APP下载

膜生物反应器处理抗生素废水研究进展

2016-10-10程雪婷杨殿海

安徽农业科学 2016年23期
关键词:磺胺城市污水反应器

程雪婷, 杨殿海

(同济大学环境科学与工程学院,上海 200092)



膜生物反应器处理抗生素废水研究进展

程雪婷, 杨殿海*

(同济大学环境科学与工程学院,上海 200092)

综述了膜生物反应器(MBR)对抗生素的去除效果,剖析了去除抗生素的生物降解和吸附途径,讨论了温度、pH、污泥浓度、污泥龄、水力停留时间、氧化还原电位等因素对MBR中抗生素去除效果的影响,介绍了膜生物反应器组合工艺对抗生素的强化去除效果,旨在为MBR去除抗生素的工艺设计与运行条件的优化提供参考。

膜生物反应器;抗生素;去除效果;去除途径;影响因素

近年来,抗生素被广泛应用于人类疾病治疗、畜禽养殖和农业生产中,其大量使用所引发的人类健康和环境安全问题备受社会关注。由于传统活性污泥法无法有效去除生活污水[1-3]、畜禽养殖污水[4-5]及制药废水[6]中的抗生素,从而使得大量抗生素经由城市污水厂排放到河流水沙[7-9]、土壤[10-11]、地下水[12]等天然环境中。我国每年抗生素使用量达16.20万t,经污水处理厂处理后排放到天然环境中的抗生素仍然高达5.38万t[13]。可见,城市污水处理厂排水已成为天然环境中抗生素的重要来源,城市污水厂升级改造问题亟需解决。膜生物反应器(MBR)是将膜的高效分离与生物降解作用相结合的一种高效污水处理工艺,与传统的活性污泥系统相比,其具有污泥浓度高、固液分离能力强、污泥龄长、菌群多样性高等特点,因此越来越多的学者将MBR应用于含抗生素废水处理的研究中。笔者综述了MBR对抗生素的去除效果,剖析了MBR中去除抗生素的生物降解和吸附途径,讨论了温度、pH、污泥浓度、污泥龄、水力停留时间和氧化还原电位等因素对MBR中抗生素去除效果的影响,介绍了MBR组合工艺对抗生素的强化去除效果,旨在为MBR去除抗生素的工艺设计与运行条件的优化提供参考。

1 MBR对抗生素的去除效果

目前,绝大多数城市污水厂采用的是活性污泥法工艺。由于抗生素的理化性质各异及生物降解性的不同,因而不同种类的抗生素在传统城市污水处理厂的进水、出水中的浓度存在较大差异。抗生素在传统城市污水厂进水和出水中的浓度水平在ng/L~μg/L,但在污泥中却可以达到mg/g的浓度水平。这表明传统的活性污泥法对抗生素的去除效果有限,从而导致大量的抗生素随着传统城市污水厂出水进入到天然环境中。主要类型抗生素在城市污水厂传统活性污泥法工艺进水、出水和污泥中的存在浓度见表1。

几大类抗生素在传统活性污泥法工艺(CAS)与MBR中的去除效果如表2所示。磺胺类在城市污水厂出水和污泥中的浓度较低(表1),表明CAS对磺胺类有一定去除效果,然而其去除效果不够稳定,由表2可以看出,其去除率范围为-138.0%~96.0%。CAS对大环内酯类的去除效果一般,大部分低于50.0%。与CAS相比,MBR可将磺胺类和大环内酯类抗生素的去除率提升至50.0%~90.0%,显示出其明显的去除优势。喹诺酮类和四环素类在CAS中的去除率可达70.0%以上,其在污泥中较高的浓度表明这2类抗生素很有可能是通过排泥而去除的;这2类抗生素经MBR去除其去除率可以提升至90.0%以上,比CAS去除率高约20.0%。在整体去除率方面,MBR对各类抗生素的去除效果较佳,虽然各研究结果有所差异,但基本可达80.0%~90.0%的去除效果。

由于不同的研究中MBR所在的环境条件及运行条件不同,因此得出的去除率范围有较大差异。即使是同一种抗生素,在不同研究中其去除效果也不尽相同,这是因为其去除率受到多种因素的影响。以磺胺甲恶唑为例,它是在各类环境中被检出频率最高的1种抗生素,因此研究者对磺胺甲恶唑的研究最多[46]。MBR对磺胺甲恶唑的去除效果见表3。由表3可以看出,污泥龄、水力停留时间、污泥浓度等因素均会影响MBR对磺胺甲恶唑的去除效果。此外,MBR中抗生素去除率出现较大差异的原因还有以下几种:进水浓度差异较大,这与进水来源中居民抗生素使用量及是否含有制药废水密切相关;水质具有波动性,取样不能完全反映整个过程的去除情况[15],采样方式不同也会导致数据差异较大;吸附于进水中颗粒物上的抗生素在整个处理过程中脱附[47],或着进水中一些代谢或中间产物转化造成出水抗生素浓度升高[48]。此外,也有磺胺甲恶唑去除率为负值的报道[20],其原因可能是污水中存在的N4-乙酰化磺胺甲恶唑重新转化为母体导致出水浓度增高。

