APP下载

空心线圈电感量计算公式的推导与验证

2016-10-11丁琬清

科技视界 2016年24期

丁琬清

【摘 要】为准确计算空心线圈电感量,本文采用控制变量法的思路设计了一个实验,分别分析线圈匝数N,线圈直径D以及线圈长径比i对空心线圈电感量的影响规律,并在此基础上进一步推导并验证了空心线圈电感量计算公式。

【关键词】线圈匝数;线圈直径;线圈长径比

0 绪论

电感线圈是一种由一圈靠一圈的导线绕在绝缘管上而制成的,依靠电磁感应原理进行工作的电气元件,导线之间彼此互相绝缘。电感线圈在电路中主要起着一个稳流作用,抑制电流的变化,防止电流突变。

电感线圈的电特性正好与电容器相反,即“通低频,阻高频”。高频信号通过电感线圈时会遇到很大的阻力,很难通过;而对低频信号通过它时所呈现的阻力则比较小,即低频信号可以较容易的通过它。因此,电感线圈对交流电的电阻是随着频率的增加而变大的,而对直流电的电阻几乎为零。而对于电感线圈在电路中所表现出的对交流电的阻碍作用,我们称之为线圈的感抗,与电容的容抗以及电阻的阻抗相对应。感抗的单位是欧姆,其大小由电流的频率和线圈的电感量决定。其中电感量作为线圈本身的固有特性,可以用来衡量线圈产生电磁感应能力的大小,是电感器工业生产中的关键参数。所以,如何准确计算电感线圈的电感量对于电感元件的发展有着极为重要的意义。

因此,为进一步了解线圈电感量的变化规律以及计算方法,本文设计了一个实验用以探究空心线圈电感量与各参数之间的变化关系,并且在这些变化关系的基础上对空心线圈电感量的计算公式进行了推导与验证。

1 实验方案

为设计一个探究空心线圈电感量的变化规律的实验,首先,需要确定本实验中所涉及的实验变量以及所采用的实验方法;其次,需要选用相应的实验器材以及设计实验电路;最后,需要确定实验的测试原理。

1.1 确定实验变量

通过对现有资料的查阅,可以发现空心电感线圈电感量主要与线圈的匝数N、线圈的直径D以及线圈的长径比(线圈长度l与线圈直径D的比值,i=L/D)i有关。因此,本实验中所研究的实验变量分别为线圈的匝数N、直径D以及长径比i。

1.2 选取实验方法

为分别研究上述3个变量对空心线圈电感量的变化规律,本文采用控制变量法。即保持其中两个变量不变,通过改变另一个变量的方式来研究此变量对空心线圈电感量的影响规律。

1.3 选用实验器材

由于线圈电感量不方便直接测量,所以本文通过间接测量线圈感抗的方式来计算线圈的电感量。因此,本实验所需要的器材如下:

①一个5V的交流电源,电源频率为100kHz;

②一根横截面为4mm2,长度为3m的铜芯导线;

③一个量程为3V的电压表;

④一个量程为0.6A的电流表;

⑤阻值范围为0~50Ω的滑动变阻器一个;

⑥开关一个,导线若干。

1.4 设计实验电路

针对上述所选用的实验器材,本文所设计的实验电路图如图1所示。

1.5 阐述实验原理

影响空心线圈电感量的参数主要有线圈的匝数N、直径D以及长径比i,本文研究这3个参数分别对线圈电感量的影响规律,并推导出空心线圈电感量的计算公式,本文所设计的实验原理如下:

①依据控制变量法设定实验数值,即在研究某一参数对线圈电感量的影响规律时,保持另外两个参数不变,仅改变此参数的大小;

②用一根横截面为4mm2,长度为3m的铜芯导线按上述实验参数绕制出相应电感线圈,并将绕制成的电感线圈接入如图1所示的实验电路中;

