冷冻球囊消融术与射频消融术治疗阵发性心房颤动的比较
2016-08-15潘维综述殷跃辉审校
潘维综述殷跃辉审校
(重庆医科大学附属第二医院心血管内科,重庆400000)
冷冻球囊消融术与射频消融术治疗阵发性心房颤动的比较
潘维综述殷跃辉审校
(重庆医科大学附属第二医院心血管内科,重庆400000)
心房颤动(Af)是常见的心律失常之一。中国目前是世界上第一Af患病大国,Af患者达800万,并且这一数据随着中国人口老龄化逐年增加。射频消融术治疗阵发性Af成功率高、疗效确切,因而在临床上得到广泛应用;但其消融过程复杂,术中患者疼痛感明显。相较而言,冷冻球囊消融术成功率高、手术时间短、患者痛苦小,因此成为阵发性Af的新治疗方法;但也存在对肺静脉解剖结构要求较高、辐射暴露较多以及膈神经麻痹等缺点。现以近期相关文献为基础,对射频消融和冷冻球囊消融治疗原理、操作难度以及疗效做一综述,通过比较射频消融和冷冻球囊消融治疗阵发性Af的优劣,为临床医师提供参考意见。
阵发性心房颤动;冷冻消融;射频消融;肺静脉隔离
心房颤动(atrial fibrillation,Af)是临床上常见的心律失常之一,其发病率与年龄相关,并随着肥胖、糖尿病、心血管疾病风险的增加而升高。Af可引起缺血性卒中、周围动脉栓塞、心功能不全、心脏性猝死等并发症,严重威胁患者的身体健康。当前,Af治疗指南推荐使用导管消融替代抗心律失常药物作为治疗阵发性心房颤动(paroxysmal atrial fibrillation,PAF)的一线方案[1-2]。临床研究也证实,对于有症状的PAF患者,导管消融的疗效优于药物治疗[3]。
Af的发病机制一直未得到彻底阐明,经典的学说包括多子波折返、自旋波折返和局灶激动学说[4]。Haissaguerre等发现,心房内心肌细胞可移行入肺静脉内形成“肺静脉肌袖”,并在入心大静脉肌袖和心房某些特殊组织,如界嵴内发现了类起搏细胞。这些细胞由于各种因素导致的自律性异常或触发电活动,成为Af发生的重要始动机制[5],即“局灶激动学说”。此学说同时也为导管消融治疗Af提供了理论基础。
射频消融术(radiofrequency ablation,RFA)通过逐点消融进而完成节段性或环肺静脉电隔离,形成肺静脉-左心房的完全电隔离,即肺静脉隔离(pulmonary vein isolation,PVI);但该项技术操作难度较大,消融时间较长[6]。为克服其操作的繁琐性,冷冻球囊消融术(cryoballoon ablation,CBA)应运而生。CBA依靠球囊内一氧化二氮(N2O)气化带走热量,使接触部位温度骤降,破坏与其接触的肺静脉组织结构,从而达到PVI的目的[7]。21世纪初CBA开始在国外用于治疗PAF,到目前为止已有数万例PAF患者接受了CBA的治疗。目前大量临床研究表明,CBA耗时较RFA少,不良事件发生率低,但存在较高的膈神经麻痹风险。因此,对于导管消融治疗PAF患者策略的选择,临床上存在争议[1-4]。国外目前已有数个多中心临床研究,对Af患者RFA和CBA治疗效果及安全性进行比较[3,8]。其中最大的一个由德国圣乔治心脏中心发起的大型多中心临床研究FIRE AND ICE[9],其结果尚未公布。
现从治疗原理、操作难度和临床疗效三个方面对CBA和RFA作一比较,以期为PAF患者的介入治疗方案选择提供帮助。
1 治疗原理
RFA利用交流电对与肺静脉组织紧密贴合的消融导管头端加热,将导管头端产生的热量传导至周围组织几毫米的范围内,当周围组织温度>48 ℃即产生点状透壁损伤。连续点状消融形成一个环状损伤带,从而达到PVI的目的[10]。
