地铁换乘站深基坑内支撑体系的优化设计与分析
2016-10-21侯新宇薛必芳火映霞袁娇娇
侯新宇,薛必芳,火映霞,袁娇娇
(江苏开放大学建筑工程学院,南京 210036)
地铁换乘站深基坑内支撑体系的优化设计与分析
侯新宇,薛必芳,火映霞,袁娇娇
(江苏开放大学建筑工程学院,南京210036)
采用土体卸载条件下的Hardening-Soil有限元模型,研究苏州某地铁换乘站深基坑3种支撑方案对支护结构内力和基坑变形的影响。结果表明:与初始方案比较,方案A(去掉第4道支撑)的墙身最大侧移增大了35.28%,最大正负剪力分别增加41.87%和71.11%,最大正负弯矩分别增加145.32%和45.39%,最后一道支撑轴力达到1018kN,比初始方案增加了近1倍,对基坑土体变形影响增长近10%;方案B(第3、4道支撑合并)的墙身最大侧移增大了10.49%,最大正负剪力则增加6.89%和33.97%,最大正负弯矩增加34.46%和10.97%,合并后的第3、4道支撑轴力降低了15%,对基坑土体变形影响较小。方案B既能保证基坑安全和环境影响的要求,又能降低造价。
地铁换乘站;深基坑;支撑;优化设计;HS模型
1 概述
随着城市人口急剧增长和地下空间大量开发,城市地下轨道交通工程迅速崛起,地铁换乘车站大量涌现。由于换乘站具备独特的交叉换乘功能,受到多重因素影响:地处交通枢纽区域、结构形式错综复杂、地下结构埋藏深度大、地面地下环境复杂多变等,导致其深基坑工程支护结构设计、施工难度均远远超过常规基坑工程,对周边市政道路、地下管线、邻近建筑物等的保护要求更高,考虑城市交通流临时疏导、基坑土体暴露时间、材料及土体运输等因素,对换乘站基坑的实施工期要求更高,这些都导致基坑实施风险增大[1]。
现有基坑支护结构设计理论方法基本能够满足支护结构内力、基坑变形等方面要求[2,3],可以实现“强度控制”和“变形控制”标准,但却无法综合考虑施工工期、工程造价等方面因素。因此,采用更为科学有效的计算分析方法对原方案进行系统研究,进而优化改进原设计方案以满足实施过程中多方面需求显得尤为重要。国内外对多支撑基坑支护结构受力变形特征进行多方面研究[4-6],支撑位置对基坑土体整体稳定性研究[3],支撑刚度及施加预应力轴力对基坑变形和内力的影响分析[7,8],多支撑基坑变形的数值模拟及正交试验研究等[9]。
部分学者针对实际项目进行支护结构优化设计研究,龚旭东[10]对支护结构受力进行简化分析,对成都地铁深基坑进而优化支撑位置;朱彦鹏等[11]根据支撑位置不同及对基坑变形影响,对兰州地铁深基坑支护设计方案进行优化;王薇等[12]采用动态设计理念,结合水位监测信息和施工监控状况,对湖北深基坑内支撑进行优化设计;杨校辉等[13]考虑安全和造价等因素,对西宁火车站深基坑支护结构方案进行优化设计;王场等[14]主要研究了内支撑参数变化对深基坑变形的影响,对郑州地铁深基坑支撑系统进行优化。由于苏州市区地处太湖沉积相场地,地铁车站受典型的粉质黏土夹粉砂地层控制,且承压水发达,为了确保基坑安全,常规基坑支护结构设计往往偏于安全,对苏州地铁车站基坑支护结构进行更为科学合理的优化设计并未见到,对苏州某地铁换乘站初始设计方案进行设计优化,通过有限元数值模拟以及实际监测数据分析,最终比较得出不同方案的优缺点,这对类似工程的设计和实施具有重要指导和借鉴意义。
2 工程概况
2.1工程地质条件(表1)
苏州地铁开挖深度约达地面下20 m,基坑深度范围内主要穿过④层、⑤层土,其中④层土主要由粉质黏土、粉土、粉砂等构成,具有中等压缩性、强度偏低、透水良好且为微承压水层等显著特点,该层土性质复杂,厚度变化大(局部超过10 m),其工程特性对基坑支护结构变形影响最大。⑤层土为灰色粉质黏土,强度较低。
另外,场地整体地处太湖流域,水系发达,属于软土区域,且部分土层含沙量较大,地下水情况复杂,对地铁工程实施影响较大。地铁1号线所在场地地下水埋藏特征明显,主要由浅层潜水、微承压水、承压水构成。因此易造成支护结构变形过大、渗水、涌砂、地面沉降等工程风险。
