抗生素在地下水系统中的环境行为及生态效应研究进展
2016-12-12童蕾姚林林刘慧王焰新
童蕾,姚林林,刘慧,王焰新
中国地质大学(武汉) 环境学院,武汉 430074
抗生素在地下水系统中的环境行为及生态效应研究进展
童蕾,姚林林,刘慧,王焰新
中国地质大学(武汉) 环境学院,武汉 430074
抗生素在环境中的残留已引起广泛关注。随着对地下水污染的报道日益增多,抗生素对地下水系统的潜在影响不容忽视。本文系统地阐述了地下水中抗生素的来源、污染水平及迁移转化规律,总结了抗生素对地下水微生物群落的影响以及抗生素诱导产生的抗性基因的潜在污染趋势。因地下水赋存隐蔽,一旦污染难以及时察觉,抗生素进入地下水系统后易长期残留。目前,针对抗生素及抗性基因在地下水系统中的环境行为及生态效应研究还十分有限,本文据此指出了当前形势下开展相关研究的必要性,并对今后的研究方向进行了展望。
抗生素;抗性基因;地下水系统;环境行为;生态效应
抗生素作为药物可选择性地抑制或影响生物功能而被广泛使用,主要类型有:大环内酯类、四环素类、氟喹诺酮类、磺胺类、β-内酰胺类、氯霉素类、林可霉素类、氨基糖苷类等[1]。根据用途不同,抗生素分为人用和兽用两类。人用抗生素主要用于疾病的防治及个人护理;兽用抗生素除治疗疾病外,常作为促生长剂在农业、畜牧及水产养殖业大量使用。全世界每年抗生素的消费量多达10~20万吨[1],中国作为人口及农业生产大国,抗生素生产量和使用量位居世界首位[2-3]。由于抗生素不能被有机体完全吸收,约有40%以上以母体或代谢产物的形式随尿或粪便排出体外[4]。2013年,我国抗生素总体用量达9.27万吨[5],其中约5.40万吨经排出后进入污水处理厂,由于污水处理系统无法完全去除抗生素,导致其最终进入地表和地下水环境中[6]。地下水中抗生素的浓度虽然较低,但其持续低水平的暴露将诱导环境微生物产生抗性(耐药性),这些耐药菌所携带的抗性基因可通过移动遗传元件的水平转移在不同细菌之间传递,引发超级耐药致病菌的产生,人体一旦感染将无药可救[7-8]。因此,地下水一旦被抗生素污染,将给人类健康带来巨大威胁。本文从地下水系统中抗生素的来源、污染现状、环境行为和生态效应等几方面进行综述,以期为地下水污染防治及相关法规的建立提供参考。
1 地下水系统中抗生素的来源(Source of antibiotics in groundwater)
地下水系统由地下水含水系统和地下水流动系统所组成,根据研究对象有不同的边界划分[9]。本文研究的地下水系统包括包气带和饱水带,包气带是地面以下潜水面以上的部分,土壤位于包气带表层,因此,地表水和土壤的抗生素污染直接影响地下水系统。据报道,地表水环境中抗生素的集中排放源包括:医药废水、生活污水、畜牧及水产养殖废水等[10];土壤环境中抗生素的主要来源为禽畜粪肥施用及垃圾填埋处理等[11]。检测结果表明,污水集中排放口附近水体中的抗生素浓度明显高于远离排污口的浓度[12-14],施用粪肥的农田土壤中抗生素的残留较高[15]。地表残留的抗生素进入包气带后,经历一系列复杂的物理、化学和生物作用,如吸附、光解、水解和微生物降解等,通过淋溶、渗滤、地表水-地下水相互作用等途径最终进入地下水[16-18]。在向下迁移过程中,发生的一系列物理化学反应均有利于降低环境中母体化合物的残留量,但抗生素的广泛及持续使用,使外源输入量与环境自净量比例失衡,地表水和土壤中抗生素含量不断增加,导致地下水中抗生素的浓度不断升高。
表1 世界范围内地下水中常见抗生素的残留浓度
2 地下水抗生素污染现状(Occurrence of antibiotics in groundwater)
地下水是环境中抗生素的最终归宿地,其污染水平和来源早已受到国内外的广泛关注,但系统的调查于20世纪末才开始进行。美国地调局2000年对美国18个州47个地下水样(涵盖不同气候环境、水文地质条件及土地利用类型等)进行采样分析,对21种抗生素及其代谢产物的检测结果表明,磺胺甲恶唑的检出率达23%,林可霉素、磺胺甲基嘧啶和磺胺甲恶唑3种化合物的最高浓度分别为0.32、0.36和1.11 μg·L-1[19]。美国内布拉斯加州和华盛顿郊区的地下水中均发现了磺胺类抗生素的存在[20],法国、英国和丹麦等国的地下水中也检测到高于环境安全水平的抗生素浓度[21]。López-Serna等[22]对巴塞罗那市地下水中31种抗生素及其代谢产物的浓度进行分析,结果表明,克拉霉素、伊诺沙星、恩诺沙星和氧氟沙星的检出率为100%,阿奇霉素和螺旋霉素的平均浓度分别高达0.26 μg·L-1和0.30 μg·L-1。表1为世界范围内地下水中抗生素的平均残留浓度。由表可知,同一抗生素在不同地区的浓度水平差别较大[23-24]。
目前,我国地下水中抗生素污染报道相对匮乏,童蕾等[12]在江汉平原沙湖镇共采集27个地下水样品,并对其中19种抗生素残留浓度进行分析,探讨了不同季节地下水中抗生素浓度的变化;结果表明,秋季氯四环素在地下水中的残留浓度达86.6 ng·L-1;春季四环素和脱水红霉素的浓度最高分别为115.2 ng·L-1和377.8 ng·L-1;氟喹诺酮和四环素类抗生素在地下水中的平均浓度远高于磺胺类和大环内酯类。部分抗生素如甲氧苄氨嘧啶、恩诺沙星、四环素、脱水红霉素和罗红霉素在地下水中的浓度甚至高于地表水。Hu等[32]通过对菜地内不同深度(地表以下10, 15, 20, 30, 40 m)地下水中11种抗生素的分析,结果表明,氯霉素和环丙沙星的浓度在地表以下10~15 m范围内随深度增加逐渐降低,而15~40 m范围内则随深度增加逐渐升高。姚林林等[13]对不同深度(10、25、50 m)地下水中25种抗生素随季节的变化情况进行分析,结果表明,春季地下水中抗生素的残留浓度高于冬季,且氟喹诺酮类和四环素类抗生素为主要残留成分,这与童蕾等的研究一致;春季不同深度地下水中抗生素总浓度的平均值分别为217.88 (10 m)、159.06 (25 m)和123.25 (50 m) ng·L-1;随着采样深度的增加,抗生素的总浓度呈递减趋势。自地表向地下迁移过程中,抗生素在包气带土壤和含水层沉积物上发生的物理、化学和生物过程,有利于阻碍其向深层地下水中迁移。
3 抗生素在地下水系统中的迁移转化规律(Migration and transformation of antibiotics in groundwater)
抗生素在地下水系统中易发生吸附解吸、水解、氧化还原及微生物转化等环境行为,根据土壤介质和地下水化学组成的不同,其迁移转化规律有所不同。
3.1 抗生素在地下水系统中的吸附迁移
抗生素从地表进入到地下首先要经过包气带,包气带土壤对抗生素污染地下水具有阻隔和缓冲作用。目前,研究多集中于抗生素在不同土壤组分中的吸附,以及环境因子对吸附行为的影响。由于抗生素种类繁多,结构差异大,土壤对抗生素的吸附强度因土壤类型和抗生素种类不同而有很大变化。辛醇-水分配系数和有机碳分配系数常用来表示吸附性能,由于抗生素多带有亲水极性官能团(如醛基、胺基、羧基等),其在土壤中的吸附性能多用土壤水分配系数Kd来表示,Kd值越大吸附作用越强。而Kd值又与抗生素类型和土壤矿物组成、pH、离子强度、温度和共存物质等有关[33]。Tolls[34]总结得出,兽药抗生素的Kd值在0.2~6 000 L·kg-1之间变化,四环素类和氟喹诺酮类抗生素随土壤溶解性有机质含量不同,变化范围为100~5 000 L·kg-1,随着相关报道增多,此范围也在不断扩大。
