哈尔滨东部海西期钾长花岗岩的锆石U-Pb年代学及其地质意义
2016-11-12牛延宏周志广牛文治王果胜赵孝旗李红英李家亮
牛延宏, 周志广, 牛文治, 王果胜, 赵孝旗, 李红英, 李家亮
(1.黑龙江省地质调查研究总院 齐齐哈尔分院,哈尔滨 150036; 2.中国地质大学 地球科学与资源学院,北京 100083)
哈尔滨东部海西期钾长花岗岩的锆石U-Pb年代学及其地质意义
牛延宏1, 周志广2, 牛文治2, 王果胜2, 赵孝旗2, 李红英2, 李家亮2
(1.黑龙江省地质调查研究总院 齐齐哈尔分院,哈尔滨 150036; 2.中国地质大学 地球科学与资源学院,北京 100083)
通过对哈尔滨东部地区海西期钾长花岗岩年代学、地球化学特征的研究,讨论兴蒙造山带的演化。研究区钾长花岗岩呈肉红色细粒,主要由钾长石、斜长石、石英和黑云母组成。岩石中SiO2的质量分数为74.70%~75.70%,为酸性岩。Al2O3的质量分数为12.07%~13.18%;Na2O+K2O的质量分数为7.78%~8.09%,K2O/Na2O为0.93%~1.60%。里特曼指数为1.85~2.06。∑REE的质量分数为96.32×10-6~172.83×10-6,δEu为0.21~0.77,为铕负异常;铝饱和指数为0.88~1.12,属于高钾钙碱性花岗岩,与造山带垮塌导致的大规模岩石圈伸展作用有关。该花岗岩LA-ICP-MS锆石U-Pb年龄为(298.54±0.86) Ma(MSWD=0.94),属于晚石炭世,形成于古亚洲洋闭合后兴安地块和松嫩地块碰撞拼合后的伸展作用。
哈尔滨;钾长花岗岩;锆石U-Pb年龄;海西期;地质意义
图1 研究区地质简图及构造位置图Fig.1 Geological sketch map of studied area and its tectonic locationJ3ms.帽儿山组火山岩; P2t.土门岭组变质岩; C2P1y.杨木岗组变质岩; C2t.唐家屯组火山岩; J1χργ.燕山期碱长花岗岩; J1γη.燕山期二长花岗岩; C2χργ.华力西期碱长花岗岩
中国东北地区花岗岩十分发育,这与其大地构造位置有关——位于西伯利亚板块、华北板块和太平洋板块之间,自西向东分别由额尔古纳地块、兴安地块、松嫩地块、佳木斯地块—兴凯地块组成。显生宙以来经历了古亚洲洋构造域和太平洋构造域的演化、叠加,发生了多期次的岩浆作用和变质作用,因而其构造背景极其复杂[1-8]。黑龙江省哈尔滨东部(简称“滨东”)地区花岗岩,以钾长花岗岩为主,大地构造位置位于兴蒙造山带东部,经历了漫长而复杂的构造演化。特殊的大地构造位置以及复杂的构造演化使研究区成为研究古亚洲洋发展演化的重要突破口。多年来,很多研究单位及学者对该区发育的钾长花岗岩进行了研究,特别是20世纪70年代以来,先后开展了1∶500 000、1∶200 000地质调查以及矿区1∶50 000地质调查等工作;但是,未讨论过海西期钾长花岗岩的形成时代及其构造属性。本文通过对滨东地区海西期钾长花岗岩的锆石U-Pb年代学特征、地球化学特征的研究,讨论兴蒙造山带的演化,对阐明西伯利亚板块与华北板块之间的古亚洲洋碰撞闭合时间具有重要的意义。
1 区域地质特征
研究区位于松嫩—张广才岭地块的东缘,西伯利亚板块与华北板块之间的兴蒙造山带东段(图1)[9-11]。古生代期间,经历了古亚洲洋的演化和多陆块的拼合,研究区未出露松嫩—张广才岭地块基底岩系;在晚石炭世开始进入盆地发展阶段,形成了上石炭统唐家屯组火山碎屑岩沉积建造,代表张裂环境下的陆缘海盆形成阶段。晚石炭世—早二叠世沉积了陆相湖侵—湖退沉积旋回的杨木岗组,代表裂陷早期拉张作用增强阶段;在中二叠世沉积了滨海—浅海相的土门岭组。晚中生代以来,研究区进入太平洋构造域演化阶段,表现为板内盆岭构造发育阶段,晚侏罗世形成了NE向的帽儿山组陆相火山断陷盆地。早白垩世以岩浆喷发为主,形成了宁远村组陆相火山断陷盆地。研究区的侵入岩可分为海西期侵入岩类和燕山期侵入岩类,海西期侵入岩的岩性主要有辉长闪长岩、花岗岩、花岗闪长岩和白岗岩;燕山期侵入岩主要为晚三叠世—早侏罗世花岗闪长岩、三叠世—早侏罗世二长花岗岩、晚三叠世—早侏罗世钾长花岗岩、晚三叠世—早侏罗世花岗斑岩。