表1 抗生素在城市污水厂进水、出水和污泥中的存在浓度

表2 CAS与MBR对抗生素的去除效果比较

表3  MBR对磺胺甲恶唑的去除效果

2 抗生素去除途径

2.1生物降解抗生素的生物降解过程与抗生素自身性质、污泥特性、运行条件等因素有关[49],这些条件通过影响微生物的生长、抗生素的代谢途径来影响细胞生物降解过程。抗生素的物化性质显著制约其自身去除效果,抗生素内部多样的分子结构也使得抗生素的生化性差异巨大。酯类、腈类、芳族醇结构可以提高其生化性,而芳香胺类、卤基、硝基和偶氮基、长支链以及复杂芳环等基团可降低其生化性[50-52]。例如,大环内酯类抗生素一般具有带有支链和糖类的环,而磺胺类具有2个被—SO2NH—结构联结的小环,这使得磺胺类极性和亲水性更强,从而决定了磺胺类抗生素比大环内酯类抗生素更易通过生物降解作用去除[24]。抗生素的代谢途径也会影响到生物降解过程。毒性较小、在环境中浓度存在较高的抗生素可以作为碳源被微生物通过直接代谢途径降解,毒性大、浓度低的抗生素则需通过微生物的共代谢作用得以去除[53]。共代谢是指微生物在主要底物存在条件下,对非生长底物进行降解的代谢方式[54]。微生物可以通过共代谢作用将抗生素转变成能够易生物降解的中间产物参与到主要代谢途径中去。某些种类的微生物如自养氨氧化菌被认为具有共代谢多种抗生素的能力[55],其在硝化条件下会生成氨单加氧酶[56],这种酶能够羟基化抗生素从而达到降解抗生素的目的。抗生素生物降解途径如图1所示。

注:a.直接代谢; b.共代谢。 Note:a.Direct metabolism;b.Co-metabolism.图1 抗生素生物降解途径[53] Fig.1 Biodegradation ways of antibiotics[53]

目前公认的生物降解模型主要为假一级模型,其用来解释抗生素生物降解行为。学者通过质量平衡算式计算Kbiol(降解速率常数)值作为抗生素生物降解性能的指标。生物降解模型:

2.2污泥吸附吸附在絮体、悬浮物以及污泥中的抗生素会随着沉淀作用以及排泥去除,这也是MBR去除抗生素的重要途径。吸附作用主要从2个方面来进行:①分子脂肪链和芳香基团与微生物亲脂细胞膜间的疏水作用;②组分的带正电基团与污泥负电表面的静电作用[57]。抗生素的亲疏水性是影响污泥吸附的重要指标。Rogers[58]提出用辛醇-水分配系数(Kow)值判断抗生素亲疏水性,由于未考虑到抗生素的pKa以及pH对抗生素的影响,lgKow在评价亲疏水性上存在一定缺陷。通常学者利用表观分配系数Kd来对抗生素吸附作用进行评估[59],其计算公式为:

(2)

式中,Cs为平衡条件下水相浓度(μg/L);Cw为泥相浓度(μg/g)。

Li等[57]认为,对于Kd<500 L/kg (lgKd< 2.7) 的抗生素,其吸附作用影响很小。对于Kd较大的抗生素,其通过吸附作用去除的比重很大。喹诺酮类抗生素如环丙沙星和诺氟沙星(Kd>15 000 L/kg)难以生物降解,其去除效果与Kd间有明显的正相关关系,且需通过与污泥絮体的静电作用来去除,而非疏水作用[2,60]。与活性污泥法相比,MBR中惰性物质含量较高,污泥粒径小且表面积大,有利于吸附[61]。但由于MBR排泥量较少,因此通过吸附去除的抗生素总量不一定高[62-63]。MBR中抗生素的吸附和生物降解途径已经得到绝大多数学者的公认,且MBR中抗生素的吸附过程较为迅速,而抗生素的生物降解是其去除过程的限速步骤。Dorival-García等[42]在研究中考查喹诺酮类抗生素的降解行为,发现吸附在60 min内快速完成,抗生素浓度从24 h后随着污泥生物降解而缓慢下降。Fernandez-Fontaina等[24]也发现,吸附过程结束后MBR水相和泥相中的抗生素浓度以相近的速度降低,表明水相和泥相中抗生素存在相似的生物降解行为。

总之,一方面MBR中较小尺寸絮体的存在增大了吸附接触面积,提高了吸附效果,另一方面复杂的微生物菌群有利于生物降解[63]。MBR反应器突出的泥水分离效果归结于膜组件的间接截留作用,它可以使得出水中基本不含污泥,保证了出水中不会有污泥携带抗生素排放到环境中[64]。此外,对于那些疏水性强且含有吸电子基团的抗生素,虽然其在水相中去除率高,但其会积累在污泥中并随之进入环境,因此污泥的安全处置问题亦需要学者更多的关注。