一般来说,抗生素的吸附量随土壤粘土含量、有效阳离子交换量、有机质含量的增加而增加[35]。蒙脱土、伊利土和高岭土为粘土矿物的主要成分,由于矿物结构不同,对抗生素的吸附能力差异较大。蒙脱土具有层状结构,抗生素易于插入层间使层间距扩大,导致吸附容量增大[36-37]。高岭土的吸附则以阳离子交换作用为主,其吸附容量较低,但吸附速率较快,受环境pH条件影响大。由于多数抗生素为两性电解质,具有多个解离常数,易随土壤溶液pH的变化发生质子化和去质子化反应带上电荷,从而在高岭土表面发生阳离子交换作用,其作用强弱受物质的电离程度支配[38-40]。在低pH条件下,抗生素多以阳离子形式存在,易于吸附在粘土矿物和土壤有机质上[41-42]。土壤溶液的离子强度和抗生素初始浓度同样影响吸附性能,部分磺胺抗生素的Kd值随着土壤溶液离子强度的升高而降低[43],带有供电子基团的四环素则与土壤溶液中共存的二价金属离子形成复合结构,稳定的复合体可增强吸附作用[44]。延长吸附时间同样可提高吸附量,磺胺类抗生素在蒙脱土和伊利土短期吸附过程中(< 2 d)具有较低的土壤水分配比(Kd< 40 L·kg-1),然而经过14 d作用后吸附量明显增加[45]。土壤和沉积物中的活性铁锰矿物对抗生素吸附作用较显著,有机质浓度和pH等环境因素同样影响吸附效果[46]。因此,作为地下水防污屏障的包气带在一定程度上阻隔了抗生素向下的迁移,然而地下水的污染仍无法避免。Dalkmann等[47]采用实验+模拟的方式预测了长期污灌土壤中抗生素的扩散过程,发现磺胺甲恶唑在不同类型土壤中的扩散半衰期为2~33 d,同样Baumgarten等[48]也对磺胺甲恶唑的迁移进行了实验模拟,结果得出在好氧、缺氧和厌氧条件下其半衰期分别为1~9 d、49 d和16 d,底物浓度、氧化还原条件和可生物降解有机碳含量等均对衰减有显著影响。另有实验证明,pH、离子强度、腐殖酸含量和入渗速率等水动力条件对砂质饱和含水层中抗生素迁移的影响较大[49-52],相比磺胺类抗生素而言,氟喹诺酮类抗生素较难迁移,短期渗滤实验较难穿透[53-55],四环素则在模拟强降雨条件下有少量穿透[56]。有研究证明,氧四环素于好氧条件下在土壤中的扩散速率比缺氧条件快,其在好氧条件下有菌和无菌存在的半衰期分别为29~56 d和99~120 d,而缺氧条件下有菌和无菌存在的半衰期分别为43~62 d和69~104 d[57]。
3.2 抗生素在地下水系统中的生物/非生物转化
抗生素在环境中的转化主要包括光解、水解和微生物降解等。光解作用主要发生在表层水体和土壤中,分为直接光解和间接光解[58],地下水系统中的抗生素以水解和微生物降解为主要转化途径。水解是抗生素降解的重要途径之一,Loftin等[59]对四环素类、磺胺类和大环内酯类药物的水解影响因子进行研究,发现离子强度对抗生素水解无明显影响。在环境pH偏离中性和温度升高的条件下,金霉素、土霉素和四环素的水解速率加快;此条件下,磺胺类和大环内酯类药物未发生明显水解,且活性较低。β-内酰胺类由于脱羧和开环作用,在弱酸性至碱性条件下水解速率较快,如青霉素水解为青霉醛和青霉胺等,这也是其大量使用但环境中检出率较低的主要原因[60-61]。头孢菌素类抗生素在酸性、碱性和中性条件的水环境中都能发生水解反应[62]。水解作用可导致抗生素药效失活,然而其降解产物对环境的影响仍有待探究。
尽管地下水中微生物数量十分稀缺,生物降解仍是地下水中抗生素降解的重要途径。近年来,抗生素的生物降解研究多集中于污水处理厂活性污泥降解过程,自然环境中抗生素的生物降解报道较少,以地表环境筛选的单一菌种或复合菌群对抗生素的降解作用为主,地下水中抗生素的生物降解研究十分有限。抗生素在环境中的长期存在可导致耐药菌的产生,地下水也同样面临耐药菌的威胁。耐药菌可直接破坏和修饰抗生素使其失活并降解,降解机理主要为水解、基团转移和氧化还原等[63]。环境中已发现的可降解菌种类有不动杆菌、红球菌、放线菌、假单胞菌、发酵丝状菌、芽孢杆菌和硝化细菌等[64]。这些耐药菌多通过功能酶的催化作用来破坏化学键,如降解青霉素的β-内酰胺环的酰胺酶,降解磺胺甲恶唑的乙酰基水解酶等[65]。环境因素可影响微生物的生存及活性,它们(pH、水分、温度、氧化还原条件、营养物质等)对抗生素的生物降解均有一定影响[66]。
地下水环境以低温、缺氧、避光为主要特点,多数抗生素在好氧条件下降解速率较快,部分抗生素如磺胺甲恶唑对氧含量不敏感,且在厌氧条件下的降解速率(0.071 d-1)比好氧条件(0.0651 d-1)下大。同样条件下,磺胺二甲基嘧啶和磺胺二甲氧嘧啶则无明显降解[67]。已发现的磺胺甲恶唑的降解菌以细菌(红球菌、芽孢杆菌、微杆菌、无色菌、滕黄微球菌等)为主,也有少量真菌(烟管菌),纯培养下真菌降解率可高达80%[68]。复合菌对降解也有协同作用,磺胺甲基异恶唑和磺胺甲恶唑在红球菌和黑曲霉菌共代谢作用下降解率达20%[69]。地下水的低温条件在一定程度上减缓了抗生素的降解速率,研究表明磺胺甲恶唑在4oC和25oC水-沉积物系统中的降解速率分别为40.5%和82.9%,随着有机质含量的增加降解率也相应提高[70]。Gavalchin等[71]研究了7种抗生素在30oC、20oC和4oC条件下土壤中30 d的残留量,结果表明,除了青霉素和链霉素外,其他5种抗生素随温度降低残留量明显升高。适宜温度下,红霉素和泰乐菌素的微生物降解率可分别达76.6%和99%,最佳降解温度在30℃以上,低温同样影响降解效果[72-73]。除温度外,降解时间也十分重要,环丙沙星在微生物量较少的水环境中比较稳定,1个月无显著降解,而土壤培养2个月降解速率为0.039 d-1,3个月后才略有矿化[74-75]。因此,与地表环境相比,抗生素一旦进入地下水系统,其残留时间将延长,降解也更加困难。
4 抗生素对地下水系统中微生物群落的影响(Effect of antibiotics on microbial community in groundwater system)
地下水系统中存在不同种类的微生物,当抗生素在水体中残留时间及浓度超过水体微生物的耐受性限度时,能杀死环境中某些微生物或抑制其生长,并显著地影响环境中微生物的种类、数量以及群落结构功能,使微生物群落产生抗性[76],破坏生态系统的平衡。
污染物对生态系统的影响一般从3个方面考虑:一是生物量;二是生物组成和多样性;三是系统稳定性,即抵抗外界环境变化的能力。而抗生素对地下水生态系统的影响主要从微生物个体、种群和系统生态功能的影响间接反映,包括微生物的生物量、活性、群落结构和毒性效应的影响等方面[77]。多数研究表明,抗生素可抑制微生物的生长,使生物量明显下降[74],但氧四环素在低浓度(< 15 mg·kg-1)下对细菌和真菌的生物量,及土壤酶活性并不造成影响[78],也有实验证明,磺胺嘧啶和氧四环素在高浓度(1 000 mg·kg-1)下对土壤基础呼吸和脱氢酶活性无明显作用[79]。抗生素的毒性效应多以单一菌种的急性毒性试验为主,长期慢性效应研究的较少,实验设置的抗生素浓度范围比实际情况通常高出2个数量级以上[80]。研究证明,环境中的药物残留对生物体的急性毒性影响较小[81],而长期慢性毒性效应还有待确证。Haack等[82]研究结果表明,地下水微生物群落结构在较低浓度的磺胺甲恶唑(240~520 μg·L-1) 30 d持续暴露后有显著变化,这种变化可能引起微生物群落功能的改变。为反映整体群落结构的变化,近年来,人们采用“污染诱导群落耐性”来评价生态系统的污染效应[83],Schmitt等[84]将不同浓度的磺胺氯哒嗪加入土壤,在黑暗条件下培养20 d后,采用Biolog方法分析不同浓度磺胺氯哒嗪对土壤微生物群落的诱导抗性效应,结果表明,与对照相比,磺胺氯哒嗪含量为7.3 mg·kg-1时微生物群落抗性增长10%。
5 抗生素抗性基因的环境行为(Environmental behavior of antibiotic resistance genes)
由于抗生素可诱导产生微生物群落耐药性,如鱼类养殖场中的细菌对阿莫西林、红霉素、氯霉素、甲氧苄啶等抗生素均具有耐药性[85],磺胺氯哒嗪在土壤中仅暴露7 d就使微生物耐药性提高[84]。微生物耐药性的提高可加速抗性基因在细菌间的传播和扩散,由于土壤含有丰富的微生物资源,抗生素污染引发的耐药菌富集将导致其成为巨大的耐药基因库[86],对地下水系统造成威胁。目前,抗生素抗性基因在养殖废弃物[87]、河流、湖泊等地表水[88]、土壤和沉积物[89]中均有检出,地下水中也有相关报道。Chee-Sanford等[90]研究发现,多种编码抗性的四环素抗性基因在猪场下游250 m处的地下水中都能检测到,证明其向地下水环境迁移的可能性。由于抗性基因可通过质粒、转座子、整合子等经接合、转化和转导等方式进行水平基因转移[91],使不同种菌株产生耐药,这将加速抗性基因从地表到地下的迁移和扩散。地下水一旦被抗生素污染,携带有抗性基因的微生物将通过竞争成为优势菌群,从而改变地下水系统的微生物群落结构。当然,环境因素(如光照、温度、含氧量等)在一定程度上可影响抗性基因的扩散,Knapp等[92]研究了11种红霉素和β-内酰胺抗性基因在抗生素暴露条件下的变化规律,发现仅有4种抗性基因erm(B)、erm(F)、blaSHV、blaTEM有检出,且经2 d的暴露后,基因数量有所上升,光照、厌氧和高温可加速抗性基因的降解[93],可见地下水环境的低温和黑暗条件不利于抗性基因的衰减,地下水系统很有可能成为抗性基因的另一储存库。