表1 土层计算参数
2.2地铁车站基坑特点
该换乘站所在场地东西高、中间低,且中间有横跨干将河的立交桥1座,是附近地下水和地下管线汇集的主要区域,也是干将路和人民路的交通要塞,紧邻车站就有重要保护文物建筑。换乘站为轨道交通1号和4号线的换乘枢纽,共设置10个出入口(6个为1号线使用,其余4个为4号线预留),另外设置2处换乘通道和6组风亭。1号线车站东西走向,其外围长度291.3 m、标准段宽度22.7 m;4号线车站南北走向,其外围长度310.4 m (本次施工155.55 m)、标准段宽度31.8 m,工程规模大、周边环境错综复杂。
换乘站为全地下二层结构,形式复杂。车站基坑平均开挖深度达18 m,基坑安全等级为一级,主体采用地下连续墙和内支撑的围护结构体系,采用明挖法施工。因此,对环境保护、地面沉降、围护结构水平位移要求都非常严格。
2.3支撑体系多方案的提出
换乘站基坑实施划分5个区,研究对象为最重要的D区,D区北侧紧邻文物建筑、南侧为重要临时道路,考虑汛期对干将河水位影响、临时交通管制等因素,该部分基坑实施的最主要矛盾是工期紧迫。如何在确保环境安全的前提下,如期或者提前完工是关键。换乘站基坑支护平面如图1所示。
D区基坑开挖深度19 m,地下连续墙厚度0.8 m。基坑内支撑体系的初始方案为:共设置4道内支撑,首道为钢筋混凝土支撑,截面1.00 m×0.70 m,其余3道采用φ609 mm(t=16 mm)的钢管支撑,基坑土体分级开挖,开挖深度到达下一支撑位置超挖1 m,坑外超载距地连墙1 m,取20 kPa,见图2(a)。鉴于A区、B区较为成功的施工控制经验,经专家组研讨,在确保基坑安全和环境要求前提下,拟优化调整支撑体系以缩短工期,并提出两种优化方案,方案A做法直接去掉第4道支撑(图2(b)),其优点是少施工一道支撑,同时便于坑底土方开挖及底板等地下结构施工,能有效缩短工期;方案B则把第3、第4道支撑合并(图2(c)),并把支撑位置在原第三道支撑位置处下移1.50 m,也能缩短工期。但优化方案需要经过严格计算分析,确定支撑调整对支护结构内力和基坑变形的影响,以确保基坑安全。
图1 换乘站基坑支护平面
图2 换乘站基坑支护方案示意
3 有限元数值模拟(图3)
基坑开挖中土体的卸载模量与加载模量不同,传统的弹塑性模型无法满足实际工程需要。Hardening-Soil(HS)模型采用轴向加荷刚度E50、轴向卸荷刚度Eur、等相固结刚度Eoed对基坑不同工况下的土性进行描述,考虑了土体的剪胀和中性加载,克服了Duncan-Chang模型的缺点,在Mohr-Coulomb屈服面基础上引入了一个屈服帽盖,能够比Duncan-Chang模型更为真实地模拟基坑土体开挖卸载导致的变形特征。当对土体施加偏应力σ1-σ3时,土体表现出刚度下降,产生塑性应变。在主应力空间中HS模型的屈服面是随着塑性应变而扩张的,可以同时考虑压缩和剪切硬化,这是常规的弹塑性模型所无法比拟的。
图3 方案A有限元计算模型
本计算模型采用三轴固结不排水剪(CU)的有效应力指标,土性参数、地连墙参数、支撑参数见表1~表3。
表2 地连墙物理力学参数
表3 支撑物理力学参数
4 基坑支撑多方案比较
对3种基坑支护方案建立有限元数值模型,对最终计算结果中的支护结构位移、支护结构内力、支撑体系内力、基坑土体变形等进行计算比较分析。
4.1支护结构侧向位移分析
3种不同支撑方式产生的支护结构侧向位移均呈现中间大、两端小的特点,且两端的墙顶、墙脚位移值几乎无变化,如图4所示。初始方案的支护结构最大侧移值30.53 mm,最大位移发生在墙体20.46 m深度处,而方案A(去掉第4道支撑)的最大侧移值41.30 mm,发生在墙体17.95 m深度处;方案B(第3、4道支撑合并)的最大侧移值31.69 mm,发生在墙体18.31 m深度处。