3 影响因素

3.1温度温度的改变能够导致抗生素物化性质、微生物活性、增殖速率等受到影响,进而导致出水水质及系统稳定运行受到影响[65]。

过高或过低的温度条件会降低抗生素的去除效果。低温条件下微生物的活性减弱会影响微生物对抗生素的生物降解过程,导致抗生素去除效率降低[66]。高温条件下,污泥会分解释放出污染物造成出水浓度的增加[65],物质的去除率同样会变低。温度的改变也会带来混合液特性的变化。Hai等[65]观察到污泥浓度会随着温度的升高而变低,胞外聚合物特性表现稳定,而溶解性微生物代谢产物中蛋白质的含量在低于20 ℃和高于45 ℃时明显增加。混合液特性与MBR中污泥絮体结构、沉降性能以及膜污染有着非常密切的关系,因此温度对混合液特性的改变会影响MBR的稳定运行。温度还会影响吸附作用,从而影响抗生素的去除效果。一般来说,温度的改变对带有强吸电子功能团、亲水性强的组分影响更大[65]。对于大多数物质来说,吸附等温线随着温度升高而降低[67],因此温度的升高会造成吸附能力的降低。对于喹诺酮类抗生素来说,其通过污泥吸附去除的效果会随着温度的升高而明显降低,但由于温度升高有利于生物降解,因此整体的去除率随温度升高依然呈现增大的趋势[42]。

3.2pHpH能够显著影响抗生素的去除,在不同的pH条件下,抗生素可能为中性、阴性或两性的,随之其物化性质及生化性质也会相应发生改变[68]。

对于能够发生电离的组分,其在pH较低的条件下以疏水形式存在,而在pH较高的条件下其会带上负电不利于吸附于污泥上。对于不可电离组分,pH的影响很小。磺胺甲恶唑在pH=5时主要以中性形式存在,疏水性强,有利于其吸附作用,去除效率最高[69]。Tadkaew等[69]还发现可电离组分受pH的影响非常大,且辛醇水分配系数的改变与去除率的变化非常一致。Watkinson 等[34]研究发现,当pH<7时,红霉素能够脱去一个水分子生成脱水红霉素,从而使其无法被检测到。pH条件不仅影响吸附作用,而且还影响微生物活性和菌群结构[70]。

3.3污泥浓度与CAS相比,较高的污泥浓度是MBR反应器的一大特点。体系中的污泥浓度升高意味着有更多的微生物可以参与到抗生素的去除中,这不仅可以使总体的生物降解能力得到增强,而且可以使得抗生素在污泥上的吸附总量得到增加,从而减小出水中抗生素浓度[42]。

污泥浓度高也意味着有较低的食微比(F/M),体系中可产生更多复杂的微生物菌群,这些微生物需要代谢难降解组分以维持其生长,因此整体上可以提高其降解抗生素的能力。MBR系统能够减少微生物的流失,因此也有利于难降解组分的降解。高浓度的污泥浓度还可使MBR拥有更高的抗冲击负荷的能力[71]。

Sahar等[72]观察污泥浓度积累过程(3.8~10.4 g/L)中抗生素的去除率变化,发现磺胺甲恶唑去除效果随污泥浓度增加而增大,而大环内酯类的去除率大小与污泥浓度无关。Dorival-Garcia等[42]发现将污泥浓度从7 g/L增大到15 g/L时,喹诺酮类抗生素的去除率和生物降解途径占比均有显著提高。他还指出,较高的污泥浓度虽然使微生物对抗生素的吸附能力降低,但其可为抗生素提供更多的吸附位点,从而使得抗生素的吸附总量增加。Fernandez-Fontaina等[24]比较了MBR和CAS的吸附和生物降解能力,发现MBR中抗生素的Kbiol和Kd值并无明显提高,因此他认为MBR的去除优势主要在于高浓度的污泥浓度使得去除总量增大。

3.4污泥龄污泥龄是污水处理厂工艺设计的重要指标,它影响着污泥浓度、生物多样性、微生物的活性和优势菌群,同时它也是影响MBR去除抗生素效果的重要因素。在较长的污泥龄下,慢速生长自养菌(如硝化细菌)能够缓慢增殖,同时微生物种类更为复杂,其可通过直接代谢或共代谢的方式加强抗生素的降解[29]。一般来说,MBR的污泥龄比CAS的要大,MBR对抗生素的去除效果更好。长泥龄、较低污泥负荷能够提高污泥生物多样性,有助于抗生素在污泥共代谢作用下的去除;短泥龄会导致污泥浓度下降、絮体尺寸变大以及比表面积减小,从而降低抗生素的去除效果[29]。因此,适当延长污泥龄可以提高MBR对抗生素的去除率。然而,也有学者观察到在相同污泥龄条件下,与CAS相比,MBR对抗生素的去除并无优势,这可能与其他因素(如污泥浓度、食微比等)的影响有关[73]。

3.5水力停留时间一般来说,提高水力停留时间能够增加微生物和污水的接触时间,从而提高抗生素的去除效果。

当水力停留时间过短时,污泥生物降解抗生素速率的提高无法抵消增大的进水负荷,此时去除效率就会下降。Fernandez-Fontaina等[66]在研究中观察到红霉素随着水力停留时间的缩短,其通过生物降解作用去除的比例先是增大,随后随进水负荷的提高而减小,而罗红霉素随着水力停留时间的缩短,其生物降解去除率减小,表明不同抗生素在相同水力停留时间下有着不同的动力学和计量学限制。Gros等[61]和García-Galán等[74]基于伪一级动力学模型,提出处理工艺需要满足最小水力停留时间(t1/2)来保证足够的时间进行吸附和生物降解以达到去除效果。Kbiol值较高及Kd值较低的抗生素(即疏水性较差)更易受到水力停留时间的影响,而Kbiol值较低及Kd值较高的抗生素更易受到污泥龄的影响。

