席夫碱修饰的α-氰基二苯乙烯荧光液晶材料的合成与发光性质
2016-11-04白向阳陆红波黄建炎杨家祥
白向阳, 陈 诺, 檀 文, 张 超, 陆红波, 黄建炎, 杨家祥*
(1. 安徽大学化学与化工学院 安徽省功能无机材料重点实验室, 安徽 合肥 230601;
席夫碱修饰的α-氰基二苯乙烯荧光液晶材料的合成与发光性质
白向阳1, 陈诺1, 檀文1, 张超2, 陆红波2, 黄建炎1, 杨家祥1*
(1. 安徽大学化学与化工学院 安徽省功能无机材料重点实验室, 安徽 合肥230601;
2. 合肥工业大学光电技术研究院 特种显示技术国家工程实验室, 省部共建现代显示技术
国家重点实验室(培育基地), 特种显示技术教育部重点实验室, 安徽 合肥230009)
为获得高效的发光液晶材料,将席夫碱结构单元引入α-氰基二苯乙烯体系,合成了(Z)-2-(4-((E)-4-丁氧基-2-羟基苯乙烯氨基)苯基)-3-(4-丁氧基苯基)丙烯腈(BHPA)。通过紫外-可见吸收光谱和荧光光谱,研究其聚集诱导发光增强(AIEE)性质;利用热重分析(TGA)、差示量热扫描(DSC)、偏光显微镜(POM)研究其热力学性质和液晶性质。结果表明,BHPA是具有AIEE特性的发光液晶材料,取向的BHPA膜具有发光各向异性,其线偏振度约为0.41。
席夫碱; AIEE; 发光液晶; 偏振发光
1 引 言
近年来,随着科学技术的进步和移动电子设备的兴起,作为显示领域的主要技术,液晶显示得到了极大的应用和发展[1-5]。但由于传统的液晶材料和液晶显示技术还存在一些难以克服的缺陷,如需要背光源、偏振片和彩色滤色膜等条件支持[6-8],因此,液晶显示的功耗较高。
自从Park课题组发现了具有聚集诱导发光增强(AIEE)性质的CN-MBE分子[9]之后,基于AIEE来实现优良发光性质的α-氰基二苯乙烯衍生物不断被报道[10-13]。首先,由于具有好的自发光性质,α-氰基二苯乙烯荧光液晶分子可以被用来解决液晶显示的背光源等问题[14]。此外,席夫碱液晶分子由于具有多相态、宽液晶区间等特点[15],且能与金属离子进行配位,使液晶分子具备铁电和反铁电等性质,拓展了液晶材料的应用领域[16]。综合以上两点考虑,本文在陆红波课题组研究工作的基础上[17-18],通过将席夫碱结构单元引入α-氰基二苯乙烯体系,设计合成了具有宽液晶区间的荧光液晶分子:(Z)-2-(4-((E)-4-丁氧基-2-羟基苯乙烯氨基)苯基)-3-(4-丁氧基苯基)丙烯腈(BHPA)。利用FT-IR、1H NMR、13C NMR等测试手段对BHPA的结构进行了表征,采用TGA、DSC、POM等手段对其光学性质和液晶性质进行了系统研究。
2 实 验
2.1试剂与仪器
对硝基苯乙腈、对羟基苯甲醛、九水合硫化钠、碳酸钾、溴代正丁烷、N,N-二甲基甲酰胺、2,4-二羟基苯甲醛、甲醇、二氯甲烷、四氢呋喃(THF)及其他试剂均为分析纯。
红外光谱采用KBr压片,Nicolet 380 傅里叶变换红外光谱仪测定,测量范围是400~4 000 cm-1。1H-NMR和13C-NMR用Bruker Avance 400 MHz核磁共振仪测定,CDCl3作溶剂。TGA测试仪器为NETZSCH STA 449F3,N2保护下测定,升温速率为20 ℃/min。采用METTLER82le/400差热扫描量热仪测定样品的热力学行为,升降温速率为10 ℃/min。利用Leica DM2500M偏光显微镜表征样品的液晶和发光各向异性特性。UV光(365 nm)下的荧光照片利用佳能600D拍摄。紫外吸收光谱利用TU-1901紫外-可见分光光度计进行表征。荧光光谱采用RF-5301PC荧光光谱仪测定。将偏振片置于HORIBA FluoroMax-4荧光光谱仪的探测器与试样之间,用来测定样品在不同偏振角度下的荧光光谱。
2.2BHPA的合成
(E)-2-(4-氨基苯基)-3-(4-正丁氧基苯基)丙烯腈(化合物1)的合成参照文献[11],4-丁氧基-2-羟基苯甲醛(化合物2)的合成参照文献[16]。
在50 mL圆底烧瓶中,加入0.38 g (1.30 mmol)化合物1,0.28 g (1.43 mmol)化合物2和15 mL甲醇,加热搅拌20 min后,滴加2滴醋酸,回流反应6 h,冷却至室温,过滤,用热甲醇洗涤3次,干燥得亮黄色固体0.52 g,产率85.39%。