图4 支护结构侧向位移
由此可见,方案A最大侧移值比初始方案增大了35.28%,最大侧移位置比初始方案向上移动近2.50 m;方案B最大侧移值比初始方案增大了10.49%,最大侧移位置向上移动近2.15 m。且方案A和方案B的最大侧移均发生在基坑开挖深度内,初始方案最大侧移发生在基坑开挖深度以下,这说明方案A去掉第4道支撑和方案B的第3、4道支撑合并都较大改变了基坑土压力场分布,支撑结构中的第3、4道支撑对抵抗主动土压力起到重要作用。
4.2支护结构墙身内力分析
支护结构墙身剪力是由于主动区土水压力和支撑轴力共同作用的结果。由图5可见,初始方案墙身最大正剪力233.81 kN/m,作用在墙身21.56 m位置,即为基坑开挖面下1.56 m处,而最大负剪力-401.13 kN/m,作用在墙身14.88 m位置;方案A墙身最大正剪力331.70 kN/m,作用在墙身10.5 m位置,墙身最大负剪力-686.37 kN/m,作用在墙身10.5 m位置;方案B墙身最大正剪力249.93 kN/m,作用在墙身21.56 m处,墙身最大负剪力-537.39 kN/m,作用在墙身13.5 m处。
图5 支护结构剪力分布曲线
与初始方案相比较,方案A墙身最大正剪力增大了41.87%,最大负剪力增大了71.11%;方案B墙身最大正剪力则增大了6.89%,最大负剪力增大了33.97%。
3种方案墙身最大负剪力均出现在最下道支撑位置附近。初始方案和方案B的最大正剪力位置均位于基坑底面以下,而方案A最大正剪力位置同样处于其最大负剪力位置,这是由于所在位置支撑为最后一道支撑,距离坑底8 m深,使该道支撑承担更大的侧向压力作用。
由图6可见,初始方案墙身最大正弯矩335.67 kN·m/m,作用在墙身6.5 m位置,即第2道支撑位置处,而最大负弯矩-909.65 kN·m/m,作用在墙身18.31 m位置;方案A墙身最大正弯矩823.45 kN·m/m,作用在墙身10.5 m位置,墙身最大负弯矩-1 322.55 kN·m/m,作用在墙身17.28 m位置;方案B墙身最大正弯矩451.32 kN·m/m,作用在墙身6.5 m处,墙身最大负弯矩-1 009.39 kN·m/m,作用在墙身17.97 m处。
图6 支护结构弯矩分布曲线
与初始方案相比较,方案A墙身最大正弯矩增大了145.32%,最大负弯矩增大了45.39%;方案B墙身最大正弯矩增大了34.46%,最大负弯矩增大了10.97%。
3种方案墙身最大负弯矩均出现在基坑底面以上1 m范围内。初始方案和方案B的最大正弯矩均位于第2道支撑位置,而方案A最大正弯矩位置则出现在第3道支撑位置,该处是最大正负剪力位置,这是由于最后一道支撑所承担剪力过大,造成弯矩发生较大突变。
4.3 支撑体系内力分析
根据不同工况条件下的轴力数据结果,如图7~图9所示。3种方案的首道支撑最大轴力均未超过180 kN,最大轴力工况为第二次开挖结束,当后续支撑设置完毕并发挥作用时,首道支撑轴力逐渐减小,直到最后工况均保持较小轴力。
初始方案的第2道支撑在第3道支撑发挥作用前出现最大轴力466.8 kN,随着后续支撑发挥作用和土方开挖工况的进行,第2道支撑轴力稍有降低,最后工况轴力422.3 kN;第3道、第4道支撑具备相似的规律,最后轴力稳定在572.3、521.4 kN。
图7 初始方案支撑轴力变化
方案A的第2道支撑在第3道支撑发挥作用前出现最大轴力466.8 kN,随着第3道支撑发挥作用,第2道支撑轴力逐渐降低到最后的405 kN;第3道最后轴力稳定在1 018 kN,比初始方案最后一道支撑轴力增加了近1倍。
图8 方案A的支撑轴力变化
由于方案B第3、4道支撑合并,位置下移1.5 m,且同时作用,使得第2道支撑最大轴力达到646.2 kN,但随着第3、4道支撑同时发挥作用,第2道支撑轴力逐渐降低到最后的546.3 kN;第3、4道合并支撑轴力为949.1 kN,相当于每道支撑承担474.55 kN,合并后的第3、4道支撑轴力均小于初始方案,降低了近15%。