2 岩石学及地球化学
作者对出露于松嫩—张广才岭地块红星屯地区的海西期钾长花岗岩进行了详细野外地质调查,发现海西期钾长花岗岩侵入上石炭统唐家屯组,唐家屯组流纹岩可见红褐色烘烤边。在探槽中见早侏罗世花岗斑岩侵入海西期钾长花岗岩,接触部位的细粒钾长花岗岩变红。在野外露头可见中二叠统土门岭组大理岩不整合于海西期钾长花岗岩之上。红星屯岩体主要岩石类型为细粒钾长花岗岩,岩石风化面呈灰褐色,新鲜面呈肉红色,细粒花岗结构,块状构造。岩石由钾长石(质量分数为60%±)、斜长石(6%±)、石英(33%±)和黑云母(1%)组成。钾长石:半自形板状—他形粒状,简单双晶,条纹结构;多条纹长石,晶面略脏,弱黏土化,粒径0.2~1.9 mm;斜长石:半自形板状,聚片双晶较窄,卡钠复合双晶,多更长石,弱黏土化,具破裂现象,粒径0.4~2.0 mm;石英:他形粒状,波状消光,粒径0.2~1.6 mm,个别可达2.7 mm;黑云母:褐色片状,多色性明显,Ng’显深褐色,Np’显浅褐黄色,晶体具绿泥石化,粒径0.16~0.72 mm。
红星屯岩体样品的地球化学分析结果见表1。红星屯岩体SiO2质量分数(w)为74.70%~75.70%,平均为75.24%,含量较高,为酸性岩。Al2O3质量分数为12.07%~13.18%,CaO为0.37%~1.79%,TiO2(0.07%~0.14%)和P2O5(0.04%~0.43%)含量较低,全碱(Na2O+K2O)质量分数为7.78%~8.09%。A/CNK值为0.88~1.12,具有I型花岗岩的特征。里特曼指数(δ)为1.85~2.06,为钙碱性花岗岩,TFeO/(TFeO+MgO)值为0.74%~0.90%,为富铁。在K2O-SiO2图解(图2)中落在高钾钙碱性系列区域内,属于高钾钙碱性花岗岩;在铝质-准铝质花岗岩判别图解中(图3),样品落入准铝-过铝质区域。
稀土元素总质量分数 (w∑REE)为96.32×10-6
表1 红星屯岩体主元素(w/%)、痕量元素(w/10-6)和稀土元素(w/10-6)分析结果
(续表1)
图2 红星屯岩体K2O-SiO2图解Fig.2 K2O-SiO2 diagram of Hongxing village intrusions
图3 红星屯岩体A/CNK-A/NK图解Fig.3 A/CNK-A/NK diagram of Hongxing village intrusions
~172.83×10-6,轻稀土元素质量分数(wLREE)为85.83×10-6~157.86×10-6,重稀土元素(wHREE)为10.49×10-6~15.40×10-6,轻重稀土比值(wLREE/wHREE)为8.18~10.55,Eu负异常0.21~0.77,轻重稀土分馏程度强(wLa/wYb)N=10.71~11.88。海西期钾长花岗岩具有相对富集轻稀土、亏损重稀土元素的右倾型稀土元素分配曲线特征(图4)。在痕量元素原始地幔标准化蛛网图(图5)中,富集大离子亲石元素K、Rb,相对亏损Ba、Sr。高场强元素Zr、Th含量较高,Ta、P、Ti含量较低,其中P和Ti的亏损表明岩浆经历了黑云母、榍石、角闪石及磷灰石等含P、Ti矿物的分离结晶。
3 锆石U-Pb年代学
图4 红星屯岩体稀土元素球粒陨石标准化分布型式图Fig.4 Primitive mantle-normalized trace element distribution of the Hongxing village intrusions据李怀坤等(2009) [12]