合成路线如图1所示。
Fig.1Synthesis route of (Z)-2-(4-((E)-4-butoxy-2-hydroxybenzylideneamino)phenyl)-3-(4-butoxyphenyl)-acrylonitrile (BHPA)
2.3BHPA的基本表征
红外光谱如图2所示。FT-IR (KBr, cm-1)ν: 3 376 (vs), 2 971 (vs), 2 877 (s), 2 212 (w), 1 596 (vs), 1 515 (s), 1 465 (m), 1 392 (m), 1 297 (m), 1 261 (vs), 1 180 (vs), 1 137 (s), 1 050 (vs), 883 (m), 835 (m), 536 (m)。
核磁氢谱如图3(a)所示。1H-NMR (400 MHz, CDCl3)δ: 13.57 (s, 1H, OH), 8.55 (s, 1H, CH), 7.88 (d, 2H, ArH,J=8.7 Hz), 7.69(d, 2H, ArH,J=8.5 Hz), 7.46(s, 1H, CH), 7.31(d, 2H, ArH,J=8.5 Hz), 7.27(s, 1H, ArH), 6.97(d, 2H, ArH,J=8.7 Hz), 6.50(d, 2H, ArH,J=8.3 Hz), 4.02(m, 4H, 2×CH2,J=6.4 Hz), 1.79(m, 4H, 2×CH2,J=8.0 Hz), 1.51(m, 4H, 2×CH2), 0.99(m, 6H, 3×CH2)。
核磁碳谱如图3(b)所示。13C-NMR(CDCl3, 100 MHz)δ: 164.0, 163.9, 161.6, 161.12, 148.6, 141.4, 133.7, 132.8, 131.2, 126.7, 126.2, 121.6, 118.5, 114.9, 112.9, 107.8, 107.6, 101.5, 68.0, 67.9, 31.2, 31.1, 19.22, 13.8。
图2 化合物BHPA的红外光谱
图3 化合物BHPA的核磁共振氢谱(a)和碳谱(b)
Fig.31H NMR (a) and13C NMR (b) of compound BHPA
2.4取向BHPA膜的制备
取适量BHPA固体置于摩擦取向的石英片中央,利用热台加热,当热台温度升高到210 ℃时,PHPA固体慢慢熔融为液体。用干净的一次性注射器针头将小液滴缓慢涂抹于石英片表面,稳定15 min,待其铺展均匀后,将另一石英片覆于其上,使其摩擦方向反平行。然后用圆形玻璃瓶底缓慢挤压,使样品液滴均匀分布于石英片之间。最后,将制备好的BHPA膜样品用镊子轻轻取出,自然冷却至室温。
3 结果与讨论
3.1AIEE效应
BHPA在自然光下呈现黄色絮层状固体状态,在UV光(365 nm)下发出明亮的黄色荧光,如图4所示。THF是BHPA的良溶剂,而H2O是不良溶剂并能与THF完全互溶,而且H2O/THF混合体系能引起BHPA的分子聚集。因此,为了更好地了解BHPA的发光性质,我们选择H2O/THF体系对其AIEE性质进行研究。图5(a)和(b)分别是BHPA的紫外可见吸收光谱和荧光发射光谱。在纯THF溶液中BHPA发光很弱,而随着含水量的增加,其荧光强度急剧增加。在含水量增大到50%时,其荧光强度达到峰值,是纯四氢呋喃溶液时的20倍,AIEE性质非常明显(图5(c))。与此同时,其荧光发射峰从460 nm (0%)红移到490 nm (50%) (图5(d))。但随着含水量的增大, BHPA的荧光强度逐渐下降,可能是因为随着分子聚集程度进一步加强,其分子间作用力加强,激发态能量损耗增大[11]。对比不同含水量的紫外可见吸收光谱,可以发现,随着含水量的增加,其吸收光谱的吸收峰(378 nm处)强度不断降低。当含水量增大到30%时,在280~310 nm范围内,出现2个新的吸收峰,如图5(a)所示。且随着含水量的增加,吸收峰强度不断增大,且在吸收曲线尾部出现了明显的上翘,说明分子聚集进一步形成。结果表明:BHPA在聚集状态下,分子构型更加平面化,抑制了其分子振动和内旋转,降低了非辐射跃迁的能量损耗,产生了强的AIEE效应。
