水源地浓度最低;时间上,在夏季含量最低,秋季含量最高[33, 58]。

OPs是一类高效杀虫剂,由于其广谱活性,在中国,三唑磷和毒死蜱被广泛应用于控制虫害,因而在土壤中富集[40]。在无菌土壤和有菌土壤中,三唑磷和毒死蜱的降解速率要快于1-苯基-3-羟基-1,2,4-三唑和3,5,6-三氯吡啶-2-醇,三唑磷、毒死蜱和1-苯基-3-羟基-1,2,4-三唑可被Diaphorobacter sp. GS-1所降解[40]。巢湖OPs分布研究主要集中在沉积物。巢湖沉积物中OPs主要为敌敌畏,空间分布特征为:南淝河<南淝河河口<烔炀河<杭埠河<裕溪河[39]。

TBBPA是一种全球普遍使用的溴化阻燃剂,在环境介质中无处不在[59]。近年来,随着中国对溴化阻燃剂的需求不断增加,溴代阻燃剂工厂较多的巢湖流域中TBBPA污染日趋严重[35]。TBBPA在巢湖水体中分布的时间趋势与PAEs较为类似,表现为夏季含量较高[35];巢湖TBBPA分布研究主要集中在沉积物和鱼类。在巢湖表层沉积物中,西部湖区TBBPA含量高于东部湖区;在沉积物垂直分布上,随着深度的增加,TBBPA含量逐渐降低[35]。巢湖鱼体TBBPA分布特征研究表明[35],TBBPA在鱼体脂肪中含量为12.0~21.9 ng·g-1,在腮和卵中的平均含量均低于10 ng·g-1,TBBPA在4种鱼肾脏中的含量大小为:鲤鱼>鲫鱼>鲶鱼>翘嘴鲌,而在肝脏和肌肉中含量的变化趋势均为:鲶鱼>翘嘴鲌>鲤鱼>鲫鱼。

2.2 巢湖微量有机污染物的来源解析

由于微量有机污染物具有多种来源,在各种环境介质中都有广泛的分布,因而对微量有机污染物的来源解析一直受到研究人员的重视[61-63]。可从不同的角度划分污染物的来源,例如:按照与人类活动的关系,可以分为自然来源和人为来源;按照使用时间,可以分为近期污染和历史污染;按照源汇距离,可以分为本地污染源和异地污染源。其中,人为污染源与生产和使用情况有关[64],生产越集中,使用量越大,对环境的污染越严重[7]。不同污染物的特征不同,使用的源解析方法也有所差别。

巢湖地区是安徽省重要的商品粮基地以及血吸虫病防治区,OCPs曾经大量使用,因此,巢湖生态系统中OCPs的一个主要的来源为历史上的大量使用[14-15,18-20]。可根据OCPs成份的组成特征进行来源解析[18,20]:对于HCHs,α-/γ-HCH大于7表明其可能来源于大气输入,α-/γ-HCH比率在4~7之间表明其可能来源于工业产品,α-/γ-HCH比率小于4表明其可能来源于林丹,较高的β-/(α+γ)-HCH比率表示HCHs来源于历史上使用的工业HCHs或林丹,β-/(α+γ)-HCH<0.5可认为有新的林丹使用或有大气源输入;对于DDTs,高比值的o,p’-/p,p’-DDT一般认为是受到三氯杀螨醇的污染,而比值在0.2左右则主要是工业DDT的使用,DDT/(DDE+DDD) ≥ 1表示其有新的DDT输入,DDT/(DDE+DDD) < 1表示来自历史上DDT的使用;对于氯丹,当α-/γ-氯丹 < 0.77时,表明有新的工业氯丹输入,如果α-/γ-氯丹>1,表明环境中无新的工业氯丹输入。研究表明,巢湖大气[18]、降尘[14]和沉积物[19]中DDTs主要来源于历史上三氯杀螨醇的使用,而悬浮物[20]和湖泊沉积物[19]中DDTs则主要为工业残留,另外土壤流失也是沉积物中DDTs的一个来源[19]。历史上林丹的使用是水体中HCHs的重要来源[15,17],而早期土壤残留是湖泊沉积物中HCHs的主要来源[19]。另外,在巢湖大气[17-18]、降尘[14]、悬浮物[13,20]和沉积物[19]中还检测到近期林丹的使用。春季含有工业DDTs船舶涂料的近期使用也可造成了大气、降尘以及水体中DDTs的污染[14-15,18]。巢湖大气[18]、降尘[14]中的硫丹和大气[18]、悬浮物[20]中的氯丹均来源于工业上近期使用。

对于PAHs,用于来源解析的环境介质主要为大气颗粒物、沉积物以及土壤,对于水和生物中PAHs来源解析研究较少。目前应用的PAHs源解析方法主要有特征化合物法、特征比值法、多元统计分析和受体模型等方法[27,63,66]。特征化合物法是最为直观的方法,根据污染源排放过程中含有的特征化合物来确定污染物来源,但是这种方法比较粗略,误差也较大,适用于来源的初步判断;特征比值法根据不同来源的PAHs具有不同的组成和相对含量来定性确定各种污染源,该方法简便易行,应用较广,但该方法的重要缺陷是不能定量估算各排放源的贡献;化学平衡模型(CMB)是PAHs源解析中较为成熟的方法,该方法根据PAHs在区域内的主要指纹谱,通过模型计算得到各个指纹源的贡献量,但是由于PAHs来源复杂,排放源的指纹谱难以获得,该方法的解析结果往往并不理想;主成分/因子分析—多元回归(PCA/FA-MLR)分析法是一种广泛应用于PAHs来源解析的方法,依据PAHs在不同因子的载荷对来源进行辨析,并对各个因子的贡献进行计算;碳稳定同位素技术是PAHs来源解析的一种新方法,该方法的优点在于能很好地区分PAHs的生物质和非生物质来源。Qin等[23]利用多种方法对巢湖大气和沉积物中PAHs的来源进行了解析:特征化合物比值法解析结果表明,巢湖大气、沉积物PAHs主要来自燃烧源;PCA-MLR模型解析结果表明,化石燃料燃烧贡献55%,生物质燃烧贡献45%;PMF3.0模型解析结果表明,生物质、煤炭和燃油燃烧来源的贡献分别为43.6%、30.6%和25.8%。从δ13C组成特征推断,巢湖沉积物PAHs来源主要是煤炭的燃烧,交通燃油以及木材的燃烧来源也具有一定的贡献。