冷冻球囊导管系统由冷冻球囊、Achieve环状电极、可调弯长鞘、冷冻消融大头组成。冷冻球囊利用液态N2O气化吸热,使球囊内部温度降至-88.47 ℃[7],当与之接触的组织温度<-40 ℃时,可导致细胞产生低温损伤和炎症反应,远期形成纤维化,最终导致永久性的细胞破坏,达到PVI[11]。与RFA相比,CBA采用一次完成隔离的所谓“one-shot”技术:低温粘连使球囊与组织紧密而稳定地接触,冷冻形成的冰晶保留了细胞外基质及内皮细胞的完整性,防止血管内形成血栓,进而降低组织损伤和血栓形成风险。并且有研究表明,CBA后形成的损伤带界限清晰,降低了Af复发和肺静脉狭窄的风险[12]。目前使用的第二代冷冻球囊因其冷冻降温速度快、与肺静脉接触面积大、球囊形状更适合肺静脉口部结构的优点,已广泛应用于临床[13]。CBA中患者无明显疼痛感,也是该技术相较于RFA的优势之一。
2 操作难度
RFA的急性PVI成功率可达98%[3]。然而,在EFFICASⅠ研究[14]中发现,PAF患者行RFA后随访3个月,51%的患者能维持同侧PVI,35%的患者能维持4根PVI。造成电隔离不能维持的原因包括:异位兴奋灶位置不定、心房内结构改变,射频消融导管头端与心房接触压力不够或者接触压力分布不均,因此难以产生有效的透壁损伤。这些也是行RFA后Af复发风险仍较高的原因。
而研究报道运用CBA进行PVI成功率为82%~98%[15-17]。由于肺静脉解剖结构个体间差异较大,因此CBA的成功率亦受到影响。Sorgente等对行CBA治疗的PAF患者随访6~12个月后发现,左肺静脉开口呈椭圆形比圆形复发率高[15]。Richard等对38例行CBA的PAF患者术前行肺静脉CT/MRI检查,证实标准型肺静脉更适合行CBA,左右侧最小肺静脉口直径差异越小,PVI更易完成。故可根据静脉解剖情况来选择冷冻球囊类型[18]。
第二代冷冻球囊较第一代拥有更低的温度、更广泛的接触面积。运用第二代冷冻球囊实现急性PVI成功率可达90%,而第一代冷冻球囊为81%[11]。另外,近期的临床研究证实,基于接触面积的提高,二代冷冻球囊可一次性实现全部PVI而无需术中更换球囊。SUPIR研究[8]纳入了21例PAF患者,19例应用第二代冷冻球囊实现全部PVI。通过平均3.4(2.9~4.1)个月随访,91%患者保持PVI,该研究证实冷冻球囊维持PVI的成功率高。Metzner等[19]对50例应用直径28 mm第二代CBA的患者进行远期疗效的随访,1年窦性心律的维持率为80%。
因此,术前明确PAF患者肺静脉解剖结构非常重要,可指导术者制定手术方案。拥有标准型肺静脉解剖结构,且肺静脉口直径差异小,更适合行CBA。然而,FREEZE队列研究[3]证实,由于CBA需要多次行肺静脉造影,医患射线辐射量高于RFA(2 663 cGy cm2vs 2 067 cGy cm2,P<0.05)。Franc等研究也证实RFA组射线暴露量低于CBA组[12]。因此,术者可结合自身身体情况选择手术方案。
表1 CBA与RFA治疗PAF的比较
3 临床效果比较
目前已完成的前瞻性、国际化、多中心注册试验FREEZE队列研究[3]将冷冻球囊和射频导管消融治疗PAF进行对比。大型临床多中心FREEZE研究[3]入选373例患者参与手术组CBA与RFA的对比研究。最终比较结果由RFA(n=180)组与CBA(n=193)组得出。手术终点PVI成功率两组均达到98%。然而手术时间CBA比RFA更短(112 min vs 180 min,P<0.000 1)。围术期各组均发生1例不良事件,RFA组出现1例脑卒中,CBA组出现1例膈神经麻痹;Af术后再入院的患者CBA组为28.2%、RFA组为50%(P<0.01);再入院患者中行电复律治疗的比例分别为CBA 1.2%、RFA 11.0%(P<0.01);再次手术的患者比例CBA和RFA分别为6.0%和14.6%。该研究表明CBA治疗PAF效果优于RFA;CBA手术时间短、无痛感;成功率与RFA无明显差异。因此,肺静脉条件允许的患者选择CBA更好。
4 远期疗效对比