3.6氧化还原电位诸多文献报道了抗生素在好氧硝化、缺氧反硝化以及厌氧条件下的去除效率,对于大多数抗生素来说好氧条件下其去除率较高。Suarez 等[75]对好氧硝化条件和缺氧反硝化条件下MBR对抗生素的去除效果进行了比较,结果表明罗红霉素、红霉素在硝化条件下去除率分别为91%和89%左右,而在缺氧条件下其去除率分别仅为15%和20%左右。也有文献报道在厌氧条件下某些抗生素去除效果较佳的情况,如Suarez 等[75]研究发现,好氧条件下磺胺甲恶唑去除率仅为22%左右,而Monsalvo等[76]和Wijekoon等[52]的研究结果显示,磺胺甲恶唑在厌氧MBR中几乎被完全去除。Xue等[77]在研究中也发现甲氧苄氨嘧啶在厌氧池中几乎被完全去除。分析原因可能是:①回流使厌氧池抗生素浓度下降;②污泥吸附造成的下降;③厌氧污泥自身具有较强的降解抗生素的能力。而红霉素在污泥相的浓度在好氧池达到最低,这可能是由于好氧池下生物降解的作用。

4 MBR组合工艺

MBR对绝大多数抗生素具有较佳的去除效果,但出水中依然有相当的残余。因此许多学者研究MBR组合工艺对抗生素的强化去除效果,如粉末活性炭-膜生物反应器工艺(PAC-MBR)[43]、膜生物反应器-臭氧工艺(MBR-O3)[43]、膜生物反应器-紫外光/H2O2工艺(MBR-UV/H2O2)[78]、膜生物反应器-反渗透/纳滤工艺(MBR-RO/NF)[79]等。MBR及其组合工艺对抗生素的去除效果见表4。由表4可以看出,MBR组合工艺比单独的MBR具有更佳的去除效果。此外,还有学者将酶催降解与MBR结合用于去除微量有机污染物[80]。

表4 MBR及其组合工艺对抗生素的去除效果

粉末活性炭-膜生物反应器工艺主要利用活性炭的吸附能力以提高去除效果。Baumgarten等[43]在研究中将粉末活性炭(投加量<50 mg/L)加入到MBR反应器,环丙沙星、恩诺沙星和莫西沙星的去除率分别从73%、56%、78%提高到96%左右。Serrano 等[83]研究发现,粉末活性炭的加入可使反应器内氨氧化菌增多,从而提高了生物降解抗生素的能力;MBR中加入1 g/L的粉末活性炭便几乎可以完全去除红霉素和罗红霉素。活性炭加入初期能够提高去除效果,但运行一段时间后活性炭吸附能力丧失,去除效果就会下降;对于难降解的物质,活性炭有限的吸附容量是限制其去除效果的重要因素[84]。活性炭的加入需要定期再生或更换,会增大产泥量。反渗透/纳滤膜的去除原理主要为分子截留[48,85],静电作用也发挥一定作用。大量研究表明反渗透/纳滤膜有去除微量有机污染物的能力[86],MBR与反渗透/纳滤膜的互补结合能够强化处理效果、拓宽工艺的适用范围。Alturki等[81]研究发现,膜生物反应器-反渗透/纳滤工艺几乎能够完全去除磺胺甲恶唑,其中MBR反应器对磺胺甲恶唑的去除率可达85%以上,其余部分主要为反渗透/纳滤膜发挥作用;Alturki等[81]认为MBR能够去除疏水性强和生物降解能力强的物质,而对于亲水性强的组分去除率则比较分散,这一部分随后被反渗透/纳滤膜有效去除。臭氧、紫外光、二氧化钛光催化等高级氧化技术历来被认为是处理难降解有机物的有效方法,其可帮助去除MBR无法有效去除的抗生素。紫外光或二氧化钛光催化氧化受到水质条件(如浊度)和有机物的影响较为严重[87],MBR较好的出水水质能够有效解决这一问题。然而,采用高级氧化技术强化去除抗生素的过程中,抗生素的毒性可能会增强[88]。需要指出的是,有关MBR与高级氧化联用技术去除抗生素的应用研究依然较少,副产物的产生以及毒性增强的问题依然存在,这也成为其应用的一大限制。

5 结语

抗生素的大量使用所引发的人类健康和环境安全问题不容忽视。大量文献报道了城市污水厂进水、出水和污泥中抗生素的检出,表明传统活性污泥法不能有效去除抗生素。MBR对各类抗生素的去除效果较佳,其在城市污水厂中的应用必将大大降低天然环境中抗生素的流入。MBR中抗生素主要通过生物降解和吸附这2种途径去除,二者受到抗生素的分子结构、亲疏水性的制约。影响因素研究是提高MBR对抗生素去除效果的前提和基础,对于优化MBR运行条件具有重要的理论和现实意义。去除效果受到温度、pH、污泥浓度、污泥龄、水力停留时间、氧化还原电位等多方面的影响,其中学者应重点关注污泥浓度、污泥龄。此外,MBR组合工艺的开发和应用能够完善城市污水厂的处理工艺,从而进一步增强抗生素的去除效果,这也值得学者进行更深入地研究。