6 研究展望(Research prospects)
抗生素的来源、迁移转化及抗性基因的传播、扩散机制等方面的研究在我国还处于起步阶段,中国作为畜牧业大国,抗生素和抗性基因的污染不容忽视,一旦这些抗性菌株和抗性基因进入到食物链中,将会对人类公共健康造成巨大威胁[94]。目前,地下水系统中有关抗生素及抗性基因的报道还十分有限,其对地下水系统的生态风险研究几乎是空白,因此,今后应从以下几方面展开研究:
1. 开展地下水系统中抗生素及抗性基因的调查研究,以全面掌握我国地下水系统中不同类型的抗生素及抗性基因的污染现状,追踪污染来源,为地下水生态风险评估和相关环境标准的建立提供参考。
2. 查明抗生素在地下水系统中的迁移转化规律及抗性基因的扩散、转移机制,探讨地质介质、地下水特殊环境因子与污染物间的耦合关系,为制定地下水污染防治方案提供基础数据和科学依据。
3. 积累抗生素及抗性基因对地下水系统的生态毒理基础数据,开发快速检测和评价系统,以建立地下水抗生素及抗性基因的安全评估及预警体系。
致谢:我校校友、先师傅家谟院士曾对本研究团队的工作给予指导和鼓励。今特撰此文,以表达对先生的敬仰与追思。吾辈定不负先生厚望、为我国环保事业而努力奋斗!
[1] Kummerer K. Antibiotics in the aquatic environment - A review - Part I [J]. Chemosphere, 2009, 75(4): 417-434
[2] Ferech M, Coenen S, Malhotra-Kumar S, et al. Europeansurveillance of antimicrobial consumption (ESAC): Outpatient antibiotic use in Europe [J]. Journal of Antimicrobial Chemotherapy, 2006, 58(2): 401-407
[3] Hvistendahl M. Public health China takes aim at rampant antibiotic resistance [J]. Science, 2012, 336(6083): 795-795
[4] Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment [J]. Ecological Indicators, 2008, 8(1): 1-13
[5] Zhang Q Q, Ying G G, Pan C G, et al. Comprehensiveevaluation of antibiotics emission and fate in the river basins of China: Source analysis, multimedia modeling, and linkage to bacterial resistance [J]. Environmental Science & Technology, 2015, 49(11): 6772-6782
[6] Xu W H, Zhang G, Li X D, et al. Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China [J]. Water Research, 2007, 41(19): 4526-4534
[7] Martinez J L. Antibiotics and antibiotic resistance genes in natural environments [J]. Science, 2008, 321(5887): 365-367
[8] Dantas G, Sommer M O, Oluwasegun R D, et al. Bacteria subsisting on antibiotics [J]. Science, 2008, 320(5872): 100-103
[9] 杨会峰, 王贵玲, 张翼龙. 中国北方地下水系统划分方案研究[J]. 地学前缘, 2014, 21(4): 74-82
Yang H F, Wang G L, Zhang Y L. A division scheme of groundwater systems in North China [J]. Earth Science Frontiers, 2014, 21(4): 74-82 (in Chinese)
[10] 冯宝佳, 曾强, 赵亮, 等. 水环境中抗生素的来源分布及对健康的影响[J]. 环境监测管理与技术, 2013, 25(1): 14-21
Feng B J, Zeng Q, Zhao L, et al. Source distribution of antibiotics in water environment and its impact on human health [J]. The Administration and Technique of Environmental Monitoring, 2013, 25(1): 14-17, 21 (in Chinese)
[11] 闵敏, 陆光华. 水环境中的抗生素[J]. 化学与生物工程, 2013, 30(11): 19-22
Min M, Lu G H. Antibiotics in water environment [J]. Chemistry & Bioengineering, 2013, 30(11): 19-22 (in Chinese)
[12] Tong L, Huang S B, Wang Y X, et al. Occurrence of antibiotics in the aquatic environment of Jianghan Plain, central China [J]. Science of the Total Environment, 2014, 497: 180-187
[13] Yao L L, Wang Y X, Tong L, et al. Seasonal variation of antibiotics concentration in the aquatic environment:A case study at Jianghan Plain, central China [J]. Science of the Total Environment, 2015, 527: 56-64
[14] Michael I, Rizzo L, McArdell C S, et al. Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment: A review [J]. Water Research, 2013, 47(3): 957-995
[15] Accinelli C, Koskinen W C, Becker J M, et al. Environmental fate of two sulfonamide antimicrobial agents in soil [J]. Journal of Agricultural and Food Chemistry, 2007, 55(7): 2677-2682