2.3 巢湖微量有机污染物的分配与跨界面迁移

在不同环境介质之间的平衡分配是微量有机污染物重要的环境行为之一,这些分配行为包括气-固分配、水-悬浮物分配、水-沉积物分配以及悬浮物-沉积物分配。污染物分配行为受其物理化学性质(如分子量、蒸汽压、辛醇-气分配系数Koa、辛醇-水分配系数Kow)以及环境介质特征(如有机质含量)的控制。通常用有机碳吸附平衡常数(Koc)定量描述污染物质在固相和水相间的分配情况。Qin等[23-24]在2013和2014年分别对PAHs在巢湖的气-固分配以及水-悬浮物-沉积物系统中的分配进行了研究。结果表明,巢湖大气气-固分配系数分布在2.8×10-4~1.31的范围内,与Koa具有显著正相关关系(P<0.01),与蒸汽压存在显著负相关关系(P<0.01);PAHs在巢湖水-悬浮物以及水-沉积物之间的有机碳标化的分配系数Koc(w-SS)和Koc(W-S)与Kow具有显著正相关关系(P<0.05),并且PAHs各成份的Koc(w-SS)和Koc(W-S)均低于美国环保局(U. S. EPA)报道的平衡条件下的相应值,表明PAHs在巢湖水-悬浮物以及水-沉积物之间的分配未达到平衡。

水生态系统中的界面交换主要有水-气界面以及水-沉积物界面的交换。其中水-气界面交换主要形式有干沉降、湿沉降和扩散3种形式。三者相比,干、湿沉降往往占据主导地位,其通量值要远大于扩散交换通量;而相比于前两者,扩散交换通量是双向的过程,受到气象条件以及污染物性质等多种因素的影响。双膜理论通常被用来研究水-气之间的扩散。水-沉积物界面的交换主要形式有悬浮物的沉积、沉积物的再悬浮以及孔隙水与上覆水的交换等形式,受风等气象条件以及水动力条件的影响较大。因此,沉积物既可能是污染物的源,也可能是污染物的汇。Ouyang等[17]对巢湖OCPs的水-气界面的交换进行了研究,根据OCPs在大气气相与水体中的浓度,计算并比较了OCPs在大气气相与水体中的逸度,发现在2010年5月至2011年2月期间,α-HCH、γ-HCH、HCB、DDT和DDE的跨界面迁移方向均为从水体到大气,并且α-HCH、γ-HCH与DDT的迁移通量受气温、空气一侧的流速以及水一侧的流速等参数的影响较大,表明水体中α-HCH、γ-HCH、HCB、DDT和DDE是空气中相应污染物的来源之一。Qin等[23]对巢湖PAHs水-气界面的交换进行了研究,结果表明低环PAHs迁移方向为水相到气相,而中高环PAHs迁移方向为从气相到水相,水-气交换通量与气温具有显著正相关关系(P<0.01),PAHs在气相与水相中的含量对迁移通量影响最大,这些结果与文献中相关研究的结果一致。

2.4 巢湖微量有机污染物的多介质归趋模拟

多介质模型是20世纪80年代在国外发展起来的新型数学模型,其特点是将各种不同环境介质内污染物的迁移转化过程与污染物跨介质的迁移过程相联系。多介质模型在污染生态学、持久性有毒污染物的生物地球化学循环与生态风险评价等方面应用广泛。1979年Mackay[83]把描述物质在各相间平衡分配的逸度的概念应用于有机化合物在环境系统各相中分布的预测模型研究,提出了多介质模型的逸度方法,简化了模型的结构和计算过程,在国内外得到了广泛应用[83-99]。多介质逸度模型建模的基本流程如下:(1)构建模型概念框图,(2)建立模型方程,(3)收集模型参数,(4)模型编程,(5)灵敏度分析,(6)模型校准,(7)模型模拟与结果分析。

Kong等[41]构建了巢湖α-HCH的IV级多介质逸度模型,模拟了α-HCH在大气气相与颗粒相以及水体、悬浮颗粒物与沉积物中分布及其动态变化,计算了α-HCH跨界面迁移通量,对模型参数进行了敏感性分析,对模型结果进行了不确定性分析。结果表明,除悬浮颗粒物外,其他环境介质的模拟结果与实测结果吻合较好,并且很好地模拟了α-HCH在2010年5月至2011年2月期间的动态变化,大气平流输入为α-HCH的主要输入源,大气平流输出和沉积物降解为α-HCH的主要输出过程,沉积物是α-HCH重要的汇,最敏感的参数为来源与降解参数,沉积物比水和空气更容易受到参数变化的影响,温度对α-HCH动态变化的影响最大。Kong等[41]对2012年开发的IV级多介质逸度模型结构进行了改进,增加了鱼类子模式,建立了γ-HCH的IV级多介质逸度模型[42],模拟了1984~2020年γ-HCH的长期变化,以及2010年5月至2011年2月γ-HCH的月变化,对稳态与动态参数进行了敏感性分析,利用基本蒙特卡洛模拟方法和贝叶斯蒙特卡洛模拟(MCMC)方法进行模型的不确定性分析。长期模拟结果表明,巢湖γ-HCH的年去除率约为36 kg,由大气通过水-气界面进入湖泊的年通量为31 kg,通过水-沉积物界面进入沉积物的年通量约为13 kg。