图5 红星屯岩体痕量元素原始地幔标准化图解Fig.5 Chondrite-normalized REE distribution pattern of Hongxing village intrusions作图方法据J.Pearce等(1984) [13]
本文同位素测龄样品(样号P2LT29)在研究区中东部秋皮沟东采石场内采取,样品新鲜,无风化现象,呈肉红色,样品质量13 kg。在河北省地质矿产局廊坊实验室用常规方法从样品中分离锆石,分离出锆石颗粒较多,保证了用于U-Pb年代学测试的锆石质量。在北京离子探针中心制靶后,在天津地质矿产研究所进行LA-ICP-MS测龄,检测依据为DZ/T0184.3-1997,激光斑束直径为35 μm,频率为8~10 Hz。激光剥蚀物质以He为载气送入NEPTUNE质谱仪中,数据处理采用GLITTER(ver 4.0),样品的加权平均年龄计算及谐和图的绘制采用ISOPLOT程序,具体方法见参考文献[12]。锆石晶体长90~200 μm,宽40~90 μm,大部分呈自形—半自形的粒状或长柱状,具有典型的岩浆振荡生长环带(图6)。锆石wTh/wU比值为0.38~1.57,暗示其具有岩浆成因的特点。共对25个锆石颗粒进行了LA-MC -ICPMS U-Pb法年龄测定(表2),校正后的有效数据24个。在锆石U-Pb谐和图中,大多数样品位于谐和线上或其附近。4号、5号点锆石年龄为(401±2) Ma、(316±2) Ma,可能为捕掳的前期锆石。综上所述,红星屯岩体锆石U-Pb谐和年龄为(298.54±0.86) Ma(MSWD=0.94)(图7)。
图6 红星屯岩体锆石阴极发光图像Fig.6 Cathodoluminescence images of zircons from the Hongxing village intrusions
图7 红星屯岩体锆石的U-Pb年龄谐和图及加权平均年龄Fig.7 Concordia diagrams of zircon U-Pb dating results and weighted mean ages of Hongxing village intrusions
4 地质意义
红星屯岩体富铝、富铁,A/CNK值为0.88~1.12,属于高钾钙碱性I型花岗岩。从相关花岗岩构造判别图解中可以看出,在花岗岩类形成环境的痕量元素wRb-wTa+Yb图解上,钾长花岗岩体投影点落入Post-COLG区,即后碰撞花岗岩区(图8)。在构造环境SiO2-Al2O3判别图上,样品都落在POG(造山后花岗岩)区内(图9)。在R1-R2图解上大部分样品落入造山晚期花岗岩区内(图10)。
图8 花岗岩的Rb-(Ta+Yb)图解Fig.8 Rb-(Ta+Yb) diagram of granites作图方法据J.Pearce等(1984) [13]
图9 构造环境SiO2-Al2O3判别图解Fig.9 SiO2-Al2O3 diagram for tectonic setting作图方法据P.D.Maniar等(1989) [14]
图10 构造环境R1-R2判别图Fig.10 R1-R2 diagram for tectonic setting作图方法据R.A.Batchelor等(1989) [15]