[16] 王冉, 刘铁铮, 王恬. 抗生素在环境中的转归及其生态毒性[J]. 生态学报, 2006, 26(1): 265-270
Wang R, Liu T Z, Wang T. The fate of antibiotics in environment and its ecotoxicology: A review [J]. Acta Ecologica Sinica, 2006, 26(1): 265-270 (in Chinese)
[17] 李兆君, 姚志鹏, 张杰, 等. 兽用抗生素在土壤环境中的行为及其生态毒理效应研究进展[J]. 生态毒理学报, 2008, 3(1): 15-20
Li Z J, Yao Z P, Zhang J, et al. A review on fate and ecological toxicity of veterinary antibiotics in soil environments [J]. Asian Journal of Ecotoxicology, 2008, 3(1): 15-20 (in Chinese)
[18] Tong L, Li P, Wang Y X, et al. Analysis of veterinary antibiotic residues in swine wastewater and environmental water samples using optimized SPE-LC/MS/MS [J]. Chemosphere, 2009, 74(8): 1090-1097
[19] Barnes K K, Kolpin D W, Furlong E T, et al. A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States - I) Groundwater [J]. Science of the Total Environment, 2008, 402(2-3): 192-200
[20] Batt A L, Snow D D, Aga D S. Occurrence of sulfonamide antimicrobials in private water wells in Washington County, Idaho, USA [J]. Chemosphere, 2006, 64(11): 1963-1971
[21] Lapworth D J, Baran N, Stuart M E, et al. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence [J]. Environmental Pollution, 2012, 163: 287-303
[22] Lopez-Serna R, Jurado A, Vazquez-Sune E, et al. Occurrence of 95 pharmaceuticals and transformation products in urban groundwaters underlying the metropolis of Barcelona, Spain [J]. Environmental Pollution, 2013, 174: 305-315
[23] Jurado A, Vazquez-Sune E, Carrera J, et al. Emerging organic contaminants in groundwater in Spain: A review of sources, recent occurrence and fate in a European context [J]. Science of the Total Environment, 2012, 440: 82-94
[24] Teijon G, Candela L, Tamoh K, et al. Occurrence of emerging contaminants, priority substances (2008/105/CE) and heavy metals in treated wastewater and groundwater at Depurbaix facility (Barcelona, Spain) [J]. Science of the Total Environment, 2010, 408(17): 3584-3595
[25] Garcia-Galan M J, Garrido T, Fraile J, et al. Application of fully automated online solid phase extraction-liquid chromatography-electrospray-tandem mass spectrometry for the determination of sulfonamides and their acetylated metabolites in groundwater [J]. Analytical and Bioanalytical Chemistry, 2011, 399(2): 795-806
[26] Cabeza Y, Candela L, Ronen D, et al. Monitoring the occurrence of emerging contaminants in treated wastewater and groundwater between 2008 and 2010. The Baix Llobregat (Barcelona, Spain) [J]. Journal of Hazardous Materials, 2012, 239: 32-39
[27] Fram M S, Belitz K. Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California [J]. Science of the Total Environment, 2011, 409(18): 3409-3417
[28] Vulliet E, Cren-Olive C. Screening of pharmaceuticals and hormones at the regional scale, in surface and groundwaters intended to human consumption [J]. Environmental Pollution, 2011, 159(10): 2929-2934
[29] Sacher F, Lang F T, Brauch H J, et al. Pharmaceuticals in groundwaters - Analytical methods and results of a monitoring program in Baden-Wurttemberg, Germany [J]. Journal of Chromatography A, 2001, 938(1-2): 199-210
[30] Loos R, Locoro G, Comero S, et al. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water [J]. Water Research, 2010, 44(14): 4115-4126
[31] Grujic S, Vasiljevic T, Lausevic M. Determination of multiple pharmaceutical classes in surface and ground waters by liquid chromatography-ion trap-tandem mass spectrometry [J]. Journal of Chromatography A, 2009, 1216(25): 4989-5000
