APP下载

中国东部陆架海沉积有机碳研究进展:来源、输运与埋藏*

2016-08-12石学法胡利民乔淑卿白亚之

海洋科学进展 2016年3期
关键词:陆架陆源沉积物

石学法,胡利民, 乔淑卿,白亚之

(1.国家海洋局 第一海洋研究所,山东 青岛 266061;2. 海洋沉积与环境地质国家海洋局重点实验室,山东 青岛 266061;3. 青岛海洋科学与技术国家实验室 海洋地质过程与环境功能实验室,山东 青岛 266061)



中国东部陆架海沉积有机碳研究进展:来源、输运与埋藏*

石学法1,2,3*,胡利民1,2,3, 乔淑卿1,2,3,白亚之1,2

(1.国家海洋局 第一海洋研究所,山东 青岛 266061;2. 海洋沉积与环境地质国家海洋局重点实验室,山东 青岛 266061;3. 青岛海洋科学与技术国家实验室 海洋地质过程与环境功能实验室,山东 青岛 266061)

大河影响下的河口陆架区陆海相互作用活跃,是有机碳的主要沉积区,在全球碳的生物地球化学循环中发挥着重要作用。中国东部陆架海包括渤海、黄海和东海陆架,黄河和长江两条大河直接流入该区。从有机碳来源、输运和埋藏保存等方面总结介绍了近年来中国东部陆架海沉积有机碳源汇过程的研究进展。研究表明,土壤有机碳和海洋初级生产力是本区沉积有机碳的主要来源;有机分子标志物和多元统计分析模型的综合应用能更准确地评估近海沉积有机碳的源汇特征;陆架泥质区是长江和黄河陆源沉积有机碳的重要储库;河流输入、沉积再悬浮和远距离物质输运等沉积动力过程显著影响着本区不同来源、不同类型陆源沉积有机碳的输运和归宿;大河物质输入、海洋初级生产力以及陆架沉积作用共同支撑着该区较高的有机碳埋藏能力。本区的研究今后需要从海陆结合的地球系统科学的角度,从整体上研究沉积作用过程与有机碳迁移转化的影响机制和响应关系;结合我国东部陆架海特有的沉积物源汇体系特征,揭示从流域到近海物质输运体系中不同来源有机碳的年龄分布和归宿,并在气候变化和人类活动影响日益显著的背景下,探究不同时空尺度沉积有机碳的输运和埋藏保存及其对大气CO2和全球变化的影响和意义。

中国东部陆架海;沉积有机碳;来源;输运;埋藏

大河控制影响下的河口陆架地区是沉积有机碳的主要堆积区,超过80%的有机碳沉积发生在这一区域[1-2]。这一地区是沉积有机碳的重要储库,沉积通量高、动力环境多样、生物地球化学过程复杂、人类活动影响显著[3-6],同时对碳的生物地球化学循环过程、海洋生态系统以及全球气候变化也有重要影响[4,7-8]。作为陆源入海物质的主要堆积区,河口陆架有机碳的堆积速率往往比大洋高出一个数量级[9],其较高的海洋固碳能力和碳汇效应潜力已引起人们的关注[10-14]。另一方面,在大河影响下的河口陆架,特别是三角洲地区,有机碳虽然具有较高的沉积埋藏速率,但部分有机碳并没有真正保存下来,而是受该区较为活跃的沉积水动力条件(如再悬浮)及生物扰动等因素的影响[15-20];同时由于再次暴露在相对氧化的水体环境中,加之微生物作用,沉积有机碳容易发生矿化分解[21-24](图1)。上述过程能显著影响区域有机碳的循环及其源汇效应[7, 25-26],这一过程的研究对于深入认识不同类型沉积有机碳的物源、归宿及其环境指示等方面具有重要的科学意义[4, 27]。

图1 近海沉积有机碳的循环模式图[28]Fig.1 The sketch of sedimentary organic carbon cycling in the coastal margin [28]

图2 中国东部陆架海沉积物输运与泥质沉积区分布及海流分布示意图[29-30]Fig.2 Schematic diagram showing patterns of oceanic currents, sediment dispersal and distribution of mud deposits over the East China Sea[29-30]