目前,学者对MBR去除抗生素的去除机理、影响因素研究仍然不够全面、深入。抗生素种类繁多、性质各异,学者应着眼于更大种类范围的抗生素,进一步研究其在MBR的去除机理与效果。有关MBR中抗生素通过生物降解和吸附途径去除的比例的相关报道依然较少,以吸附为主要途径的抗生素依然会残留在泥相中,从而造成污泥安全处置问题,因此有必要开展泥相中抗生素的行为和归趋研究。

[1] XU W H,ZHANG G,ZOU S C,et al.Determination of selected antibiotics in the Victoria Harbour and the Pearl River,South China using high-performance liquid chromatography-electrospray ionization tandem mass spectrometry[J].Environmental pollution,2007,145(3):672-679.

[2] JIA A,WAN Y,XIAO Y,et al.Occurrence and fate of quinolone and fluoroquinolone antibiotics in a municipal sewage treatment plant[J].Water research,2012,46(2):387-394.

[3] MICHAEL I,RIZZO L,MCARDELL C S,et al.Urban wastewater treatment plants as hotspots for the release of antibiotics in the environment:A review[J].Water research,2013,47(3):957-995.

[4] ZHU Y G,JOHNSON TA,SU J Q,et al.Diverse and abundant antibiotic resistance genes in Chinese swine farms[J].Proceedings of the national academy of sciences of the United States of America,2013,110(9):3435-3440.

[5] LI Y X,ZHANG X L,LI W,et al.The residues and environmental risks of multiple veterinary antibiotics in animal faeces[J].Environmental monitoring and assessment,2013,185(3):2211-2220.

[6] KOVALOVA L,SIEGRIST H,SINGER H,et al.Hospital wastewater treatment by membrane bioreactor:Performance and efficiency for organic micropollutant elimination[J].Environmental science & technology,2012,46(3):1536-1545.

[7] LUO Y,XU L,RYSZ M,et al.Occurrence and transport of tetracycline,sulfonamide,quinolone,and macrolide antibiotics in the Haihe River Basin,China[J].Environmental science & technology,2011,45(5):1827-1833.

[8] GOLET E M,ALDER A C,GIGER W.Environmental exposure and risk assessment of fluoroquinolone antibacterial agents in wastewater and river water of the Glatt Valley Watershed,Switzerland[J].Environmental science & technology,2002,36(17):3645-3651.

[9] ZHOU L J,YING G G,ZHAO J L,et al.Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River,Hai River and Liao River in northern China[J].Environmental pollution,2011,159(7):1877-1885.

[10] GAO L,SHI Y,LI W,et al.Occurrence and distribution of antibiotics in urban soil in Beijing and Shanghai,China[J].Environmental science and pollution research,2015,22(15):11360-11371.

[11] LI C,CHEN J Y,WANG J H,et al.Occurrence of antibiotics in soils and manures from greenhouse vegetable production bases of Beijing,China and an associated risk assessment[J].Science of the total environment,2015,521:101-107.

[12] YAO L L,WANG Y X,TONG L,et al.Seasonal variation of antibiotics concentration in the aquatic environment:A case study at Jianghan Plain,central China[J].Science of the total environment,2015,527:56-64.

[13] ZHANG Q Q,YING G G,PAN C G,et al.Comprehensive evaluation of antibiotics emission and fate in the river basins of china:Source analysis,multimedia modeling,and linkage to bacterial resistance[J].Environmental science & technology,2015,49(11):6772-6782.

[14] ZHOU L J,YING G G,LIU S,et al.Occurrence and fate of eleven classes of antibiotics in two typical wastewater treatment plants in South China[J].Science of the total environment,2013,452:365-376.

[15] XU W,ZHANG G,LI X,et al.Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD),South China[J].Water research,2007,41(19):4526-4534.

[16] BATT A L,KIM S,AGA D S.Comparison of the occurrence of antibiotics in four full-scale wastewater treatment plants with varying designs and operations[J].Chemosphere,2007,68(3):428-435.

[17] GAO L,SHI Y,LI W,et al.Occurrence of antibiotics in eight sewage treatment plants in Beijing,China[J].Chemosphere,2012,86(6):665-671.

[18] LI B,ZHANG T.Mass flows and removal of antibiotics in two municipal wastewater treatment plants[J].Chemosphere,2011,83(9):1284-1289.

[19] LIN A Y C,YU T H,LATEEF S K.Removal of pharmaceuticals in secondary wastewater treatment processes in Taiwan[J].Journal of hazardous materials,2009,167(1/2/3):1163-1169.

[20] GOEBEL A,MCARDELL C S,JOSS A,et al.Fate of sulfonamides,macrolides,and trimethoprim in different wastewater treatment technologies[J].Science of the total environment,2007,372(2/3):361-371.

[21] ZUCCATO E,CASTIGLIONI S,BAGNATI R,et al.Source,occurrence and fate of antibiotics in the Italian aquatic environment[J].Journal of hazardous materials,2010,179(1/2/3):1042-1048.

[22] TRINH T,VAN DEN AKKER B,STUETZ R M,et al.Removal of trace organic chemical contaminants by a membrane bioreactor[J].Water science and technology,2012,66(9):1856-1863.