大兴安岭地区古生代经历了额尔古纳地块、兴安地块、松嫩地块和佳木斯地块之间的碰撞演化过程。它们之间以小或中型洋盆相隔,共同属于西伯利亚板块的亲缘陆块[16,17]。随着古亚洲洋的不断闭合,这些地块向华北板块和西伯利亚板块之间不断靠拢并最终发生碰撞拼合,额尔古纳地块与兴安地块至少在490 Ma以前沿塔源—喜桂图断裂闭合[18,19]。而在早石炭世松嫩地块和额尔古纳—兴安地块之间的内蒙古中部海槽沿黑河—嫩江—扎赉特缝合带碰撞拼合,该碰撞拼合带向西与索伦—贺根山缝合带相连[20]。近年来有研究表明,中志留世研究区发育一套偏铝质钙碱性火山岩,岩石组合包括闪长岩、花岗岩闪长岩、二长岩,表现出与俯冲有关的弧火山岩属性[11]。在早石炭世发育有钙碱性闪长岩-花岗闪长岩-二长花岗岩组合,暗示这些岩石形成于板块碰撞前的洋壳俯冲环境[21-23]。周长勇发现有与板块俯冲作用有关的辉长岩都可表明在早石炭世松嫩地块与兴安地块之间存在洋壳俯冲作用[24]。在晚石炭世发育有高钙碱性碰撞后成因的I型花岗岩,表明研究区在晚石炭世兴安地块和松嫩地块之间的古亚洲洋已经闭合[25-27]。同时沿着二连—嫩江—黑河缝合带发育有挤压拼贴造山后伸展环境下的年龄为290~260 Ma的A花岗岩[28,29]。因此,晚泥盆世—二叠纪研究区经历了洋壳俯冲、陆陆碰撞和造山后伸展作用。另外,地层学研究表明,松嫩地块在早石炭世火山活动(353~352 Ma B.P.)中伴有洪湖土河组海相沉积[30],晚石炭世转为陆相火山-碎屑沉积(黑龙江地质矿产局,1993)。
结合以上分析,在晚泥盆世—早石炭世,古亚洲洋进入收缩闭合阶段,形成了与洋壳俯冲有关的岩浆岩。沿贺根山—嫩江缝合线发现有碰撞拼合的直接产物——蓝片岩,其年龄为344 Ma[31]。在晚石炭世,研究区形成的红星屯岩体具有碰撞后花岗岩特征,是在兴安地块和松嫩地块之间的古亚洲洋闭合后伸展环境下形成的,其年龄为(298.54±0.86) Ma。
5 结 论
a.黑龙江滨东地区海西期花岗岩为钾长花岗岩,属于高钙碱性岩系的I型花岗岩。
b.LA-ICP-MS 锆石U-Pb测龄结果显示滨东地区晚海西期花岗岩的形成年龄为(298.54±0.86) Ma,属于晚石炭世。
c.该岩石形成于古亚洲洋闭合后,兴安地块和松嫩地块碰撞拼合后的伸展作用。
[1] 许文良,王枫,裴福萍,等.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报,2013,29(2):339-353.
Xu W L, Wang F, Pei F P,etal. Mesozoic tectonic regimes and regional ore-forming background in NE China: Constraints from spatial and temporal variations of Mesozoic volcanic rock associations[J]. Acta Petrologica Sinica, 2013, 29(2): 339-353. (In Chinese)
[2] 吴福元,Wilde S,孙德有.佳木斯地块片麻状花岗岩的锆石离子探针U-Pb年龄[J].岩石学报,2001,17(3):443-452.
Wu F Y, Wilde S, Sun D Y. Zircon SHRMP U-Pb ages of gneissic granites in Jiamusi massif, northeastern China[J]. Acta Petrologica Sinica, 2001, 17(3): 443-452. (In Chinese)
[3] 万天丰,朱鸿.中国大陆及邻区中生代—新生代大地构造与环境变迁[J].现代地质,2002,16(2):107-120.
Wan T F, Zhu H. Tectonics and environment change of Meso-Cenozoic in China continent and its adjacent areas[J]. Geoscience, 2002, 16(2): 107-120. (In Chinese)
[4] 汪新文,刘友元.东北地区前中生代构造演化及其与晚中生代盆地发育的关系[J].现代地质,1997,11(4):434-443.