2.5 巢湖微量有机污染物的风险评估

风险评价就是评估一种或多种压力形成或可能形成的不利生态和健康效应的可能性,可分为生态风险评价和健康风险评价两大类[100]。常用的生态风险评价方法有阈值法、概率风险评价法和物种敏感度分布(SSD)法等。其中,阈值法是最简单、最常用的方法,通过水中污染物的含量与环境基准的商值衡量水体或者沉积物的风险;概率风险评价考虑了环境浓度以及毒理数据的统计意义,潜在生态风险的计算主要依靠计算暴露曲线与效应曲线之间的重叠面积得到;SSD方法基于不同物种对污染物敏感性的差异,以急性或慢性毒理数据为基础,构建统计分布模型,进行生态风险评价。由于不仅可以评估单一污染物的生态风险,而且可以评估多种污染物的联合生态风险,SSD方法已成为目前国内外广泛应用的生态风险评估方法[101]。SSD生态风险方法的基本步骤如下:(1)污染物生态毒理数据的收集和处理,(2)SSD曲线的构建,(3)计算单一污染物可能潜在影响比例(PAF),以评估单一污染物的生态风险,(4)计算多种污染物可能潜在影响比例(msPAF),以评估多种污染物的联合生态风险[15]。

巢湖水体微量有机污染物的生态风险评价主要应用SSD方法,评估的污染物主要有OCPs、PAHs、PAEs、PFAAs和OPs[15, 25, 33-34, 102]。Liu等[15]评估结果表明,巢湖水体中OCPs对水生生物的生态风险很低,主要OCPs成份的生态风险由大到小依次为:七氯> γ-HCH> p,p’-DDT>艾氏剂>异狄氏剂。Qin等[25]的评估结果表明,8种PAHs对水生生物的联合风险范围为0.29%~1.58%,其中,河流样点的风险值均值为0.93%,高于湖泊样点的均值0.35%,PAHs的生态风险由大到小依次为Pyr、Ant、Fla、Phe、Nap、Flo和Ace。Liu等[34]的评估结果表明,巢湖水体PFOS的生态风险显著高于PFOA。He等[33]评估了6种PAEs的在2010年5月到2011年4月期间的生态风险,结果表明,全年6种PAEs生态风险的大小顺序为:DnOP > DnBP > BBP > DMP > DEP > DEHP,而在夏季,DnBP在夏季的生态风险最大,其95%置信水平的生态风险为0.7%。He等[102]开发了基于SSD模型和贝叶斯方法的生态风险评价软件平台,评估了2010年5月至2011年4月水体中4类(OCPs、PAHs、PAEs和ONPPs) 69种微量有机污染物的生态风险,并根据生态风险大小,建立了4类物质的优控污染物清单。

王卿梅等[20]根据沉积物OCPs的质量基准(SQGs)对巢湖悬浮物中OCPs的潜在生态风险进行了评估。结果表明,巢湖悬浮物中氯丹、p,p’-DDD、七氯浓度低于阈值效应含量(TECs),不会对水生生物产生不利影响,而DDT (p,p’-DDT和o,p’-DDT)浓度高于可能效应含量(PECs),可能会对水生生物产生不利影响。巢湖悬浮物中OCPs污染物浓度高于PECs的情况,时间上,主要出现在夏季,空间上主要出现在巢湖中部的中庙和姥山样点。

He等[33,103]分别对巢湖饮用水源地水体中DDTs和HCHs以及6种PAEs的健康风险进行了评估,根据美国环保局提出的方法、标准与参数,DDTs、HCHs和PAEs的致癌风险均很低,低于其提出的百万分之一的可接受风险;DEHP的致癌风险高于DDTs 和HCHs;DDTs和HCHs的非致癌风险也很低,而在2010年9月DnBP的饮用和洗浴的非致癌风险分别达到1.265×10-5(0.862×10-5~1.857×10-5)和1.259×10-5(1.093×10-5~1.538× 10-5),对人体健康具有一定的风险。

He等[29]对巢湖大气中PBDEs的健康风险进行了评估。结果表明,整体上巢湖大气中PBDEs的呼吸暴露风险较低,但是冬季巢湖市大气中PBDEs的暴露浓度较高,具有一定的潜在暴露风险。

2.6 巢湖微量有机污染物残留与分布的影响因素

微量有机污染物在环境中残留与分布受多种因素的共同影响,这些因素包括污染物的物理化学性质(如分子量、蒸汽压、溶解度、亨利常数、Kow、Koc等)、人类活动(如污染物的生产与使用情况)、环境介质特征(如有机质含量)以及自然条件(如温度、降水等)。这些因素对不同类型的微量有机污染物的影响程度可能存在差别。例如,对于疏水性较强的微量有机污染物(如PAHs、OCPs等),环境介质中有机碳含量对其具有重要影响。

Li等[7]对巢湖沉积物中OCPs的污染历史及其影响因素进行了分析,结果表明,沉积物中OCPs残留水平与TOC含量、沉积物粒径、营养成分和重金属含量具有显著的相关性,反映沉积条件和人类活动对沉积物中OCPs的残留与分布具有重要影响。Ren等[26]对巢湖沉积物中PAHs的历史变化及其影响因素进行了研究。与OCPs相同,沉积物中PAHs的残留与分布也受到人类活动的显著影响。Wang等[22]发现巢湖表层沉积物中PCBs残留水平与水体营养状态存在一定相关关系。Qin等[24]的研究表明,巢湖水体、悬浮物和沉积物中PAHs残留水平分别与水体溶解态有机碳(DOC)、颗粒态有机碳(POC)和沉积物总有机碳(TOC)具有明显的正相关关系,同时,水文气象因素对巢湖水体与悬浮物PAHs的残留与分布也具有重要影响。沉积物中PBDEs与TOC之间也具有显著的正相关关系[30]。He等[33]对巢湖水体PAEs的月浓度与气象水文因子的相关性进行了分析,结果表明,降雨引起的地表径流是影响巢湖水体PAEs时空分布的重要因素;低分子量PAEs(DMP和DEP)的浓度与丰乐河的农业地表径流量有显著的正相关关系,而高分子量PAEs(BBP和DEHP)的浓度与地表径流量有显著的负相关关系。Liu等[34]研究了巢湖水体中PFAAs含量与荧光类有机质(FDOM)之间,以及与基本水环境因子(温度、盐度、溶解氧(DO))、氧化还原电位(ORP)和pH值之间的关系,结果表明,水体中PFAAs含量与除温度外的其他5个水环境因子具有显著的相关关系,PFAAs与ORP和DO具有显著的负相关关系(P<0.01),与盐度具有显著的正相关关系(P<0.01);水体中疏水性较强的PFAAs成份(如PFOA,PFPeA,PFHxA,PFBS,PFHpA,PFHxS,PFNA和PFDA)与6种类型的FDOM均具有显著的正相关关系(P<0.01),而疏水性较弱的PFAAs成份(如PFOS)与6种FDOM均没有显著的相关关系;另外,还发现水体中PFAAs与DOC没有显著的相关关系。