[23] SNYDER S A,ADHAM S,REDDING A M,et al.Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals[J].Desalination,2007,202(1/2/3):156-181.

[24] FERNANDEZ-FONTAINA E,PINHO I,CARBALLA M,et al.Biodegradation kinetic constants and sorption coefficients of micropollutants in membrane bioreactors[J].Biodegradation,2013,24(2):165-177.

[25] SAHAR E,MESSALEM R,CIKUREL H,et al.Fate of antibiotics in activated sludge followed by ultrafiltration (CAS-UF) and in a membrane bioreactor (MBR)[J].Water research,2011,45(16):4827-4836.

[26] KIM S D,CHO J,KIM I S,et al.Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface,drinking,and waste waters[J].Water research,2007,41(5):1013-1021.

[27] RADJENOVIC J,PETROVIC M,BARCELO D.Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment[J].Water research,2009,43(3):831-841.

[28] REIF R,SUAREZ S,OMIL F,et al.Fate of pharmaceuticals and cosmetic ingredients during the operation of a MBR treating sewage[J].Desalination,2008,221(1/2/3):511-517.

[29] XIA S,JIA R,FENG F,et al.Effect of solids retention time on antibiotics removal performance and microbial communities in an A/O-MBR process[J].Bioresource technology,2012,106:36-43.

[30] ABEGGLEN C,JOSS A,MCARDELL C S,et al.The fate of selected micropollutants in a single-house MBR[J].Water research,2009,43(7):2036-2046.

[31] TADKAEW N,HAI F I,MCDONALD J A,et al.Removal of trace organics by MBR treatment:The role of molecular properties[J].Water research,2011,45(8):2439-2451.

[32] TAMBOSI J L,DE SENA R F,FAVIER M,et al.Removal of pharmaceutical compounds in membrane bioreactors (MBR) applying submerged membranes[J].Desalination,2010,261(1/2):148-156.

[33] CHA J M,YANG S,CARLSON K H.Trace determination of beta-lactam antibiotics in surface water and urban wastewater using liquid chromatography combined with electrospray tandem mass spectrometry[J].Journal of chromatography A,2006,1115(1/2):46-57.

[34] WATKINSON A J,MURBY E J,COSTANZO S D.Removal of antibiotics in conventional and advanced wastewater treatment:Implications for environmental discharge and wastewater recycling[J].Water research,2007,41(18):4164-4176.

[35] WATKINSON A J,MURBY E J,KOLPIN D W,et al.The occurrence of antibiotics in an urban watershed:From wastewater to drinking water[J].Science of the total environment,2009,407(8):2711-2723.

[36] GULKOWSKA A,LEUNG H W,SO M K,et al.Removal of antibiotics from wastewater by sewage treatment facilities in Hong Kong and Shenzhen,China[J].Water research,2008,42(1/2):395-403.

[37] KIM M,GUERRA P,SHAH A,et al.Removal of pharmaceuticals and personal care products in a membrane bioreactor wastewater treatment plant[J].Water science and technology,2014,69(11):2221-2229.

[38] LIN AY C,TSAI Y T.Occurrence of pharmaceuticals in Taiwan's surface waters:Impact of waste streams from hospitals and pharmaceutical production facilities[J].Science of the total environment,2009,407(12):3793-3802.

[39] CLARA M,STRENN B,GANS O,et al.Removal of selected pharmaceuticals,fragrances and endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants[J].Water research,2005,39(19):4797-4807.

[40] YASOJIMA M,NAKADA N,KOMORI K,et al.Occurrence of levofloxacin,clarithromycin and azithromycin in wastewater treatment plant in Japan[J].Water science and technology,2006,53(11):227-233.

[41] GROS M,PETROVIC M,BARCELO D.Development of a multi-residue analytical methodology based on liquid chromatography-tandem mass spectrometry (LC-MS/MS) for screening and trace level determination of pharmaceuticals in surface and wastewaters[J].Talanta,2006,70(4):678-690.

[42] DORIVAL-GARCA N,ZAFRA-GOMEZ A,NAVALON A,et al.Removal of quinolone antibiotics from wastewaters by sorption and biological degradation in laboratory-scale membrane bioreactors[J].Science of the total environment,2013,442:317-328.

[43] BAUMGARTEN S,SCHROEDER H F,CHARWATH C,et al.Evaluation of advanced treatment technologies for the elimination of pharmaceutical compounds[J].Water science and technology,2007,56(5):1-8.

[44] BROWN KD,KULIS J,THOMSON B,et al.Occurrence of antibiotics in hospital,residential,and dairy,effluent,municipal wastewater,and the Rio Grande in New Mexico[J].Science of the total environment,2006,366(2/3):772-783.

[45] CHOI K J,KIM S G,KIM C W,et al.Determination of antibiotic compounds in water by on-line SPE-LC/MSD[J].Chemosphere,2007,66(6):977-984.

[46] ZHANG T,LI B.Occurrence,transformation,and fate of antibiotics in municipal wastewater treatment plants[J].Critical reviews in environmental science and technology,2011,41(11):951-998.

[47] GOBEL A,THOMSEN A,MCARDELL C S,et al.Occurrence and sorption behavior of sulfonamides,macrolides,and trimethoprim in activated sludge treatment[J].Environmental science & technology,2005,39(11):3981-3989.