图4化合物BHPA在自然环境下的照片(a)和UV光(365 nm)下的照片(b)
Fig.4Photographs of compound BHPA under natural environment (a) and UV (365 nm) (b)
图5在H2O/THF体系中,BHPA (1×10-5mol/L)随着含水量增加的紫外吸收光谱(a),荧光发射光谱(b),荧光强度之比和UV光(365 nm)下0%与50%含水量的荧光照片(c),波长曲线随含水量变化的曲线(d)。
Fig.5UV-Vis (a) and PL (b) spectra of BHPA, intensity ratio and fluorescent photographs of 0% and 50% under 365 nm light (c), and wavelength curve with the increasing of H2O in the H2O/THF(d), respectively.
3.2热力学分析与液晶相
从热重分析曲线(TGA) (图6(a))可以看出,目标化合物的初始分解温度在370 ℃,最终分解温度在400 ℃以上,展现出良好的热稳定性。从DSC曲线(图6(b))可以看出:在升温过程中,化合物BHPA有3个吸热峰,降温过程有2个放热峰。化合物在升温过程中,经历了由晶体结构向近晶相转化的过程,相转变温度为106.6 ℃。继续升高温度至265 ℃时,化合物BHPA由近晶相完全转变为各向同性液体,在偏光显微镜(POM)下出现一片漆黑的视野。从各向同性液体降温至180 ℃,BHPA形成了鱼鳞形片层织构(图6(b)中插图),转变为典型的近晶相。样品继续降温至76.8 ℃,由近晶相转变为晶体结构。其液晶区间较宽(升温过程106.6~262.4 ℃,降温过程258.6~76.8 ℃),且相转变温度靠近室温,有效地拓展了液晶材料的应用范围。
图6 BHPA的TGA (a)和DSC (b)曲线,插图为180 ℃时的近晶相偏光照片。
3.3BHPA膜的发光各向异性
为进一步研究BHPA的各向异性特征,在偏光显微镜基础上,表征了其发光各向异性。在试样与探测器之间加入偏振片,测试不同偏振角度下的BHPA的荧光强度。将偏振片偏振方向与反平行摩擦方向平行时,定义为0°;将偏振方向与反平行摩擦方向垂直时,定义为90°。通过分析不同偏振角度的荧光图片,可以看出:BHPA的荧光发射在偏振角为0°时,荧光最弱;随着偏振角度的增大,其荧光强度逐渐增大;当偏振角度增加到90°时,荧光发射强度达到峰值;继续增大偏振角度,荧光强度又慢慢减弱;增大到180°时,荧光强度与0°时基本持平(图7(a))。不同偏振角度的荧光光谱(图7(b))与发光强度分布图(图7(c))显示,取向BHPA薄膜具有明显的发光各向异性[19],计算得其线偏振度为0.41。
图7 BHPA在偏振片不同角度的发光图片(a)、荧光光谱(b)和发光强度分布图(c)。
Fig.7Fluorescence images of PHPA at different polarization angles (a), PL spectra of PHPA at different polarization angles (b), and PL luminous intensity profile (c), respectively.
4 结 论
通过席夫碱的结构修饰,设计合成了兼备AIEE效应、液晶特性和发光各向异性的α-氰基二苯乙烯席夫碱型液晶分子BHPA,实现了材料的强AIEE发光、宽液晶区间和线偏振度为0.41的光学各向异性,有效地拓展了α-氰基二苯乙烯材料在光电材料领域的应用范围。
[1] GRAY G W, KELLY S M. Liquid crystals for twisted nematic display devices [J].J.Mater.Chem., 1999, 9(9):2037-2050.
[2] HIRD M. Fluorinated liquid crystals-properties and applications [J].Chem.Soc.Rev., 2007, 36(12):2070-2095.