图9 方案B的支撑轴力变化
4.4基坑坑背土体竖向位移分析(图10)
图10 基坑坑背土体竖向位移变化
基坑坑背在地面荷载作用下,随着基坑土体卸载开挖土层移动,产生竖向沉降。3种方案的坑背土体沉降均在基坑开挖深度范围内达到最大,之后逐渐减小。初始方案的坑后土体最大沉降47.43 mm,方案A达到52 mm,比初始方案增加了9.63%,方案B达到48.31 mm,比初始方案增加了1.84%。
由此可见,方案A对坑背土体沉降影响较大,而方案B对坑背土体沉降影响甚微。
4.5基坑坑底土体竖向位移分析
由图11可见,基坑坑底土体在距支护结构2 m范围内出现较大隆起,初始方案最大隆起达117.14 mm,方案A为119.25 mm,增幅仅为1.81%,方案B为116.06 mm,比初始方案减少0.92%。分析该范围内的隆起主要是坑底土体回弹、土层竖向移动,以及支护结构侧向挤压共同作用的结果。随着坑底土体与支护结构之间相互作用的降低,坑底隆起值逐渐降低,在距支护结构10 m左右最小,之后开始逐渐增大并趋于稳定,这主要受坑底土体回弹、土层竖向移动影响,但均未超过120 mm。3种方案对基坑坑底土体隆起影响差异较小。
图11 基坑坑底土体竖向变化
综上分析,比较3种支撑布置方式对基坑的影响:方案A的支护结构侧移远大于初始方案和方案B的情况,方案A的支护结构墙身最大正负剪力、最大正负弯矩、最后一道支撑轴力等均远超过初始方案和方案B的情况,方案A的坑背土体沉降、坑底土体隆起也具备相似的规律,但不够显著。其根本原因是去掉了原第4道支撑,使现有最后一道支撑距基坑底面距离增大到8 m(原距离只有4 m),导致支护结构墙体、支撑轴力重新分布,发生较大改变,同样影响基坑变形特征。
虽然方案B在支护结构内力、基坑变形等方面均比初始方案有所增大,但其增幅有限,且二者具备相似的支护结构内力和基坑变形特征。方案B的第3、4道支撑合并,作用在第3道位置下1.5 m处,与初始方案比虽然增大了支撑竖向间距,但两道支撑合并却增加了支撑刚度,最下道支撑距坑底6.5 m,这也可以显著弥补方案A中的第3道支撑轴力过大的问题。
5 结 语
针对换乘站基坑的初始设计方案,方案A(去掉第4道支撑)减少第4道支撑施工,使最后一道支撑距坑底空间增大,便于坑底土方及底板等地下结构施工,能有效缩短工期,但方案A也正是由于缺少第4道支撑的存在,使得支护结构内力重新分布,导致支护结构墙身内力、最后一道支撑轴力、基坑变形等均显著增大,这大大增加了基坑实施风险。方案B(第3、4道支撑合并)把支撑位置在原第3道支撑位置处下移1.50 m,增大了支撑竖向间距,虽然支护结构内力和基坑变形均有增加,但幅度有限,也可以缩短工期。因此,在初始方案基础上进行优化的方案B要优于方案A。
[1]侯新宇,刘松玉,童立元.地铁换乘站“坑中坑”开挖变形特性研究[J].东南大学学报:自然科学版,2011,41(6):1289-1293.
[2]CLOUGH G W,O’ROURKE T D. Construction-induced movements of in-situ walls, design and performance of earth retaining structures[C]∥Geotechnical Special Publication. New York: IEEE, 1990:439-470.
[3]Wolfgang Krajewski, Lorenz Edelmann, Ralf Plamitzer. Ability and limits of numerical methods for the design of deep construction pits[J]. Computers and Geotechnics, 2001,28(6-7):425-444.