3 巢湖微量有机污染物研究存在问题与发展趋势(Problems and trends for the studies on trace organic contaminants in Lake Chaohu)

由于起步较晚,目前巢湖生态系统中微量有机物的研究在广度和深度上都存在不足。由表1可以看出,在研究的微量有机污染物类型方面尚存在一些空白,对一些新型微量有机污染物(如个人护理品、有机磷类阻燃剂、非邻苯二甲酸酯类塑化剂、抗性基因等)的研究未见报道。在研究内容方面,关注微量有机污染物在环境介质残留水平与分布特征较多,而对其环境行为与迁移归趋等方面关注较少,甚至在微量有机污染物光降解、微生物降解、生物富集、生物放大/稀释、以及生物毒性效应等方面仍为空白。

针对目前巢湖生态系统微量有机污染物研究存在的问题,在今后的研究中,应加强对新型微量有机污染物的研究。在研究内容方面,除了进行多介质残留水平、分布特征与来源解析等方面的研究外,还应加强环境行为过程(包括多介质分配、生物富集、食物链放大/稀释、降解、吸附解析等)、毒性效应与生态风险、跨界面迁移与多介质归趋模拟等方面的研究。

[1] Aggerbeck M, Ambolet-Camoit A, Ottolenghi C, et al. Effects of combined persistant organic pollutants on global gene expression in human HepaRG cells: Enhanced down-regulation of metabolic pathways [J]. Toxicology Letters, 2011, 105: S41-S41

[2] Kelly B C, Ikonomou M G, Blair J D, et al. Food web-specific biomagnification of persistent organic pollutants [J]. Science, 2007, 317(5835): 236-239

[3] UNEP. Final Act of the Plenipotentiaries on the Stockholm Convention on Persistent Organic Pollutants, United Nations Environment Programme[R]. Geneva, Switzerland:UN, 2001

[4] UNEP. Report of the Conference of the Parties to the Stockholm Convention on Persistent Organic Pollutants on the work of Its Fifth Meeting, United Nations Environment Programme [R]. Geneva, Switzerland:UN, 2011

[5] 陶澍, 骆永明, 朱利中, 等. 典型微量有机污染物的区域环境过程[J]. 环境科学学报, 2006, 26(1): 168-171

Tao S, Luo Y M, Zhu L Z, et al. Regional environmental processes of typical trace organic pollutants [J]. Acta Scientiae Circumstantiae, 2006, 26(1): 168-171 (in Chinese)

[6] Qi Y J, Hu S B, Huo S L, et al. Spatial distribution and historical deposition behaviors of perfluoroalkyl substances (PFASs) in sediments of Lake Chaohu, a shallow eutrophic lake in Eastern China [J]. Ecological Indicators, 2015, 57: 1-10

[7] Li C C, Huo S L, Xi B D, et al. Historical deposition behaviors of organochlorine pesticides (OCPs) in the sediments of a shallow eutrophic lake in Eastern China: Roles of the sources and sedimentological conditions [J]. Ecological Indicators, 2015, 53: 1-10

[8] Liu E F, Shen J. A comparative study of metal pollution and potential eco-risk in the sediment of Chaohu Lake (China) based on total concentration and chemical speciation [J]. Environmental Science and Pollution Research, 2014, 21(12): 7285-7295

[9] Yang L B, Kun L, Wei M, et al.Temporal and spatial changes in nutrients and chlorophyll-α in a shallow lake, Lake Chaohu, China: An 11-year investigation [J]. Journal of Environmental Sciences, 2013, 25(6): 1117-1123

[10] Liu E F, Shen J, Birch G F, et al. Human-induced change in sedimentary trace metals and phosphorus in Chaohu Lake, China, over the past half-millennium [J]. Journal of Paleolimnology, 2012, 47(4): 677-691

[11] Han Y M, Can J J, Kenna T C, et al. Distribution and ecotoxicological significance of trace element contamination in a similar to 150 yr record of sediments in Lake Chaohu, Eastern China [J]. Journal of Environmental Monitoring, 2011, 13(3): 743-752

[12] 王维, 赵影, 黄晓沐, 等. 巢湖水有机污染物的遗传毒性及对饮用水水质的影响[J]. 癌变·畸变·突变, 2004, 16(6): 352-354, 358

Wang W, Zhao Y, Huang X M, et al. Genotoxicity organic pollutants of Chaohu Lake and effects on drinking water quality [J]. Carcinogenesis, Teratogenesis and Mutagenesis, 2004, 16(6): 352-354, 358 (in Chinese)

[13] He Q S, Wang Q M, Wang Y, et al. Temporal and spatial variations of organochlorine pesticides in the suspended particulate matter from Lake Chaohu, China [J]. Ecological Engineering, 2015, 80(S1): 214-222

[14] Ouyang H L, Wang Q M, He W, et al. Organochlorine pesticides in the dust fall around Lake Chaohu, the fifth largest lake in China [J]. Environmental Monitoring and Assessment, 2014, 186(1): 383-393

[15] Liu W X, He W, Qin N, et al. Residues, distributions, sources, and ecological risks of OCPs in the water from Lake Chaohu, China [J]. The Scientific World Journal, 2012, 897697, 16 pages