[32] Hu X G, Zhou Q X, Luo Y. Occurrence and source analysis of typical veterinary antibiotics in manure, soil, vegetables and groundwater from organic vegetable bases, northern China [J]. Environmental Pollution, 2010, 158(9): 2992-2998
[33] Carballa M, Fink G, Omil F, et al. Determination of the solid-water distribution coefficient (Kd) for pharmaceuticals, estrogens and musk fragrances in digested sludge [J]. Water Research, 2008, 42(1-2): 287-295
[34] Tolls J. Sorption of veterinary pharmaceuticals in soils- A review [J]. Environmental Science & Technology, 2001, 35(17): 3397-3406
[35] Sukul P, Lamshoft M, Zuhlke S, et al. Sorption and desorption of sulfadiazine in soil and soil-manure systems [J]. Chemosphere, 2008, 73(8): 1344-1350
[36] Wu Q, Li Z, Hong H, et al. Adsorption and intercalation of ciprofloxacin on montmorillonite [J]. Applied Clay Science, 2010, 50(2): 204-211
[37] Chen H, Gao B, Yang L Y, et al. Montmorillonite enhanced ciprofloxacin transport in saturated porous media with sorbed ciprofloxacin showing antibiotic activity [J]. Journal of Contaminant Hydrology, 2015, 173: 1-7
[38] Li Z, Schulz L, Ackley C, et al. Adsorption of tetracycline on kaolinite with pH-dependent surface charges [J]. Journal of Colloid and Interface Science, 2010, 351(1): 254-260
[39] Li Z H, Hong H L, Liao L B, et al. A mechanistic study of ciprofloxacin removal by kaolinite [J]. Colloids and Surfaces B-Biointerfaces, 2011, 88(1): 339-344
[40] Fukahori S, Fujiwara T, Ito R, et al. pH-dependent adsorption of sulfa drugs on high silica zeolite: Modeling and kinetic study [J]. Desalination, 2011, 275(1-3): 237-242
[41] Parolo M E, Savini M C, Vallés J M, et al. Tetracycline adsorption on montmorillonite: pH and ionic strength effects [J]. Applied Clay Science, 2008, 40(1-4): 179-186
[42] Droge S T, Goss K U. Sorption of organic cations to phyllosilicate clay minerals: CEC-normalization, salt dependency, and the role of electrostatic and hydrophobic effects [J]. Environmental Science & Technology, 2013, 47(24): 14224-14232
[43] Srinivasan P, Sarmah A K, Manley-Harris M. Sorption of selected veterinary antibiotics onto dairy farming soils of contrasting nature [J]. Science of the Total Environment, 2014, 472: 695-703
[44] Zhao Y, Tan Y, Guo Y, et al.Interactions of tetracycline with Cd (II), Cu (II) and Pb (II) and their cosorption behavior in soils [J]. Environmental Pollution, 2013, 180: 206-213
[45] Kahle M, Stamm C. Time and pH-dependent sorption of the veterinary antimicrobial sulfathiazole to clay minerals and ferrihydrite [J]. Chemosphere, 2007, 68(7): 1224-1231
[46] Zhao Y, Geng J, Wang X, et al. Adsorption of tetracycline onto goethite in the presence of metal cations and humic substances [J]. Journal of Colloid and Interface Science, 2011, 361(1): 247-251
[47] Dalkmann P, Siebe C, Amelung W, et al. Does long-term irrigation with untreated wastewater accelerate the dissipation of pharmaceuticals in soil? [J]. Environmental Science & Technology, 2014, 48(9): 4963-4970
[48] Baumgarten B, Jahrig J, Reemtsma T, et al. Long term laboratory column experiments to simulate bank filtration:Factors controlling removal of sulfamethoxazole [J]. Water Research, 2011, 45(1): 211-220
[49] Chen H, Gao B, Li H, et al. Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media [J]. Journal of Contaminant Hydrology, 2011, 126(1-2): 29-36
[50] Zhang L, Zhu D, Wang H, et al. Humic acid-mediated transport of tetracycline and pyrene in saturated porous media [J]. Environmental Toxicology and Chemistry, 2012, 31(3): 534-541