Takigawa等对1 220例行RFA的症状性PAF患者进行超过1年的随访,发现Af未复发的概率为59%,最终实现PVI患者概率为81.1%(平均行1.3次手术治疗)[19]。而Vogt等[20]对605例患者行CBA,随访1年后发现,61.6%的PAF患者无Af复发。Kojodjojo等纳入177例PAF患者分别行CBA和RFA治疗,随访12个月后发现行CBA的成功率稍高于RFA(77% vs 72%)[21]。FREEZE队列研究数据显示:随访1年后统计Af /房性心动过速未复发的概率分别为CBA 71%、RFA 61%(P=0.11)[3];Freeze Af研究纳入315例PAF患者行RFA(n=159)或CBA(n=156),随访1年Af未复发的概率分别为CBA 73.6%、RFA 70.7%(P=0.933)[22]。从以上研究不难看出,无论是CBA或者RFA术后,长期随访患者PAF的复发率均<50%,且两种治疗手段在复发率上无统计学意义。因此,CBA及RFA的长期效果间并无明显差别。
5 临床安全性比较
临床研究证实,RFA与CBA在PAF患者术后并发症发生率上无明显差异,CBA有发生膈神经麻痹(phrenic nerve paralysis,PNP)的风险,但此风险可有效预防。一项纳入3 180例患者的关于RFA并发症的meta分析报道:RFA发生并发症的概率为4.9%,主要有肺静脉狭窄(1.6%)、心包压塞(0.7%)、心包积液(0.6%)、脑卒中(0.3%)、短暂性脑缺血发作(0.2%)[23]。Schmidt等[24]对3 775例PAF患者随机行RFA(n=2 870)和CBA(n=905)治疗,总体并发症RFA组(4.6%)和CBA组(4.6%)无明显差异,CBA组比RFA组发生PNP概率高(2.1% vs 0.0%,P< 0.001)。FREEZE Cohort研究数据显示术后随访过程中,CBA组电复律比例(1.2%)也明显低于RFA组(11.0%),CBA组仅有1例PNP[3]。Freeze Af研究中发现PNP在两组中有显著差异(RFA组0%、CBA组5.8%,P=0.002)[21]。当前已可通过消融右上肺静脉时起搏膈神经或者应用直径28 mm的球囊可显著降低PNP的发生率[25]。总之,目前大量临床研究均证实CBA的PNP发生率高于RFA,但已有降低PNP风险的方案可应用,且CBA无痛感,故CBA较之RFA拥有更为广阔的应用前景。
6 总结
现有的大量临床研究表明,导管消融治疗可作为症状性PAF的一线治疗方案。CBA与RFA治疗PAF,在临床效果和长期疗效方面无明显差异。而对于拥有良好的肺静脉解剖条件的PAF患者,CBA因其手术时间更短、术中患者痛苦小,其主要并发症PNP可有效预防,故可优先选择CBA,但医患双方承受的放射暴露量较大、费用稍高,故需权衡。
总之,导管消融术治疗作为PAF的一线方案,CBA会吸引更多的患者接受该治疗。不需要3D标测系统和另外专业的电生理设备,对心脏电生理实验室来说也易开展;但该手术成功率与手术医生的经验有密切关系。虽然CBA的安全性已有保证,但目前没有一个完整的CBA培训系统[26],故该项技术的广泛推广仍存在一定问题。此外,FIRE AND ICE临床研究尚未结束,其结果可能重新划定RFA和CBA在PAF治疗中的适应证,其结果值得期待。
[1]Khoueiry Z, Albenque JP, Providencia R, et al. Outcomes after cryoablation vs. radiofrequency in patients with paroxysmal atrial fibrillation:impact of pulmonary veins anatomy[J]. Europace,2016,pii: euv419[Epub ahead of print].