[16] Liu W X, He W, Qin N, et al. The residues, distribution, and partition of organochlorine pesticides in the water, suspended solids, and sediments from a large Chinese lake (Lake Chaohu) during the high water level period [J]. Environmental Science and Pollution Research, 2013, 20(4): 2033-2045

[17] Ouyang H L, He W, Qin N, et al. Water-gas exchange of organochlorine pesticides at Lake Chaohu, a large Chinese lake [J]. Environmental Science and Pollution Research, 2013, 20(4): 2020-2032

[18] Ouyang H L, He W, Qin N, et al. Levels, temporal-spatial variations, and sources of organochlorine pesticides in ambient air of Lake Chaohu, China [J]. The Scientific World Journal, 2012, 504576, 12 pages

[19] 王雁, 何伟, 秦宁, 等. 巢湖表层沉积物中有机氯农药的残留与风险[J]. 环境科学学报, 2012, 32(2): 308-316

Wang Y, He W, Qin N, et al. Residual levels and ecological risks of organochlorine pesticides in surface sediments from Lake Chaohu [J]. Acta Scientiae Circumstantiae, 2012, 32(2): 308-316 (in Chinese)

[20] 王卿梅, 何玘霜, 王雁, 等. 巢湖悬浮物中有机氯农药的分布、来源与风险[J]. 湖泊科学, 2014, 26(6): 887-896

Wang Q M, He Q S, Wang Y, et al. Distribution, source identification and risk assessment of organochlorine pesticides (OCPs) in suspended particulate matter (SPM) from Lake Chaohu [J]. Journal of Lake Sciences, 2014, 26(6): 887-896 (in Chinese)

[21] Wang J Z, Liu L Y, Zhang K, et al. Halogenated organic contaminants (HOCs) in sediment from a highly eutrophicated lake, China: Occurrence, distribution and mass inventories [J]. Chemosphere, 2012, 89(8): 1003-1008

[22] Wang X W, Xi B D, Huo S L, et al. Polychlorinated biphenyls residues in surface sediments of the eutrophic Chaohu Lake (China): Characteristics, risk, and correlation with trophic status [J]. Environmental Earth Sciences, 2014, 71(2): 849-861

[23] Qin N, He W, Kong X Z, et al. Atmospheric partitioning and the air-water exchange of polycyclic aromatic hydrocarbons in a large shallow Chinese lake (Lake Chaohu) [J]. Chemosphere, 2013, 93(9): 1685-1693

[24] Qin N, He W, Kong X Z, et al. Distribution, partitioning and sources of polycyclic aromatic hydrocarbons in the water-SPM-sediment system of Lake Chaohu, China [J]. Science of the Total Environment, 2014, 496: 414-423

[25] Qin N, He W, Kong X Z, et al. Ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the water from a large Chinese lake based on multiple indicators [J]. Ecological Indicators, 2013, 24: 599-608

[26] Ren C, Wu Y, Zhang S, et al. PAHs in sediment cores at main river estuaries of Chaohu Lake: Implication for the change of local anthropogenic activities [J]. Environmental Science and Pollution Research, 2015, 22(3): 1687-1696

[27] Li C C, Huo S L, Yu Z Q, et al. Spatial distribution, potential risk assessment, and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in sediments of Lake Chaohu, China [J]. Environmental Science and Pollution Research, 2014, 21(20): 12028-12039

[28] 秦宁, 何伟, 王雁, 等. 巢湖水体和水产品中多环芳烃的含量与健康风险[J]. 环境科学学报, 2013, 33(1): 230-239

Qin N, He W, Wang Y, et al. Residues and health risk of polycyclic aromatic hydrocarbons in the water and aquatic products from Lake Chaohu [J]. Acta Scientiae Circumstantiae, 2013, 33(1): 230-239 (in Chinese)

[29] He W, Qin N, He Q S, et al. Atmospheric PBDEs at rural and urban sites in central China from 2010 to 2013: Residual levels, potential sources and human exposure [J]. Environmental Pollution, 2014, 192: 232-243

[30] He W, Qin N, Kong X Z, et al. Polybrominated diphenyl ethers (PBDEs) in the surface sediments and suspended particulate matter (SPM) from Lake Chaohu, a large shallow Chinese lake [J]. Science of the Total Environment, 2013, 463: 1163-1173

[31] Wang X W, Xi B D, Huo S L, et al. Polybrominated diphenyl ethers occurrence in major inflowing rivers of Cross Mak Lake Chaohu (China): Characteristics, potential sources and inputs to lake [J]. Chemosphere, 2013, 93(8): 1624-1631

Wang W J, Zhou J L, Pei S W, et al. Research progress on status of environmental pollutions of polybrominated diphenyl ethers [J]. Environmental Chemistry, 2014, 33(7): 1084-1093 (in Chinese)

[33] He W, Qin N, Kong X Z, et al. Spatio-temporal distributions and the ecological and health risks of phthalate esters (PAEs) in the surface water of a large, shallow Chinese lake [J]. Science of the Total Environment, 2013, 461: 672-680

[34] Liu W X, He W, Qin N, et al. Temporal-spatial distributions and ecological risks of perfluoroalkyl acids (PFAAs) in the surface water from the fifth-largest freshwater lake in China (Lake Chaohu) [J]. Environmental Pollution, 2015, 200: 24-34

[35] Yang S W, Wang S R, Wu F C, et al. Tetrabromobisphenol A: Tissue distribution in fish, and seasonal variation in water and sediment of Lake Chaohu, China [J]. Environmental Science and Pollution Research, 2012, 19(9): 4090-4096

[36] Tang J, Shi T Z, Wu X W, et al. The occurrence and distribution of antibiotics in Lake Chaohu, China: Seasonal variation, potential source and risk assessment [J]. Chemosphere, 2015, 122: 154-161

[37] 唐俊, 张付海, 王晨晨, 等. 巢湖及入湖河流中磺胺抗生素残留现状分析[J]. 安全与环境学报, 2014, 14(4): 334-338

Tang J, Zhang F H, Wang C C, et al. Investigation of sulfonamide antibiotics residue in the water of Chaohu Lake and its inlet rivers [J]. Journal of Safety and Environment, 2014, 14(4): 334-338 (in Chinese)