[51] Chen H, Ma L Q, Gao B, et al. Influence of Cu and Ca cations on ciprofloxacin transport in saturated porous media [J]. Journal of Hazardous Materials, 2013, 262: 805-811
[52] Unold M, Kasteel R, Groeneweg J, et al. Transport of sulfadiazine in undisturbed soil columns: Effects of flow rate, input concentration and pulse duration [J]. Journal of Environmental Quality, 2010, 39: 2147-2159
[53] Banzhaf S, Nodler K, Licha T, et al. Redox-sensitivity and mobility of selected pharmaceutical compounds in a low flow column experiment [J]. Science of the Total Environment, 2012, 438: 113-121
[54] Drillia P, Stamatelatou K, Lyberatos G. Fate and mobility of pharmaceuticals in solid matrices [J]. Chemosphere, 2005, 60(8): 1034-1044
[55] Maszkowska J, Kolodziejska M, Bialk-Bielinska A, et al. Column and batch tests of sulfonamide leaching from different types of soil [J]. Journal of Hazardous Materials, 2013, 260: 468-474
[56] Ostermann A, Siemens J, Welp G, et al. Leaching of veterinary antibiotics in calcareous Chinese croplands [J]. Chemosphere, 2013, 91(7): 928-934
[57] Yang J F, Ying G G, Zhou L J, et al. Dissipation of oxytetracycline in soils under different redox conditions [J]. Environmental Pollution, 2009, 157(10): 2704-2709
[58] 葛林科, 张思玉, 谢晴, 等. 抗生素在水环境中的光化学行为[J]. 中国科学: 化学, 2010, 40(2): 124-135
Ge L K, Zhang S Y, Xie Q, et al. Progress in studies on aqueous environmental photochemical behavior of antibiotics [J]. Scientia Sinica Chimica, 2010, 40(2): 124-135 (in Chinese)
[59] Loftin K A, Adams C D, Meyer M T, et al. Effects of ionic strength, temperature, and pH on degradation of selected antibiotics [J]. Journal of Environmental Quality, 2008, 37(2): 378-386
[60] Kümmerer K. Antibiotics in the aquatic environment - A review - Part I [J]. Chemosphere, 2009, 75: 417-434
[61] 潘祖亭, 颜承农, 王润涛. 金属离子催化β-内酰胺类抗生素水解的荧光光谱研究[J]. 分析试验室, 2001, 20(4): 1-4
Pan Z T, Yan C N, Wang R T. Study on catalyzed hydrolysis of β-lactams antibiotics by metal ions with spectrofluorometry [J]. Chinese Journal of Analysis Laboratory, 2001, 20(4): 1-4 (in Chinese)
[62] 陈兆坤, 胡昌勤. 头孢菌素类抗生素的降解机制[J]. 国外医药: 抗生素分册, 2004, 25: 249-265
[63] 崔浩. 抗生素的细菌耐药性: 酶降解和修饰[J]. 国外医学药学分册, 2006, 33(1): 34-37
[64] 贺德春, 许振成, 吴根义, 等. 四环素类抗生素的环境行为研究进展[J]. 动物医学进展, 2011, 32(4): 98-102
He D C, Xu Z C, Wu G Y, et al. Advance in heat stress mechanism effect in animals [J]. Progress in Veterinary Medicine, 2011, 32(4): 98-102 (in Chinese)
[65] Larcher S, Yargeau V. Biodegradation of sulfamethoxazole by individual and mixed bacteria [J]. Applied Microbiology and Biotechnology, 2011, 91(1): 211-218
[66] 俞慎,王敏,洪有为. 环境介质中的抗生素及其微生物生态效应[J]. 生态学报, 2011, 31(15): 4437-4446
Yu S, Wang M, Hong Y W. Antibiotics in environmental matrices and their effects on microbial ecosystems [J]. Acta Ecologica Sinica, 2011, 31(15): 4437-4446 (in Chinese)
[67] 钟振兴. 磺胺抗生素在湖泊沉积物中的吸附和降解行为研究[D]. 重庆: 西南大学, 2012: 33-38
Zhong Z X. Adsorption and degradation of sulfonamides in lake sediments [D]. Chongqing: Southwest University, 2012: 33-38 (in Chinese)
[68] Larcher S, Yargeau V. Biodegradation of sulfamethoxazole:Current knowledge and perspectives [J]. Applied Microbiology and Biotechnology, 2012, 96(2): 309-318
[69] Gauthier H, Yargeau V, Cooper D G. Biodegradation of pharmaceuticals by Rhodococcus rhodochrous and Aspergillus niger by co-metabolism [J]. Science of the Total Environment, 2010, 408(7): 1701-1706