Wang X W, Liu Y Y. Pre-Mesozoic tectonic evolution and its relation with development of late Mesozoic basins in Northeastern China[J]. Geoscience, 1997, 11(4): 434-443. (In Chinese)
[5] 吴福元,孙德有,林强.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报,1999,15(2):181-189.
Wu F Y, Sun D Y, Lin Q. Petrogenesis of the Phanerozoic granites and crustal growth in Northeast China[J]. Acta Petrologica Sinica, 1999, 15(2): 181-189. (In Chinese)
[6] Wu F Y, Jahn B, Wilde S,etal. Phanerozoic crustal growth: U-Pb and Sr-Nd isotopic evidence from the granites in northeastern China[J]. Tectonophysics, 2000, 328(1): 89-113.
[7] 刘建峰,迟效果,董春艳,等.小兴安岭东部早古生代花岗岩的发现及其构造意义[J].地质通报,2008,27(4):534-544.
Liu J F, Chi X G, Dong C Y,etal. Discovery of early Paleozoic granites in the eastern Xiao Hinggan Mountains, northeastern China and their tectonic significance[J]. Geological Bulletin of China, 2008, 27(4): 534-544. (In Chinese)
[8] Liu S, Hu R, Gao S,etal. Zircon U-Pb age and Sr-Nd-Hf isotope geochemistry of Permian granodiorite and associated gabbro in the Songliang Block, NE China and implications for growth of juvenile crust[J]. Lithos, 2010, 114(3): 423-436.
[9] 解小颖.黑龙江松江地区侏罗纪花岗岩地球化学特征[D].石家庄:石家庄经济学院档案馆,2014.
Xie X Y. Geological Characteristics of Jurassic Granite in Songjiang Area, Heilongjiang, China Northeast[D]. Shijiazhuang: The Archive of Shijiazhuang University of Economics, 2014. (In Chinese)
[10] 王枫.松嫩—张广才岭地块东缘“元古界”的岩石组合与形成时代:对区域构造演化的意义[D].长春:吉林大学档案馆,2013.
Wang F. Rock Association and Formation Time of “Proterozoic Strata” in the Eastern Margin of the Songnen-Zhangguangcailing Massit, NE China: Implications for Regional Tectonic Evolution[D]. Changchun: The Archive of Jilin University, 2013. (In Chinese)
[11] 赵寒冬.东北地区小兴安岭南段—张广才岭北段古生代火成岩组合与构造演化[D]. 北京:中国地质大学档案馆,2009.
Zhao H D. Paleozoic Igneous Rock Assemblages and tectonic evolution in Southern Xiaoxing’anling-Northern Zhangguangeailing, Northeastern China[D]. Beijing: The Archive of China University of Geosciences, 2009. (In Chinese)
[12] 李怀坤,耿建珍,郝爽,等.用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究[J].矿物学报,2009,29(S1):600-601.
Li H K, Geng J Z, Hao S,etal. Zircon U-Pb dating technique using LA-MC-ICPMS[J]. Acta Mineralogica Sinica, 2009, 29(S1): 600-601. (In Chinese)
[13] Pearce J, Harris N B W, Tindle A G. Trace element discrimination diagrams for the tectonic interpretation of granitic rock[J]. Petrol, 1984, 25: 956-983.
[14] Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Bulletin of the Geological Society of America, 1989, 101(5): 635-643.
[15] Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical Geology, 1989, 101(5): 635-643.
[16] 张梅生,彭向东,孙晓猛.中国东北区古生代构造古地理格局[J].辽宁地质,1998(2):12-17.
Zhang M S, Peng X D, Sun X M. The Paleozoic geographical pattern of northeast China [J]. Liaoning Geology, 1998(2):12-17. (In Chinese)
[17] 黄映聪.佳木斯地块古生代变质作用与构造演化[D].长春:吉林大学档案馆,2009.
Huang Y C. Paleozoic Metamorphism and Tectonic Evolution of Jiamusi Block[D]. Changchun: The Archive of Jilin University, 2009. (In Chinese)
[18] 刘兵.大兴安岭地区晚古生代构造演化研究[D].长春:吉林大学档案馆,2014.