中国东部边缘海陆架宽广,兼有长江和黄河两条世界性大河携带巨量沉积物入海,在西边界流和东亚季风驱动的复杂环流体系的影响下,形成了该区沉积物“夏储冬输”的宏观输运格局[29, 31-35](图2)。除了黄河、长江等河流物质的巨量供应及其季节性变化外,复杂的水动力条件和陆架沉积作用也对该区沉积物的源汇特征有重要影响[36-41]。对该区陆架沉积物输运和沉积特征的大量研究表明,黄河作为全球悬沙浓度最高和多年平均入海沉积物通量居世界第二的大河,是影响中国东部近海陆架现代沉积格局的主要物质来源,黄河沉积物经现代河口入海后,受沿岸流作用经渤海海峡南部进入北黄海,然后沿山东半岛北部陆架继续向东输运和沉积,并绕过成山头最终向南黄海输运和沉积[35, 42-48];而黄、东海海域发育的中尺度气旋型涡旋(冷涡)等陆架环流和沉积作用则控制性影响着黄海和东海陆架泥质沉积区的形成[40, 49-50]。长江沉积物入海后主要向东南方向输运,受台湾暖流阻隔作用,入海沉积物通量的70%~90%堆积于长江口及东海内陆架(水深<50 m),其中大部分在夏季优先堆积在123°E以西的长江口区[33, 51-52],冬季在沉积再悬浮作用下,悬浮泥沙在闽浙沿岸流驱动下主要沿海岸向南输运,最终可达闽江口[36, 52-54]。综上所述,该区陆海相互作用强烈、沉积物输运机制复杂,不仅是河流入海细颗粒沉积物汇聚埋藏的主要区域,也是沉积有机碳发生堆积、迁移和转化的重要区域,记录了丰富的环境变异和人类活动等信息,因此是开展大河河口-近海陆海相互作用影响下沉积有机碳源汇过程研究的理想区域。本文旨在结合该领域有关国际研究背景和前沿科学问题,总结近年来我国东部陆架海沉积有机碳来源、输运和埋藏等研究的主要进展,以期深入了解该区沉积有机碳的生物地球化学过程及其对碳汇效应、物质来源和环境演变的指示作用。

1 河口-陆架沉积有机碳的物源表征及影响因素

近海沉积有机碳的来源与陆源输入和海洋自身生产密切相关。区分有机碳的陆源和海源贡献,除利用传统的总有机碳C/N比值及稳定碳同位素(δ13CTOC)等经典指标外[55-57],近年来发展起来的有机分子标志物(如长链烷烃、甾醇类、木质素等),以其来源明确和性质稳定的特点具有更加敏感和直观的优势,得到较广泛的应用[57-60]。研究表明,来自于陆源高等植物叶蜡的奇碳数长链烷烃是反映沉积物中陆源有机质输入的良好替代指标[61]。低碳数(

蔡德陵等[65-66]基于总有机碳C/N比值和δ13CTOC等指标的研究发现,山东半岛水下三角洲沉积物主要来源于现代黄河物质,南黄海中部陆源沉积物来自废黄河和现代黄河物质,来自长江的物质比例较少,并基于有机质δ13CTOC估算了沉积物中海源碳的贡献,以此恢复重建了该区200 a来的初级生产力历史。研究显示,长江河口区和东海内陆架δ13CTOC的信号明显受长江陆源输入的影响[67];Kao等[68]对比研究了东海内陆架和冲绳海槽区沉积有机质的δ13CTOC的组成特征,发现两者的相似性,进而提出了内陆架沉积物跨陆架输运的可能性。基于δ13CTOC等指标,将长江口地区沉积有机碳来源分为河流、三角洲和海洋三个端元,发现沉积水动力过程影响沉积有积碳来源和组成[69]。Hu等[70-72]分别对渤、黄海陆架和长江口-东海内陆架泥质区沉积有机碳的分布与来源进行了系统研究,证实黄河口、长江口及内陆架细颗粒沉积区是陆源有机碳的主要堆积区;研究也表明黄河口及邻近海域δ13CTOC的分布与现代黄河入海沉积物的扩散输运路径基本一致,说明其可以作为指示黄河物质在渤、黄海地区扩散的特征指标。基于不同端元的δ13CTOC组成研究,发现黄河口陆源有机碳贡献可达50%,但向外海迅速降低,估计只有约10%~20%的黄河物质到达渤海中部泥质区和渤海海峡[73]。长江口沉积物δ13CTOC的变化范围较小,海洋源约占60%,基于δ13CTOC的分布模式得出颗粒有机碳(POC)主要是在东-东南方向上输送[74]。最近,基于蒙特卡洛模拟的三端元混合模型(陆地维管、土壤和海源有机碳),Li 等[75]对长江口-东海内陆架沉积有机碳来源的研究表明,海源有机碳(平均64%)是沉积有机碳的主要贡献源,而在陆源有机碳中,土壤有机碳(平均27%)的相对贡献是陆地高等C3维管植物的2倍。