[4]肖宏彬,王永和,王星华.多支撑挡土结构考虑开挖过程的有限元分析方法[J].岩土工程学报,2004,26(1):47-51.
[5]刘润,闫玥,闫澍旺.支撑位置对基坑整体稳定性的影响[J]. 岩石力学与工程学报,2006,25(1):174-178.
[6]杨敏,冯虹.深基坑开挖中内支撑体系方案选择及计算[J].结构工程师,1996(4):19-23.
[7]姚燕明,周顺华,孙巍,等.支撑刚度及预加轴力对基坑变形和内力的影响[J].地下空间,2003,23(4):401-404.
[8]叶万灵.围护结构中钢筋混凝土支撑轴力和变形的研究[J].土木工程学报,2000,33(5) :83-87.
[9]孙树林,吴绍明,裴洪军.多层支撑深基坑变形数值模拟正交试验设计研究[J].岩土力学,2005,26(11):1771-1774.
[10]龚旭东.基于受力计算的深基坑支护设计优化方法[J]铁道建筑,2014 (5):82-85.
[11]朱彦鹏,吴意谦.某地铁车站深基坑变形规律数值模拟及优化[J].兰州理工大学学报,2014,40(2):108-113.
[12]王薇,罗超,李享松,等.基于动态设计理念的江洲深基坑内支撑优化设计[J].铁道科学与工程学报,2013,4(10):90-95.
[13]杨校辉,黄雪峰.西宁火车站基坑群深基坑支护优化设计[J].兰州理工大学学报,2013,39(6):111-114.
[14]王场,肖昭然,蒋敏敏.地铁车站深基坑支撑系统优化研究[J].土工基础,2011,25(6):31-34.
[15]黄鑫.深基坑桩锚支护体系的优化方案[J].铁道科学与工程学报,2008,5(6):58-61.
[16]潘振华.超大型深基坑对高速铁路桥墩稳定性影响分析[J].铁道标准设计,2014,58(7):80-84.
[17]旷庆华.同深基坑开挖引起紧邻地铁车站变形特性研究[J].铁道标准设计,2015,59(5):130-133.
[18]侯新宇,火映霞,薛必芳.内坑坑背系数对坑中坑基坑变形影响的敏感性分析[J].铁道标准设计,2016,60(4):86-90.
Optimization Design and Analysis of Support System in Deep Foundation Pit of Metro Interchange Station
HOU Xin-yu, XUE Bi-fang, HUO Ying-xia, YUAN Jiao-jiao
(Department of Civil Engineering, Jiangsu Kaifang Open, Nanjing 210036, China)
The Hardening-Soil finite element model subject to unloaded soil mass is employed to study the influence of three kinds of supporting schemes on the internal force and deformation of the supporting structure in the deep foundation pit of a subway transfer station in Suzhou. The results show that the maximum lateral displacement of the wall increases by 35.28% compared with the original scheme; the maximum positive and negative shear forces increase by 41.87% and 91.1% respectively; the maximum positive and negative bending moments increase by 145.32% and 45.39%; the last strut axial force increases nearly twice to 1018kN; the influence on the foundation soil deformation grows by nearly 10%; the maximal lateral deformation in scheme B (the combination of third and fourth supports) increases by 10.49% compared with the original scheme; the maximal positive and negative shearing forces increase by 6.89% and 33.97% respectively; the maximal positive and negative moments increase by 34.46% and 10.97% respectively; the combined strut axial forces of the third and fourth are reduced by 15% and the influence on the deformation of pit soil mass is very small. It is concluded that scheme B can not only guarantee the pit safety and environment impact but also save the engineering cost.
Metro transfer station; Deep foundation pit; Support; Optimization design; HS(Hardening-Soil) model
2015-11-20
国家自然科学基金项目(41572273);江苏省高校自然科学研究计划项目(14KJB560004);江苏省“六大人才高峰”第十一批资助(2014JZ010);江苏省高校“青蓝工程”优秀青年骨干教师项目(20141001)。
侯新宇(1975—),男,副教授,注册土木工程师(岩土),博士,主要从事地下交通工程的理论研究和技术应用,E-mail:Houxy_geo@163.com。
1004-2954(2016)08-0089-06
U231+.4
ADOI:10.13238/j.issn.1004-2954.2016.08.019