Liu B. Study on the Late Paleozoic Tectonic Evolution of the Great Xing’an Ranges[D]. Changchun: The Archive of Jilin University, 2014. (In Chinese)
[19] 张兴洲,马玉霞,迟效国,等.东北及内蒙古东部地区显生宙构造演化的有关问题[J].吉林大学学报(地球科学版),2012,42(5):1269-1285.
Zhang X Z, Ma Y X, Chi X G,etal. Discussion on Phanerozoic tectonic evolution in Northeastern China[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(5): 1269-1285. (In Chinese)
[20] 孙德有,吴福元,李惠民,等.小兴安岭西北部造山后A型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系[J].科学通报,2000,45(20):2217-2222.
Sun D Y, Wu F Y, Li H M,etal. Age of A type granite in the northwest part of the Xingan Mountains and the relationship between Solun-Hegen-Jalaid eastward extension split[J]. Science Bulletin, 2000, 45(20): 2217-2222. (In Chinese)
[21] 许文良,孙德有,尹秀英.大兴安岭海西期造山带的演化:来自花岗质岩石的证据[J].长春科技大学学报,1999,29(4):319-323.
Xu W L, Sun D Y, Yin X Y. Evolution of Hercynian orogenic belt in Daxing’anling Mt: Evidence from granitic rocks[J]. Journal of Changchun University of Science and Technology, 1999, 29(4): 319-323. (In Chinese)
[22] 张兴洲,乔德武,迟效国,等.东北地区晚古生代构造演化及其石油地质意义[J].地质通报,2011,30(Z1):205-213.
Zhang X Z, Qiao D W, Chi X G,etal. Late-Paleozoic tectonic evolution and oil-gas potentiality in northeastern China[J]. Geological Bulletin of China, 2011, 30(Z1): 205-213. (In Chinese)
[23] 赵芝,迟效国,刘建峰,等.内蒙古牙克石地区晚古生代弧岩浆岩:年代学及地球化学证据[J].岩石学报,2010,26(11):3245-3258.
Zhao Z, Chi X G, Liu J F,etal. Late Paleozoic arc related magmatism in Yakeshi region Inner Mongolia Chronological and geochemical evidence[J]. Acta Petrologica Sinica, 2010, 26(11): 3245-3258. (In Chinese)
[24] 周长勇,吴福元,葛文春,等.大兴安岭北部塔河堆晶辉长岩体的形成时代、地球化学特征及其成因[J].岩石学报,2005,21(3):763-775.
Zhou C Y, Wu F Y, Ge W C,etal. Age, geochemistry and petrogenesis of the cumulate gabbto in Tahe, northern Da Hinggan Mountain [J]. Acta Petrologica Sinica, 2005, 21(3): 763-775. (In Chinese)
[25] 赵芝.大兴安岭北部晚古生代岩浆作用及其构造意义[D].长春:吉林大学档案馆,2011.
Zhao Y. Late Paleozoic Magmatism and Its Tectonic Significance in the Northern Great Xing’an Range, Northeastern China[D]. Changchun: The Archive of Jilin University, 2011. (In Chinese)
[26] 张彦龙,葛文春,高妍,等.龙镇地区花岗岩锆石U-Pb年龄和Hf同位素及地质意义[J].岩石学报,2010,26(4):1059-1073.
Zhang Y L, Ge W C, Gao Y,etal. Zircon U-Pb ages and Hf isotopes of granites in Longzhen area and their geological implication[J]. Acta Petrologica Sinica, 2010, 26(4): 1059-1073. (In Chinese)
[27] 崔芳华,郑常青,徐学纯,等.大兴安岭全胜林场地区晚石炭世岩浆活动研究:对兴安地块与松嫩地块拼合时间的限定[J].地质学报,2013,87(9):1247-1263.