[70] Xu B, Mao D, Luo Y, et al. Sulfamethoxazole biodegradation and biotransformation in the water-sediment system of a natural river [J]. Bioresource Technology, 2011, 102(14): 7069-7076
[71] Gavalchin J, Katz S. The persistence of fecal-borne antibiotics in soil [J]. Journal of Aoac International, 1994, 77(2): 481-485
[72] 毛菲菲, 刘畅, 何梦琦, 等. 红霉素降解菌的筛分及其降解特性的研究[J]. 环境科学与技术, 2013, 36(7): 9-12
Mao F F, Liu C, He M Q, et al. Isolation and identification of an erythromycin degradation and study on its biodegradation characteristics [J]. Environmental Science & Technology, 2013, 36(7): 9-12 (in Chinese)
[73] 孙瑞珠, 马玉龙, 张娟, 等. 一株泰乐菌素高效降解菌的分离鉴定及其降解特性[J]. 微生物学通报, 2014, 41(4): 681-690
Sun R Z, Ma Y L, Zhang J, et al. Isolation and identification of a tylosin-degradation strain and its degradation characteristics [J]. Microbiology China, 2014, 41(4): 681-690 (in Chinese)
[74] Girardi C, Greve J, Lamshoft M, et al. Biodegradation of ciprofloxacin in water and soil and its effects on the microbial communities [J]. Journal of Hazardous Materials, 2011, 198: 22-30
[75] Zhang C L, Guo X L, Li B Y, et al. Biodegradation of ciprofloxacin in soil [J]. Journal of Molecular Liquids, 2012, 173: 184-186
[76] 方淑霞, 王大力, 朱丽华, 等. 抗生素对微生物的联合与低剂量毒性研究进展[J]. 生态毒理学报, 2015, 10(2): 69-75
Fang S X, Wang D L, Zhu L H, et al. Progress in researches on toxicity of antibiotics in low dose and mixture exposure to microorganisms [J]. Asian Journal of Ecotoxicology, 2015, 10(2): 69-75 (in Chinese)
[77] Martinez J L. Environmental pollution by antibiotics and by antibiotic resistance determinants [J]. Environmental Pollution, 2009, 157(11): 2893-2902
[78] Chen W, Liu W, Pan N, et al. Oxytetracycline on functions and structure of soil microbial community [J]. Journal of Soil Science and Plant Nutrition, 2013, 13(4): 967-975
[79] Thiele-Bruhn S, Beck I C. Effects of sulfonamide and tetracycline antibiotics on soil microbial activity and microbial biomass [J]. Chemosphere, 2005, 59(4): 457-465
[80] Escher B I, Baumgartner R, Koller M, et al. Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater [J]. Water Research, 2011, 45(1): 75-92
[81] Fent K, Weston A A, Caminada D. Ecotoxicology of human pharmaceuticals [J]. Aquatic Toxicology, 2006, 76(2): 122-159
[82] Haack S K, Metge D W, Fogarty L R, et al. Effects on groundwater microbial communities of an engineered 30-day in situ exposure to the antibiotic sulfamethoxazole [J]. Environmental Science & Technology, 2012, 46(14): 7478-7486
[83] Schmitt-Jansen M, Veit U, Dudel G, et al. An ecological perspective in aquatic ecotoxicology: Approaches and challenges [J]. Basic and Applied Ecology, 2008, 9(4): 337-345
[84] Schmitt H, Haapakangas H, van Beelen P. Effects of antibiotics on soil microorganisms:Time and nutrients influence pollution-induced community tolerance [J]. Soil Biology & Biochemistry, 2005, 37(10): 1882-1892
[85] Miranda C D, Kehrenberg C, Ulep C, et al. Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms [J]. Antimicrobial Agents and Chemotherapy, 2003, 47(3): 883-888
[86] 苏建强,黄福义,朱永官. 环境抗生素抗性基因研究进展[J]. 生物多样性, 2013, 21(4): 481-487
Su J Q, Huang F Y, Zhu Y G. Antibiotics resistance genes in the environment [J]. Biodiversity Science, 2013, 21(4): 481-487 (in Chinese)
[87] 高盼盼, 罗义, 周启星, 等. 水产养殖环境中抗生素抗性基因(ARGs)的研究及进展[J]. 生态毒理学报, 2009, 4(6): 770-779
Gao P P, Luo Y, Zhou Q X, et al. Research advancement of antibiotics resistance genes (ARGs) in aquaculture environment [J]. Asian Journal of Ecotoxicology, 2009, 4(6): 770-779 (in Chinese)