[38] 唐俊, 陈海燕, 史陶中, 等. 巢湖喹诺酮及四环素类药物污染现状及来源分析[J]. 安徽农业大学学报, 2013, 40(6): 1043-1048

Tang J, Chen H Y, Shi T Z, et al. Occurrence of quinolones and tetracyclines antibiotics in the aquatic environment of Chaohu Lake [J]. Journal of Anhui Agricultural University, 2013, 40(6): 1043-1048 (in Chinese)

[39] Wu Y, Zhang S, Ren C, et al. Residues of organophosphorus insecticides in sediment around a highly eutrophic lake, Eastern China [J]. Journal of Soils and Sediments, 2015, 15(2): 436-444

[40] Liang B, Yang C L, Gong M B, et al. Adsorption and degradation of triazophos, chlorpyrifos and their main hydrolytic metabolites in paddy soil from Chaohu Lake, China [J]. Journal of Environmental Management, 2011, 92(9): 2229-2234

[41] Kong X Z, He W, Qin N, et al. Simulation of the fate and seasonal variations of α-hexachlorocyclohexane in Lake Chaohu using a dynamic fugacity model [J]. The Scientific World Journal, 2012, 691539, 12 pages

[42] Kong X Z, He W, Qin N, et al. Modeling the multimedia fate dynamics of γ-hexachlorocyclohexane in a large Chinese lake [J]. Ecological Indicators, 2014, 41: 65-74

[43] Stockholm Convention. Listing of POPs in the Stockholm Convention [EB/OL]. http://chm.pops.int/TheConvention/ThePOPs/TheNewPOPs/tabid/2511/Default.aspx

[44] Jones K C, de Voogt P. Persistent organic pollutants (POPs): State of the science [J]. Environmental Polution, 1999, 100(1-3): 209-221

[45] Tao S, Xu F L, Wang X J, et al. Organochlorine pesticides in agricultural soil and vegetables from Tianjin, China [J]. Environmental Science & Technology, 2005, 39 (8): 2494-2499

[46] Gong Z M, Xu F L, Dawson R, et al. Residues of hexachlorocyclohexane isomers and their distribution characteristics in soils in the Tianjin area, China [J]. Archives of Environmental Contamination and Toxicology, 2004, 46(4): 432-437

[47] Qiu X H, Zhu T, Yao B, et al. Contribution of dicofol to the current DDT pollution in China [J]. Environmental Science & Technology, 2005, 39(12): 4385-4390

[48] Miller S. The persistent PCB problem [J]. Environmental Science & Technology, 1982, 16(2): A98-A99

[49] Choi H, Al-Abed S R. PCB congener sorption to carbonaceous sediment components: Macroscopic comparison and characterization of sorption kinetics and mechanism [J]. Journal of Hazardous Materials, 2009, 165(1-3): 860-866

[50] Doong R A, Peng C K, Sun Y C, et al. Composition and distribution of organochlorine pesticide residues in surface sediments from the Wu-Shi River estuary, Taiwan [J]. Marine Pollution Bulletin, 2002, 45(1-12): 246-253

[51] Feng H, Cochran J K, Lwiza H, et al. Distribution of heavy metal and PCB contaminants in the sediments of an urban estuary: The Hudson River [J]. Marine Environmental Research, 1998, 45(1): 69-88

[52] Zhao Z H, Zhang L, Wu J L, et al. Distribution and bioaccumulation of organochlorine pesticides in surface sediments and benthic organisms from Taihu Lake, China [J]. Chemosphere, 2009, 77(9): 1191-1198

[53] Petry T, Schmid P, Schlatter C. The use of toxic equivalency factors in assessing occupational and environmental health risk associated with exposure to airborne mixtures of polycyclic aromatic hydrocarbons (PAHs) [J]. Chemosphere, 1996, 32(4): 639-648

[54] Subramanian A, Kunisue T, Tanabe S. Recent status of organohalogens, heavy mentals and PAHs pollution in specific locations in India [J]. Chemosphere, 2015, 137: 122-134

[55] Louvado A, Gomes N C M, Simoes M M Q, et al. Polycyclic aromatic hydrocarbons in deep sea sediments: Microbe-pollutant interactions in a remote environment [J]. Science of the Total Environment, 2015, 526: 312-328

[56] Duan L, Naidu R, Thavamani P, et al. Managing long-term polycyclic aromatic hydrocarbon contaminated soils: A risk-based approach [J]. Environmental Science and Pollution, 2015, 22(12): 8927-8941

[57] Rahman M, Brazel C S. The plasticizer market: An assessment of traditional plasticizers and research trends to meet new challenges [J]. Progress in Polymer Science, 2004, 29: 1223-1248

[58] Zhang L L, Liu J L, Liu H Y, et al. The occurrence and ecological risk assessment of phthalate esters (PAEs) in urban aquatic environments of China [J]. Ecotoxicology, 2015, 24(5): 967-984

[59] de Wit C A. An overview of brominated flame retardants in the environment [J]. Chemosphere, 46(5): 583-624

[60] Yu B Q, Zhang R R, Liu P Y, et al. Determination of nine hydroxylated polybrominated diphenyl ethers in water by precolumn derivatization-gas chromatography-mass spectrometry [J]. Journal of Chromatography A, 2015, 1419: 19-25

[61] Johnston G P, Lineman D, Johnston C G, et al. Characterization, sources and ecological risk assessment of polycyclic aromatic hydrocarbons (PAHs) in long-term contaminated riverbank sediments [J]. Environmental Earth Sciences, 2015, 74(4): 3519-3529

[62] Wang L L, Yang Z F, Niu J F, et al. Characterization, ecological risk assessment and source diagnostics of polycyclic aromatic hydrocarbons in water column of the Yellow River Delta, one of the most plenty biodiversity zones in the world [J]. Journal of Hazardous Materials, 2009, 169(1-3): 460-465

[63] Brown J N, Peake B M. Sources of heavy metals and polycyclic aromatic hydrocarbons in urban stormwater runoff [J]. Science of the Total Environment, 2006, 359(1-3): 145-155