Cui F H, Zheng C Q, Xu X C,etal. Late carboniferous magmatic activities in the Quanshenglinchang Area, Great Xing’an Range: Constrains on the timing of amlgamation between Xing’an and Songnen massifs[J]. Acta Geologic Sinica, 2013, 87(9): 1247-1263. (In Chinese)
[28] 洪大卫,黄怀曾,肖宜君,等.内蒙古中部二叠纪碱性花岗岩及其地球动力学意义[J].地质学报,1994,68(3):219-230.
Hong D W, Huang H Z, Xiao Y J,etal. The Permian alkaline granites in central Inner Mongolia and their geodynamic significance[J]. Acta Geologica Sinica, 1994, 68(3): 219-230. (In Chinese)
[29] 郭奎城,张文龙,杨晓平,等.黑河市五道沟地区早二叠世A型花岗岩成因[J].吉林大学学报(地球科学版),2011,41(4):1077-1083.
Guo K C, Zhang W L, Yang X P,etal. Origin of early Permian A-type granite in the Wudaogou area, Heihe City[J]. Journal of Jilin University (Earth Science Edition), 2011, 41(4): 1077-1083. (In Chinese)
[30] 汪岩,杨晓平,那福超,等.嫩江-黑河构造带中花岗质糜棱岩的确定及地质意义[J].地质与资源,2013,22(6):452-459.
Wang Y, Yang X P, Na F C,etal. Determination and geological implication of the granitic mylonite in Nenjiang-Heihe tectonic belt[J]. Geology and Resources, 2013, 22(6): 452-459. (In Chinese)
[31] 叶慧文,张兴洲,周裕文.牡丹江地区蓝片岩中脉状青铝闪石40Ar-39Ar年龄及其地质意义[J].长春地质学院学报,1994,24(4):369-372.
Ye H W, Zhang X Z, Zhou Y W.40Ar-39Ar age and its geologic significance of vein crossite in glaucophane-schist, Mudanjiang area[J]. Journal of Changchun University of Earth Sciences, 1994, 24(4): 369-372. (In Chinese)
Geochronology of the Hercynian potash feldspar granite and its geological significance in East Harbin, China
NIU Yan-hong1, ZHOU Zhi-guang2, NIU Wen-zhi2, WANG Guo-sheng2, ZHAO Xiao-qi2, LI Hong-ying2, LI Jia-liang2
1.QiqiharBranch,ResearchInstituteofRegionalGeologicalSurveyofHelongjiang,Haerbin150036,China; 2.SchoolofEarthSciencesandResources,ChinaUniversityofGeosciences,Beijing100083,China
The flesh pink fine-grained alkali-feldspar granites widely occur in East Harbin with unknown emplacement time. Study of chronology and geochemistry of these rocks are conducted in order to provide new evidence for discussion of the tectonic evolution of Xing’an Mongolia Orogenic Belt or Paleo-Asian Ocean. Alkali-feldspar granite is mainly composed of perthite, plagioclase, quartz and biotite and they are e rich in SiO2(the mass fraction is 74.70%~75.70%), Al2O3(12.07%~13.18%) and alkali (Na2O+K2O=7.78%~8.09%), with ratios of K2O/Na2O=0.93%~1.60% and Litman index of 1.85~2.06. The concentrations of REE range from 96.32×10-6to 172.83×10-6with remarkable negative Eu anomaly (δEu=0.21~0.77) and A/CNK ratio of 0.88~1.12, characteristic of high-K calc-alkaline granite. It indicates that the magma is originated from an extensional setting induced by post-orogenic collapse of the lithosphere. Zircon U-Pb dating yields age of 298.54±0.86 Ma (MSWD=0.94) and constrains the emplacement time of the granite to late Carboniferous period. It is considered that the alkali-feldspar granites generated under the extensional setting related to the collision between Xing’an and Songnen Blocks after the closure of Paleo-Asian Ocean.
Harbin; alkali feldspar granite; zircon U-Pb dating; Hercynian; geological significance
10.3969/j.issn.1671-9727.2016.05.05
1671-9727(2016)05-0555-09
2015-01-17。
中国地质调查局项目(1212011220465, 12011120700)。
牛延宏(1964-),男,高级工程师,从事区域地质矿产调查工作, E-mail:niuyanhong6699@163.com。
P588.121
A