[48] JELIC A,GROS M,GINEBREDA A,et al.Occurrence,partition and removal of pharmaceuticals in sewage water and sludge during wastewater treatment[J].Water research,2011,45(3):1165-1176.

[49] VERLICCHI P,AL AUKIDY M,ZAMBELLO E.Occurrence of pharmaceutical compounds in urban wastewater:Removal,mass load and environmental risk after a secondary treatment-A review[J].Science of the total environment,2012,429:123-155.

[50] TUNKEL J,HOWARD P H,BOETHLING R S,et al.Predicting ready biodegradability in the Japanese ministry of international trade and industry test[J].Environmental toxicology and chemistry,2000,19(10):2478-2485.

[51] JONES O A H,VOULVOULIS N,LESTER J N.Human pharmaceuticals in wastewater treatment processes[J].Critical reviews in environmental science and technology,2005,35(4):401-427.

[52] WIJEKOON K C,MCDONALD J A,KHAN S J,et al.Development of a predictive framework to assess the removal of trace organic chemicals by anaerobic membrane bioreactor[J].Bioresource technology,2015,189:391-398.

[53] TRAN N H,URASE T,NGO H H,et al.Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants[J].Bioresource technology,2013,146:721-731.

[54] FERNANDEZ-FONTAINA E,CARBALLA M,OMIL F,et al.Modelling cometabolic biotransformation of organic micropollutants in nitrifying reactors[J].Water research,2014,65:371-383.

[55] BATT A L,KIM S,AGA D S.Enhanced biodegradation of iopromide and trimethoprim in nitrifying activated sludge[J].Environmental science & technology,2006,40(23):7367-7373.

[56] ARP D J,YEAGER C M,HYMAN M R.Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene[J].Biodegradation,2001,12(2):81-103.

[57] LI C C,CABASSUD C,GUIGUI C.Evaluation of membrane bioreactor on removal of pharmaceutical micropollutants:A review[J].Desalination and water treatment,2015,55(4):845-858.

[58] ROGERS H R.Sources,behaviour and fate of organic contaminants during sewage treatment and in sewage sludges[J].Science of the total environment,1996,185(1/2/3):3-26.

[59] TERNES T A,HERRMANN N,BONERZ M,et al.A rapid method to measure the solid-water distribution coefficient (K-d) for pharmaceuticals and musk fragrances in sewage sludge[J].Water research,2004,38(19):4075-4084.

[60] LINDBERG R H,OLOFSSON U,RENDAHL P,et al.Behavior of fluoroquinolones and trimethoprim during mechanical,chemical,and active sludge treatment of sewage water and digestion of sludge[J].Environmental science & technology,2006,40(3):1042-1048.

[61] GROS M,PETROVIC M,GINEBREDA A,et al.Removal of pharmaceuticals during wastewater treatment and environmental risk assessment using hazard indexes[J].Environment international,2010,36(1):15-26.

[62] JOSS A,ZABCZYNSKI S,GOBEL A,et al.Biological degradation of pharmaceuticals in municipal wastewater treatment:Proposing a classification scheme[J].Water research,2006,40(8):1686-1696.

[63] KIMURA K,HARA H,WATANABE Y.Elimination of selected acidic pharmaceuticals from municipal wastewater by an activated sludge system and membrane bioreactors[J].Environmental science & technology,2007,41(10):3708-3714.

[64] CLARA M,STRENN B,AUSSERLEITNER M,et al.Comparison of the behaviour of selected micropollutants in a membrane bioreactor and a conventional wastewater treatment plant[J].Water science and technology,2004,50(5):29-36.

[65] HAI F I,TESSMER K,NGUYEN L N,et al.Removal of micropollutants by membrane bioreactor under temperature variation[J].Journal of membrane science,2011,383(1/2):144-151.

[66] FERNANDEZ-FONTAINA E,OMIL F,LEMA J M,et al.Influence of nitrifying conditions on the biodegradation and sorption of emerging micropollutants[J].Water research,2012,46(16):5434-5444.

[67] ZHANG Q,ZHAO L,DONG Y H,et al.Sorption of norfloxacin onto humic acid extracted from weathered coal[J].Journal of environmental management,2012,102:165-172.

[68] URASE T,KAGAWA C,KIKUTA T.Factors affecting removal of pharmaceutical substances and estrogens in membrane separation bioreactors[J].Desalination,2005,178(1/2/3):107-113.

[69] TADKAEW N,SIVAKUMAR M,KHAN S J,et al.Effect of mixed liquor pH on the removal of trace organic contaminants in a membrane bioreactor[J].Bioresource technology,2010,101(5):1494-1500.

[70] BOTHE H,JOST G,SCHLOTER M,et al.Molecular analysis of ammonia oxidation and denitrification in natural environments[J].FEMS microbiology reviews,2000,24(5):673-690.

[71] LEE W,KANG S,SHIN H.Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors[J].Journal of membrane science,2003,216(1/2):217-227.

[72] SAHAR E,ERNST M,GODEHARDT M,et al.Comparison of two treatments for the removal of selected organic micropollutants and bulk organic matter:Conventional activated sludge followed by ultrafiltration versus membrane bioreactor[J].Water science and technology,2011,63(4):733-740.