[88] Luo Y, Mao D, Rysz M, et al. Trends in antibiotic resistance genes occurrence in the Haihe River, China [J]. Environmental Science & Technology, 2010, 44: 7220-7225
[89] Barkovskii A L, Green C, Hurley D. The occurrence, spatial and temporal distribution, and environmental routes of tetracycline resistance and integrase genes in Crassostrea virginica beds [J]. Marine Pollution Bulletin, 2010, 60(12): 2215-2224
[90] Chee-Sanford J, Aminov R, Krapac I, et al. Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities [J]. Applied and Environmental Microbiology, 2001, 67(4): 1494-1502
[91] 杨凤霞, 毛大庆, 罗义, 等. 环境中抗生素抗性基因的水平传播扩散[J]. 应用生态学报, 2013, 24(10): 2993-3002
Yang F X, Mao D Q, Luo Y, et al. Horizontal transfer of antibiotic resistance genes in the environment [J]. Chinese Journal of Applied Ecology, 2013, 24(10): 2993-3002 (in Chinese)
[92] Knapp C W, Zhang W, Sturm B S, et al. Differential fate of erythromycin and beta-lactam resistance genes from swine lagoon waste under different aquatic conditions [J]. Environmental Pollution, 2010, 158(5): 1506-1512
[93] 徐冰洁, 罗义, 周启星, 等. 抗生素抗性基因在环境中的来源、传播扩散及生态风险[J]. 环境化学, 2010, 29(2): 169-178
Xu B J, Luo Y, Zhou Q X, et al. Sources, dissemination and ecological risks of antibiotic resistances genes (ARGs) in the environment [J]. Environmental Chemistry, 2010, 29(2): 169-178 (in Chinese)
[94] Akiyama T, Savin M C. Populations of antibiotic-resistant conform bacteria change rapidly in a wastewater effluent dominated stream [J]. Science of the Total Environment, 2010, 408(24): 6192-6201
◆
Review on the Environmental Behavior and Ecological Effect of Antibiotics in Groundwater System
Tong Lei, Yao Linlin, Liu Hui, Wang Yanxin*
School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
Received 27 November 2015 accepted 15 March 2016
The residue of antibiotics in the environment has caused great concern. With the increasing report on groundwater pollution, the potential impact of antibiotics on the groundwater system is nonnegligible. In the present paper, the source, pollution situation, transport and transformation of antibiotics in groundwater are systematically reviewed. The effects of antibiotics on the microbial community in groundwater system, and the potential pollution trend of relative resistance genes induced by antibiotics are summarized. Due to the difficulty to be noticed, antibiotics entered into the underground water will exist for a long time. Currently, the research on the environmental behavior and ecological effects of antibiotics and relative resistance genes in groundwater system is quite limited. Accordingly, the significance of relative research and future directions are pointed out here.
antibiotics; resistance genes; groundwater system; environmental behavior; ecological effect
10.7524/AJE.1673-5897.20151127002
国家自然科学基金创新群体项目(41521001);国家自然科学基金青年基金(41103063);中央高校基本科研业务费专项资金(CUGL100217,CUG120406)
童蕾(1982-),女,博士,副教授,研究方向为环境化学、地下水有机污染分析,E-mail: tonglei0710@aliyun.com
*通讯作者(Corresponding author), E-mail: yx.wang@cug.edu.cn
2015-11-27 录用日期:2016-03-15
1673-5897(2016)2-027-10
X171.5
A
简介:王焰新 (1963—),男,博士,教授,主要从事环境水文地质研究,发表SCI论文130余篇。
童蕾, 姚林林, 刘慧, 等. 抗生素在地下水系统中的环境行为及生态效应研究进展[J]. 生态毒理学报,2016, 11(2): 27-36
Tong L, Yao L L, Liu H, et al. Review on the environmental behavior and ecological effect of antibiotics in groundwater system [J]. Asian Journal of Ecotoxicology, 2016, 11(2): 27-36 (in Chinese)