[2]January CT, Wann LS, Alpert JS, et al. AHA/ACC/HRS guideline for the management of patients with atrial fibrillation:a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society[J].Circulation,2014,130(23):e199-267.
[3]Straube F, Dorwarth U, Ammar-Busch S, et al. First-line catheter ablation of paroxysmal atrial fibrillation:outcome of radiofrequency vs. cryoballoon pulmonary vein isolation[J]. Europace, 2016,18(3):368-375.
[4]Gerstenfeld EP, Duggirala S.Atrial fibrillation ablation:indications, emerging techniques, and follow-up[J]. Prog Cardiovasc Dis,2015,58(2):202-212.
[5]Ichihara N, Miyazaki S, Kuroi A,et al.Impact of pulmonary vein isolation on superior vena cava potentials with a second-generation cryoballoon[J]. J Cardiovasc Electrophysiol,2015, 26(12):1321-1326.
[6]Ang R, Domenichini G, Finlay MC, et al.The hot and the cold:radiofrequency versus cryoballoon ablation for atrial fibrillation[J]. Curr Cardiol Rep,2015,17(9):631.
[7]Avitall B, Kalinski A.Cryotherapy of cardiac arrhythmia:from basic science to the bedside[J]. Heart Rhythm,2015,12(10):2195-2203.
[8]Reddy VY, Sediva L, Petru J, et al.Durability of pulmonary vein isolation with cryoballoon ablation:results from the sustained PV isolation with arctic front advance(SUPIR) study[J]. J Cardiovasc Electrophysiol,2015,26(5):493-500.
[9]Fürnkranz A, Brugada J, Albenque JP, et al.Rationale and Design of FIRE AND ICE:a multicenter randomized trial comparing efficacy and safety of pulmonary vein isolation using a cryoballoon versus radiofrequency ablation with 3D-reconstruction[J].J Cardiovasc Electrophysiol,2014,25(12):1314-1320.
[10]Jourda F, Providencia R, Marijon E. Contact-force guided radiofrequency vs. second-generation balloon cryotherapy for pulmonary vein isolation in patients with paroxysmal atrial fibrillation—a prospective evaluation[J]. Europace,2015,17(2):225-231.
[11]Martins RP, Hamon D, Césari O, et al. Safety and efficacy of a second-generation cryoballoon in the ablation of paroxysmal atrial fibrillation[J]. Heart Rhythm, 2014,11(3):386-393.
[12]di Giovanni G, Wauters K, Chierchia GB, et al. One-year follow-up after single procedure cryoballoon ablation:a comparison between the first and second generation balloon[J]. J Cardiovasc Electrophysiol,2014,25(8):834-839.
[13]Wissner E, Heeger CH, Grahn H, et al. One-year clinical success of a’no-bonus’ freeze protocol using the second-generation 28 mm cryoballoon for pulmonary vein isolation[J]. Europace, 2015,17(8):1236-1240.
[14]Neuzil P, Reddy VY, Kautzner J, et al.Electrical reconnection after pulmonary vein isolation is contingent on contact force during initial treatment:results from the EFFICAS I study[J].Circ Arrhythm Electrophysiol,2013,6(2):327-333.
[15]Ciconte G, Velagiĉ V, MugnaiG, et al. Electrophysiological findings following pulmonary vein isolation using radiofrequency catheter guided by contact-force and second-generation cryoballoon: lessons from repeat ablation procedures[J]. Europace, 2016,18(1):71-77.
[16]Canpolat U, Aytemir K, Özer N, et al. The impact of cryoballoon-based catheter ablation on left atrial structural and potential electrical remodeling in patients with paroxysmal atrial fibrillation[J]. J Interv Card Electrophysiol,2015,44(2):131-139.
[17]Ang R, Hunter RJ, Baker V, et al.Pulmonary vein measurements on pre-procedural CT/MR imaging can predict difficult pulmonary vein isolation and phrenic nerve injury during cryoballoon ablation for paroxysmal atrial fibrillation[J]. Int J Cardiol,2015,195:253-258.