[64] Rahman M, Brazel C S. The plasticizer market: An assessment of traditional plasticizers and research trends to meet new challenges [J]. Progress in Polymer Science, 2004, 29(12): 1223-1248

[65] Lu Q, Johnson A C, Juergens M D, et al. The distribution of polychlorinated biphenyls (PCBs) in the River Thames Catchment under the scenarios of climate change [J]. Science of the Total Environment, 2015, 533: 187-195

[66] Okuda T, Kumata H, Zakaria M P, et al. Source identification of Malaysian atmospheric polycyclic aromatic hydrocarbons nearby forest fires using molecular and isotopic compositions [J]. Atmospheric Environment, 2002, 36(4): 611-618

[67] Wang Y, Jin X H, Hu J Y, et al. Trophic dilution of polycyclic aromatic hydrocarbons (PAHs) in a marine food web from Bohai Bay, North China [J]. Environmental Science & Technology, 2007, 41(9): 3109-3114

[68] Schwanz T G, Llorca M, Farre M, et al. Perfluoroalkyl substances assessment in drinking waters from Brazil, France and Spain [J]. Science of the Total Environment, 2016, 539: 143-152

[69] Armstrong D L, Lozano N, Rice C P, et al. Temporal trends of perfluoroalkyl substances in limed biosolids from a large municipal water resource recovery facility [J]. Journal of Environmental Management, 2016, 165: 88-95

[70] Letcher R J, Su G Y, Moore J N, et al. Perfluorinated sulfonate and carboxylate compounds and precursors in herring gull eggs from across the Laurentian Great Lakes of North America: Temporal and recent spatial comparisons and exposure implications [J]. Science of the Total Environment, 2015, 538: 468-477

[71] Goralczyk K, Pachocki K A, Hernik A, et al. Perfluorinated chemicals in blood serum of inhabitants in central Poland in relation to gender and age [J]. Science of the Total Environment, 2015, 532: 548-555

[72] 刘琰, 江秋枫, 韩梅, 等. 红枫湖流域表层沉积物中全氟化合物的污染特征[J]. 环境科学研究, 2015, 28(4): 517-523

Liu Y, Jiang Q F, Han M, et al. Contamination profiles of perfluorinated substances in surface sediments of Hongfeng Lake Basin [J]. Research of Environmental Sciences, 2015, 28(4): 517-523 (in Chinese)

[73] 胡国成, 郑海, 张丽娟, 等. 珠江三角洲土壤中全氟化合物污染特征研究[J]. 中国环境科学, 2013, 33(S1): 37-42

Hu G C, Zheng H, Zhang L J, et al. Contamination characteristics of perfluorinated compounds in soil from Pearl River Delta,South China [J]. China Environmental Science, 2013, 33(S1): 37-42 (in Chinese)

[74] 孟晶, 王铁宇, 王佩, 等. 淮河流域土壤中全氟化合物的空间分布及组成特征[J]. 环境科学, 2013, 34(8): 3188-3194

Meng J, Wang T Y, Wang P, et al. Spatial distribution and composition of perfluorinated compounds in soils around the Huaihe River [J]. Environmental Science, 2013, 34(8): 3188-3194 (in Chinese)

[75] Ngumba E, Gachanja A, Tuhkanen T. Occurrence of selected antibiotics and antiretroviral drugs in Nairobi River Basin, Kenya [J]. Science of the Total Environment, 2016, 539: 206-213

[76] 梁惜梅, 施震, 黄小平. 珠江口典型水产养殖区抗生素的污染特征[J]. 生态环境学报, 2013, 22(2): 304-310

Liang X M, Shi Z, Huang X P. Occurrence of antibiotics in typical aquaculture of the Pearl River Estuary [J]. Ecology and Environmental Sciences, 2013, 22(2): 304-310 (in Chinese)

[77] Vennemo H, Aunan K, Lindhjem H, et al. Environmental pollution in China: Status and trends [J]. Review of Environmental Economics and Policy, 2009, 3(2): 209-230

[78] Zhang Y X, Tao S, Shen H Z, et al. Inhalation exposure to ambient polycyclic aromatic hydrocarbons and lung cancer risk of Chinese population [J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(50): 21063-21067

[79] Wang T Y, Wang P, Meng J, et al. A review of sources, multimedia distribution and health risks of perfluoroalkyl acids (PFAAs) in China [J]. Chemosphere, 2015, 129: 87-99

[80] Guo C S, Zhang Y, Zhao X, et al. Distribution, source characterization and inventory of perfluoroalkyl substances in Taihu Lake, China [J]. Chemosphere, 2015, 127: 201-207

[81] Zuccato E, Castiglioni S, Bagnati R, et al. Source, occurrence and fate of antibiotics in the Italian aquatic environment [J]. Journal of Hazardous Materials, 2010, 179(1-3): 1042-1048

[82] Sarmah A K, Meyer M T, Boxall A B A. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment [J]. Chemosphere, 2006, 65(5): 725-759

[83] Mackay D. Finding fugacity feasible [J]. Environmental Science & Technology, 1979, 13: 1218-1223

[84] Mackay D, Diamond M. Application of the QWASI (Quatitative Water Air Sediment Interaction) fugacity model to the dynamics of organic and inorganic chemicals in lakes [J]. Chemosphere, 1989, 18: 1343-1365

[85] Mackay D, Joy M, Paterson S. A Quantitative Water, Air Sediment Interaction (QWASI) fugacity model for describong the fate of chemicals in lakes [J]. Chemosphere, 1983, 12: 981-997

[86] Mackay D, Paterson S. Calculating fugacity [J]. Environmental Science & Technology, 1981, 15: 1006-1014

[87] Mackay D, Paterson S. Fugacity revisite—The fugacity approach to environmental transport [J]. Environmental Science & Technology, 1982, 16: A654-A660

[88] Mackay D, Paterson S. Ecalusting the multimedia fate of organic-chemicals—A level-III fugacity model [J]. Environmental Science & Technology, 1991, 25: 427-436