③通过图1中的电压表以及电流表,计算出空心线圈的感抗,其计算过程如公式(1)所示。

④依据所得的感抗值进一步计算出线圈的电感量,其计算过程如公式(2)所示。

⑤分别绘制出电感量L随匝数N、直径D以及长径比i变化的关系曲线,并通过相应曲线得出匝数N、直径D以及长径比i与电感量L之间的函数关系式分别公式(3)所示。

⑥综合分析这3个参数与线圈电感量之间的函数关系式,并从中推导出空心线圈电感量的计算公式公式(4)所示。

2 实验分析与数据处理

采用控制变量法做三组实验分别分析线圈匝数N、直径D以及长径比i对线圈电感量的影响规律:

2.1 线圈匝数N

保持线圈的直径D为10mm,长径比i为10不变,令线圈匝数N在20~60圈的范围内变化,步长为5圈。根据上述数据绕制线圈,并将线圈接入电路中可以得到实验数据如表1所示。

以线圈匝数N为横坐标,电感量L为纵坐标将表1中实验数据描于网格图上,并以一条平滑的曲线将数据连接起来,如图2所示。

通过观察图2中的数据与曲线,可以发现本次试验结果接近一条二次曲线。这说明当线圈直径D与线圈长径比i保持不变时,线圈电感量L与线圈匝数N之间是一种二次函数关系,即L∝N。因此,电感量L与线圈匝数N之间的函数关系式可以表述如下:

2.2 线圈直径D

保持线圈匝数N为15圈,长径比i为5不变,令线圈直径D在10~50mm的范围内变化,步长为5mm。根据上述数据绕制线圈,并将线圈接入电路中可以得到实验数据如表2所示。

以线圈直径D为横坐标,电感量L为纵坐标将表2中实验数据描于网格图上,并以一条平滑的曲线将数据连接起来,如图3所示。

通过观察图3中的数据与曲线,可以发现本次试验结果与一条通过零点的直线相接近。这说明当线圈匝数N与线圈长径比i保持不变时,线圈电感量L与线圈直径D之间是一种正比例函数关系,即L∝D。因此,电感量L与线圈匝数N之间的函数关系式可以表述如下:

2.3 长径比i

保持线圈匝数N为20圈,线圈直径D为10mm不变,令长径比i在1~10的范围内变化,步长为1。根据上述数据绕制线圈,并将线圈接入电路中可以得到实验数据如表3所示。

以线圈长径比i为横坐标,电感量L为纵坐标将表3中实验数据描于网格图上,并以一条平滑的曲线将数据连接起来,如图4所示。

为确定公式(8)中常数a、b的具体数值,选取两个已知参数的标准空心线圈接入实验电路进行测量。为提高实验结果的准确性,采用多次测量取平均值的方法降低实验误差。两标准空心线圈参数如表4所示。

将两线圈分别接入电路进行多次测量,并取平均值得到结果如表5所示。

将表5中的测量平均值代入公式(9)中可以得到常数a、b的具体数值分别为a=0.47,b=0.0011。将常数a、b的数值代入公式(9)中可以进一步得到空心线圈电感量L的计算公式如下:

将本文所推导出的空心线圈电感量L的计算公式(10)与现有的空心线圈电感量L的经验公式(11)对比,可以发现本文所推导的公式与现行经验公式极为接近。这表明本文的推导过程具有较高的可信度,所得出的结论具有一定的理论价值。同时,本文所推导出的计算公式也反过来验证了现行经验公式的准确性。

3 结论

在本文推导空心线圈电感量L计算公式的过程中可以得到以下结论:

(1)当线圈直径D与线圈长径比i保持不变时,线圈电感量L与线圈匝数N之间是一种二次函数关系,即L∝N;

(2)当线圈匝数N与线圈长径比i保持不变时,线圈电感量L与线圈直径D之间是一种正比例函数关系,即L∝D;

(3)当线圈匝数N与线圈直径D保持不变时,线圈电感量L与(i+a)之间是一种反比例函数关系,即L∝(a为常数)。

【参考文献】

[1]刘修泉,曾昭瑞,黄平.空心线圈电感的计算与实验分析[J].工程设计学报,2008,02:149-153.

[责任编辑:朱丽娜]