[3] BISOYI H K, KUMAR S. Discotic nematic liquid crystals: science and technology [J].Chem.Soc.Rev., 2010, 39(1):264-285.
[4] KANG Y G, KIM H J, PARK H G,etal.. Tin dioxide inorganic nanolevel films with different liquid crystal molecular orientations for application in liquid crystal displays (LCDs) [J].J.Mater.Chem., 2012, 22(31):15969-15975.
[5] KLAUK H. Organic thin-film transistors [J].Chem.Soc.Rev., 2010, 39(7):2643-2666.
[6] CHEN Y F, LIN J S, YUAN W Z,etal.. 1-((12-Bromododecyl)oxy)-4-((4-(4-pentylcyclohexyl)phenyl)ethynyl) benzene: liquid crystal with aggregation-induced emission characteristics [J].Sci.ChinaChem., 2013, 56(9):1191-1196.
[7] 王欢,辛武根,王伟,等. 侧入式背光源视角特性研究 [J]. 液晶与显示, 2014, 29(3):345-349.
WANG H, SHIN M K, WANG W,etal..Brightness viewing angle of side-type backlight unit [J].Chin.J.Liq.Cryst.Disp., 2014, 29(3):345-349. (in Chinese)
[8] KIM J H, WATANABE A, CHUNG J W,etal.. All-organic coaxial nanocables with interfacial charge-transfer layers: electrical conductivity and light-emitting-transistor behavior [J].J.Mater.Chem., 2010, 20(6):1062-1064.
[9] AN B K, KWON S K, JUNG S D,etal.. Enhanced emission and its switching in fluorescent organic nanoparticles [J].J.Am.Chem.Soc., 2002, 124(48):14410-14415.
[10] JIA W B, YANG P, LI J J,etal.. Synthesis and characterization of a novel cyanostilbene derivative and its initiated polymers: aggregation-induced emission enhancement behaviors and light-emitting diode applications [J].Polym.Chem., 2014, 5(7):2282-2292.
[11] ZHANG G B, DING A X, ZHANG Y,etal.. Schiff base modified α-cyanostilbene derivative with aggregation-induced emission enhancement characteristics for Hg2+detection [J].Sens.ActuatorsB:Chem., 2014, 202:209-216.
[12] HONG Y N, LAM J W Y, TANG B Z. Aggregation-induced emission [J].Chem.Soc.Rev., 2011, 40(11):5361-5388.
[13] HU R R, LEUNG N L C, TANG B Z. AIE macromolecules: syntheses, structures and functionalities [J].Chem.Soc.Rev., 2014, 43(13):4494-4562.
[14] TONG X, ZHAO Y, AN B K,etal.. Fluorescent liquid-crystal gels with electrically switchable photoluminescence [J].Adv.Funct.Mater., 2006, 16(14):1799-1804.
[15] HUANG C C, HSU C C, CHEN L W,etal.. The effect of position of (S)-2-octyloxy tail on the formation of frustrated blue phase and antiferroelectric phase in Schiff base liquid crystals [J].SoftMatter, 2014, 10(46):9343-9351.
[16] DE MURILLAS D L, PIOL R, ROS M B,etal.. Structure-activity studies of ferroelectric and antiferroelectric imine ligands and their palladium(Ⅱ) complexes. An antiferroelectric metallomesogen [J].J.Mater.Chem., 2004, 14(7):1117-1127.
[17] 陆红波,张超,吴少君,等. 发光液晶材料的合成及发光特性研究 [J]. 发光学报, 2015, 36(11):1227-1232.
LU H B, ZHANG C, WU S J,etal.. Synthesis and photoluminescence property of luminescent liquid crystal material [J].Chin.J.Lumin., 2015, 36(11):1227-1232. (in Chinese)
[18] 陆红波,吴少君,张超,等. α-氰基取代二苯乙烯衍生物的合成与发光特性研究 [J]. 发光学报, 2015, 36(9):983-988.
LU H B, WU S J, ZHANG C,etal.. Synthesis and photoluminescence property of α-cyanostilbene derivatives molecules [J].Chin.J.Lumin., 2015, 36(9):983-988. (in Chinese)
[19] JOO S H, KIM J K, SONG J K. Fluorescent light source with continuously tunable polarizationviamodification of molecular orientation [J].J.Appl.Phys., 2013, 114(8):083508.