[89] Mackay D, Paterson S, Joy M. A Quatitative Water, Air, Sediment Interaction (QEASI) fugacity model for describing the fate of chemicals in rivers [J]. Chemosphere, 1983, 12: 1193-1208

[90] Mackay D, Paterson S, Schroeder W H. Model describing the rates of transfer processes of organic-chemicals between atmosphere and water [J]. Environmental Science & Technology, 1986, 20: 810-816

[91] Wang X L, Tao S, Dawson R W, et al. Characterizing and comparing risks of polycyclic aromatic hydrocarbons in a Tianjin wastewater-irrigated area [J]. Environmental Research, 2002, 90: 201-206

[92] Cao H Y, Tao S, Xu F L, et al. Multimedia fate model for hexachlorocyclohexane in Tianjin, China [J]. Environmental Science & Technology, 2004, 38: 2126-2132

[93] Cao H Y, Liang T, Tao S, et al. Simulating the temporal changes of OCP pollution in Hangzhou, China [J]. Chemosphere, 2007, 67: 1335-1345

[94] Liu Z Y, Quan X, Yang F L. Long-term fate of three hexachlorocyclohexanes in the lower reach of Liao River basin: Dynamic mass budgets and pathways [J]. Chemosphere, 2007, 69: 1159-1165

[95] Tao S, Cao H Y, Liu W X, et al. Fate modeling of phenanthrene with regional variation in Tianjin, China [J]. Environmental Science & Technology, 2003, 37: 2453-2459

[96] Tao S, Yang Y, Cao H Y, et al. Modeling the dynamic changes in concentrations of gamma-hexachlorocyclohexane (gamma-HCH) in Tianjin region from 1953 to 2020 [J]. Environmental Pollution, 2006, 139: 183-193

[97] Lang C, Tao S, Wang X J, et al. Seasonal variation of polycyclic aromatic hydrocarbons (PAHs) in Pearl River Delta region, China [J]. Atmospheric Environment, 2007, 41: 8370-8379

[98] Wang R, Cao H Y, Li W, et al. Spatial and seasonal variations of polycyclic aromatic hydrocarbons in Haihe Plain, China [J]. Environmental Pollution, 2011, 159: 1413-1418

[99] Xu F L, Qin N, Zhu Y, et al. Multimedia fate modeling of polycyclic aromatic hydrocarbons (PAHs) in Lake Small Baiyangdian, Northern China [J]. Ecological Modelling, 2013, 252: 246-257

[100] 张永春, 林玉锁, 孙勤芳, 等. 有害废物生态风险评价[M]. 北京: 中国环境科学出版社, 2002: 11-12

[101] Xu F L, Li Y L, Wang Y, et al. Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment [J]. Ecological Indicators, 2015, 54: 227-237

[102] He W, Qin N, Kong X Z, et al. Water quality benchmarking (WQB) and priority control screening (PCS) of persistent toxic substances (PTSs) in China: Necessity, method and a case study [J]. Science of the Total Environment, 2014, 472: 1108-1120

[103] He W, Qin N, He Q S, et al. Characterization, ecological and health risks of DDTs and HCHs in water from a large shallow Chinese lake [J]. Ecological Informatics, 2012, 12: 77-84

Progresses in the Studies on Trace Organic Contaminants in Lake Chaohu Ecosystem

He Yong, Xu Fuliu*, He Wei, Qin Ning, Kong Xiangzhen, Liu Wenxiu, Wang Qinmei

Laboratory for Earth Surface Processes of Ministry of Education, College of Urban & Environmental Sciences, Peking University, Beijing 100871, China

Major progresses in the studies on trace organic contaminants in Lake Chaohu ecosystem are reviewed. The studies on trace organic contaminants in Lake Chaohu started relatively late, but developed relatively fast. At present, the investigated trace organic contaminants include organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), phthalate esters (PAEs), perfluoroalkyl acids (PFAAs), tetrabromobisphenol A (TBBPA), antibiotics and organophosphorus pesticides (OPs). Their distributions in multimedia including water, gas, dust fall, sediment, suspended particular matter, and aquatic organisms as well as their source apportionments, interface transportations, fate and transport simulations, and risk assessments have been studied. It is expected that this paper could provide an important decision-making support for the risk management of trace organic contaminants and water quality improvement in Lake Chaohu, and it would be helpful to carry out similar studies in other lakes.

Lake Chaohu; trace organic contaminants; multimedia distribution; source apportionment; interface transportation; fate and transport simulation; risk assessment

10.7524/AJE.1673-5897.20151130012

国家水体污染控制与治理科技重大专项项目(2012ZX07103-002);国家自然科学基金项目(41271462, 41030529)

贺勇(1995-),男,在读本科生,研究方向为毒害污染物生态风险评估,E-mail: 1400013229@pku.edu.cn

*通讯作者(Corresponding author), E-mail: xufl@urban.pku.edu.cn

2015-11-30 录用日期:2016-01-06

1673-5897(2016)2-111-13

X171.5

A

简介:徐福留(1962—),男,博士,教授,博士生导师,国家杰出青年科学基金获得者,主要从事污染物表生行为与环境效应研究。

贺勇, 徐福留, 何伟, 等. 巢湖生态系统中微量有机污染物的研究进展[J]. 生态毒理学报,2016, 11(2): 111-123

He Y, Xu F L, He W, et al. Progresses in the studies on trace organic contaminants in Lake Chaohu ecosystem [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 111-123 (in Chinese)

猜你喜欢

巢湖悬浮物微量
悬浮物对水质氨氮测定的影响
Always be gr atef ul
微量注射泵应用常见问题及解决方案
废水悬浮物国标检测方法的修改建议
压裂返排液中悬浮物去除的室内研究
雷州湾海域悬浮物浓度遥感监测研究
春季和夏季巢湖浮游生物群落组成及其动态分析
巢湖玉卮意蕴长
华能巢湖电厂脱硝系统的改造
早期微量肠内喂养对极低出生体质量儿预后的影响