[73] LE-MINH N,KHAN S J,DREWES J E,et al.Fate of antibiotics during municipal water recycling treatment processes[J].Water research,2010,44(15):4295-4323.

[74] JESUS GARCA-GALN M,SILVIA DIAZ-CRUZ M,BARCELO D.Occurrence of sulfonamide residues along the Ebro River basin Removal in wastewater treatment plants and environmental impact assessment[J].Environment international,2011,37(2):462-473.

[75] SUAREZ S,LEMA J M,OMIL F.Removal of Pharmaceutical and Personal Care Products (PPCPs) under nitrifying and denitrifying conditions[J].Water research,2010,44(10):3214-3224.

[76] MONSALVO V M,MCDONALD J A,KHAN S J,et al.Removal of trace organics by anaerobic membrane bioreactors[J].Water research,2014,49:103-112.

[77] XUE W C,WU C Y,XIAO K,et al.Elimination and fate of selected micro-organic pollutants in a full-scale anaerobic/anoxic/aerobic process combined with membrane bioreactor for municipal wastewater reclamation[J].Water Research,2010,44(20):5999-6010.

[78] NGUYEN L N,HAI F I,KANG J,et al.Removal of emerging trace organic contaminants by MBR-based hybrid treatment processes[J].International biodeterioration & biodegradation,2013,85:474-482.

[79] WANG J X,WEI Y S,LI K,et al.Fate of organic pollutants in a pilot-scale membrane bioreactor-nanofiltration membrane system at high water yield in antibiotic wastewater treatment[J].Water science and technology,2014,69(4):876-881.

[80] NGUYEN L N,HAI F I,PRICE W E,et al.Degradation of a broad spectrum of trace organic contaminants by an enzymatic membrane reactor:Complementary role of membrane retention and enzymatic degradation[J].International biodeterioration & biodegradation,2015,99:115-122.

[81] ALTURKI A A,TADKAEW N,MCDONALD J A,et al.Combining MBR and NF/RO membrane filtration for the removal of trace organics in indirect potable water reuse applications[J].Journal of membrane science,2010,365(1/2):206-215.

[82] KOHLER C,VENDITTI S,IGOS E,et al.Elimination of pharmaceutical residues in biologically pre-treated hospital wastewater using advanced UV irradiation technology:A comparative assessment[J].Journal of hazardous materials,2012,239:70-77.

[83] SERRANO D,SUAREZ S,LEMA J M,et al.Removal of persistent pharmaceutical micropollutants from sewage by addition of PAC in a sequential membrane bioreactor[J].Water research,2011,45(16):5323-5333.

[84] NGUYEN L N,HAI F I,KANG J,et al.Removal of trace organic contaminants by a membrane bioreactor-granular activated carbon (MBR-GAC) system[J].Bioresource technology,2012,113:169-173.

[85] BELLONA C,DREWES JE,XU P,et al.Factors affecting the rejection of organic solutes during NF/RO treatment-a literature review[J].Water research,2004,38(12):2795-2809.

[86] RADJENOVIC J,PETROVIC M,VENTURA F,et al.Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment[J].Water research,2008,42(14):3601-3610.

[87] YUAN F,HU C,HU X X,et al.Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2process[J].Journal of hazardous materials,2011,185(2/3):1256-1263.

[88] ZHANG R C,YANG Y K,HUANG C H,et al.UV/H2O2and UV/PDS treatment of trimethoprim and sulfamethoxazole in synthetic human urine:Transformation products and toxicity[J].Environmental science & technology,2016,50(5):2573-2583.

Research Progress of Treatment of Antibiotic Wastewater by MBR

CHENG Xue-ting,YANG Dian-hai*

(College of Environmental Science and Engineering,Tongji University,Shanghai 200092)

Removal efficiency of antibiotics from wastewater by membrane bioreactor (MBR) was reviewed,and removal pathways (biodegradation and adsorption) were deeply analyzed.Meanwhile,the effects of influencing factors including temperature,pH,mixed liquor suspended solids (MLSS),sludge retention time (SRT),hydraulic retention time (HRT) and redox potential on the removal effect of antibiotics were emphatically discussed,and the strengthening removal effect of antibiotics by MBR combined processes was introduced,aiming to provide a reference for the design and optimization of operating condition of MBR processes for treating antibiotic wastewater.

Membrane bioreactor; Antibiotics; Removal effect; Removal ways; Influencing factors

国家自然科学基金(51408425);国家水体污染控制与治理科技重大专项(2011ZX07316-002)。

程雪婷(1991- ),女,河北邯郸人,硕士研究生,研究方向:水污染控制技术。*通讯作者,教授,博士生导师,从事水污染控制技术研究。

2016-05-20

X 703

A

0517-6611(2016)23-060-07

猜你喜欢

磺胺城市污水反应器
聚丙烯环管反应器升密操作与控制
城市污水处理中相关微生物技术的应用
磺胺嘧啶银混悬液在二度烧伤创面治疗中的应用
城市污水处理厂占地研究
基于城市污水处理的人工湿地规划设计初探
EGSB反应器处理阿维菌素废水
基于环境保护的城市污水处理
上旋流厌氧反应器在造纸废水处理中的应用
养猪不能滥用磺胺药
费托合成微反应器研究进展