白向阳(1991-),男,安徽亳州人,硕士研究生,2014年于安徽大学获得学士学位,主要从事发光液晶材料的研究。
E-mail: bxychem@163.com 杨家祥(1963-),男,安徽合肥人,教授,博士生导师,2001于中国科学技术大学获得博士学位,主要从事光电功能材料的研究。
E-mail: jxyang@ahu.edu.cn
文章编号: 1000-7032(2016)05-0538-05
Abstract: Energy harvesting was investigated in relaxor ferroelectric terpolymer P(VDF-TrFE-CFE) by pyroelectric effect. Original energy was the temperature fluctuations. Due to the non-linear dielectric property in the vicinity of polarization mechanism transition of nanopolar regions, we can harvest energy by operating Ericsson cycle. Experimental results show that the best energy harvesting temperature range is from 20 to -20 ℃. Ericssion cycle was simulated using the unipolar cycle at different temperatures. Two modes of energy harvesting were presented and analyzed: modeⅠmaximizing and mode Ⅱ minimizing harvested energy, mode Ⅰ is idealized, by applying a low voltage, the harvested energy can reach nearly maximum. The explanation of the two modes was given from the view of microstructure. Temperature and electric field dependence was also given, at 100 kV·mm-1, temperature from 20 to -20 ℃, giant energy can be harvested around 3 483 mJ·cm-3. Compared with the single crystals, the advantages, such as the harvested energy increased by 10 times, working temperature decreased to room temperature, and the material flexibility, make it possible as a good candidate for energy harvesting.
Key words: energy harvesting; pyroelectricity; terpolymer; P(VDF-TrFE-CFE); temperature fluctuation
Synthesis and Luminescence Property of Schiff Base Modified α-Cyanostilbene Derivative Fluorescent Liquid Crystals Material
BAI Xiang-yang1, CHEN Nuo1, TAN Wen1, ZHANG Chao2, LU Hong-bo2, HUANG Jian-yan1, YANG Jia-xiang1*
(1.DepartmentofChemistry,KeyLaboratoryofFunctionalInorganicMaterialsofAnhuiProvince,AnhuiUniversity,Hefei230601,China; 2.AcademyofOpto-ElectronicTechnology,NationalEngineeringLabofSpecialDisplayTechnology,KeyLabofSpecialDisplayTechnology,MinistryofEducation,StateKeyLabofAdvancedDisplayTechnology,HefeiUniversityofTechnology,Hefei230009,China)
*CorrespondingAuthor,E-mail:jxyang@ahu.edu.cn
To obtain efficient luminescent liquid crystals materials, (Z)-2-(4-((E)-4-butoxy-2-hydroxybenzylideneamino)phenyl)-3-(4-butoxyphenyl)-acrylonitrile (BHPA) was designed and synthesized, by introducing the Schiff base unit into α-cyanostilbenzene system. The aggregation-induced emission enhancement (AIEE) was studied by UV-Vis absorption spectra and photoluminescence (PL) spectra. Thermodynamic properties and liquid crystals (LCs) properties of BHPA were investigated with TGA, DSC and POM. The results show that BHPA is a luminescent liquid crystals material with AIEE, and the ordered orientated film of BHPA possesses luminescent anisotropic property with the linear polarization of 0.41.
Schiff base; AIEE; luminescent liquid crystals; polarization emission
Giant Energy Harvesting by Pyroelectric Effect in Relaxor Ferroelectric Terpolymer Poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)
ZHU Hong-ying1*, WANG Xiang-hu2, WANG Zhi-jie1, WANG Jun1, GUO Qun-chao1
(1.SchoolofElectricity,ShanghaiDianjiUniversity,Shanghai201306,China; 2.SchoolofMechanicalEngineering,ShanghaiDianjiUniversity,Shanghai201306,China)
*CorrespondingAuthor,E-mail:phyzhy2012@163.com
O469; O59Document code: A
10.3788/fgxb20163705.0538
1000-7032(2016)05-0532-06
2016-01-26;
2016-03-10
国家自然科学基金(51432001); 安徽省教育厅重点项目(KJ2014ZD02) 资助
O63
ADOI: 10.3788/fgxb20163705.0532
16-01-20; 修订日期: 2016-03-15
国家自然科学基金(11304200); 上海电机学院登峰学科建设项目(15DFXK01)资助