[18]Takigawa M, Takahashi A, Kuwahara T, et al. Long-term follow-up after catheter ablation of paroxysmal atrial fibrillation:the incidence of recurrence and progression of atrial fibrillation[J]. Circ Arrhythm Electrophysiol,2014,7(2):267-273.
[19]Metzner A, Reissmann B, Rausch P, et al. One-year clinical outcome after pulmonary vein isolation using the second-generation 28-mm cryoballoon[J].Circ Arrhythm Electrophysiol,2014,7(2):288-292.
[20]Vogt J, Heintze J, Gutleben KJ, et al. Long-term outcomes after cryoballoon pulmonary vein isolation:results from a prospective study in 605 patients[J]. J Am Coll Cardiol, 2013,61(16):1707-1712.
[21]Hunter RJ, Baker V, Finlay MC,et al. Point-by-point radiofrequency ablation versus the cryoballoon or a novel combined approach:a randomized trial comparing 3 methods of pulmonary vein isolation for paroxysmal atrial fibrillation (the cryo versus RF trial)[J]. J Cardiovasc Electrophysiol,2015,26(12):1307-1314.
[22]Luik A, Radzewitz A, Kieser M, et al. Cryoballoon versus open irrigated radiofrequency ablation in patients with paroxysmal atrial fibrillation:the prospective, randomized, controlled, noninferiority freezeAF study[J]. Circulation,2015,132(14):1311-1319.
[23]Schmidt M, Dorwarth U, Andresen D, et al. German ablation registry:cryoballoon vs radiofrequency ablation in paroxysmal atrial fibrillation—One-year outcome data[J]. Heart Rhythm, 2016,13(4):836-844.
[24]Schmidt M, Dorwarth U, Andresen D, et al.Cryoballoon versus RF ablation in paroxysmal atrial fibrillation:results from the German Ablation Registry[J].J Cardiovasc Electrophysiol,2014,25(1):1-7.
[25]Lakhani M, Saiful F, Parikh V, et al. Recordings of diaphragmatic electromyograms during cryoballoon ablation for atrial fibrillation accurately predict phrenic nerve injury[J]. Heart Rhythm, 2014,11(3):369-374.
[26]Ang R, Domenichini G, Finlay MC, et al.The Hot and the Cold:Radiofrequency Versus Cryoballoon Ablation for Atrial Fibrillation[J].Curr Cardiol Rep,2015,17(9):631.
·综述·
Cryoballoon Versus Radiofrequency Ablation for Paroxysmal Atrial Fibrillation
PAN Wei,YIN Yuehui
(DepartmentofCardiology,TheSecondAffiliatedHospitalofChongqingMedicalUniversity,Chongqing400000,China)
Atrial fibrillation is the most common cardiac arrhythmia. Nowadays, China has the largest population of patients with atrial fibrillation, more than 8 million, and the data on this topic has correspondingly increased every year with the aging population. The successful rate and curative effect of catheter ablation has already been confirmed in patients with paroxysmal atrial fibrillation. However, obvious pain and complicated operation procedure are also found in radiofrequency ablation. Compared with radiofrequency ablation, cryoballoon ablation is a novel therapeutic method for paroxysmal atrial fibrillation due to its high successful rate, short operation time and reduced patient pain. Nevertheless, disadvantages such as strict anatomy requirements of the pulmonary vein, unnecessary radiation exposure and phrenic nerve paralysis also exist in cryoballoon ablation. In this paper we reviewed the mechanism, operation difficulty and curative effect between catheter ablation and cryoballoon ablation based on recent research in order to provide guidance for clinical practice through comparing catheter ablation and cryoballoon ablation in the treatment of paroxysmal atrial fibrillation.
Paroxysmal atrial fibrillation;Cryoballoon ablation;Radiofrequency ablation
2016-01-26修回日期:2016-03-01
潘维(1991—),住院医师,硕士,主要从事心房颤动研究。Email:pivi1991@126.com
殷跃辉(1963—),主任医师,教授,博士生导师,主要从事心律失常治疗的研究。Email:yinyh63@163.com
R54
A【DOI】10.16806/j.cnki.issn.1004-3934.2016.04.005