基于传统的总有机碳C/N和δ13CTOC指标虽能大体判断沉积有机碳的物源(图3),但由于海洋浮游生物生产的有机碳δ13CTOC变化范围较大[76],且陆地植被存在较大偏差,同时早期成岩降解作用能改变有机质初始的C/N和δ13CTOC[77-78],导致这类指标对有机碳(尤其是陆源有机碳)物源识别的低敏感性[71, 79-80]。此外,近海沉积物无机氮吸附和人类活动(如石油污染、施肥)等因素也使得这类指标在物源识别时出现偏差[21, 81-84]。相比之下,生物标志物法可更加准确地区分陆源和海洋源有机碳。这在我国河口-陆架地区已有较多应用,例如,基于对渤、黄海表层沉积物脂类标志物(正构烷烃、脂肪醇和甾醇等)的分析,发现沉积物中不同脂类标志物随着离岸距离的远近具有不同的降解程度,河口地区陆源贡献更大,河流输入的陆源信号主要集中在近岸区[85]。南黄海沉积物中正构烷烃的组成多呈现双峰分布,前峰群短链烷烃主要来自浮游藻类和细菌,而长链烷烃则主要跟陆地高等植物叶蜡来源有关[86]。长江口-东海内陆架是长江入海物质的主要堆积区,该区有机碳的生物地球化学过程得到了广泛关注,已应用了多种生物标志物对沉积有机碳的来源进行表征,主要包括正构烷烃[80, 87-88]、甾醇和烯酮[80, 89]、木质素[87, 90-92]及脂肪酸等[93-94]。近几年,也有学者利用与微生物合成有关的四醚膜酯(GDGTs)[95]和放射性14C[91-92, 96]等新指标和方法对本区沉积有机碳的来源及其生物地球化学过程进行表征,表明陆架细颗粒沉积区是有机碳特别是陆源有机碳的重要汇,有机碳的来源、分布及归宿与区域沉积动力环境关系密切。Yao等[97]综合利用总有机碳和多种生物标志物(正构烷烃、木质素、四醚膜酯)及沉积物粒度和比表面积等多元地球化学分析手段,并结合多元统计分析模型,估算得出长江口及邻近陆架沉积有机碳的来源主要为海洋自生源(35%)、土壤源(47%)和陆源植物贡献(18%)。综上所述,对不同来源沉积有积碳的物源识别这一重要科学问题,东部陆架海总有机质的C/N和δ13CTOC指标的应用受多种因素影响(如无机氮吸附、水动力分选、微生物和早期成岩作用等)而表现出多解性[70,80,98],而具有一定的来源特异性的生物标志物,通过其不同来源的分子组成比值及单位分子的同位素组成特征,往往能更加准确地量化沉积有机碳的海源与陆源相对贡献[80,98]。

图3 基于C/N和有机碳δ13CTOC组成的沉积有机碳源解析[111]Fig.3 The bio-plot of the C/N and δ13CTOC of the surface sediments in the East China Sea and its comparison with other river-dominated margins around the world[111]

2 沉积有机碳输运与沉积水动力条件的控制

事实上,颗粒物在河口-陆架环境中的运移过程具有选择性[99],受水动力条件影响,其分布特征主要取决于颗粒物的粒径、密度、矿物组成和比表面积等要素,即大部分细颗粒、低密度的颗粒物质可能会被波浪和沿岸流等输运到距离河口更远的海域,而粒径较粗、密度较高的颗粒物则会优先在河口附近沉积[19]。在这一过程中,受波浪和海流的动力分选作用,具有不同来源和活性的不同粒度、矿物及地球化学组成的物质会发生分选或分异[17,19,100-101],从而导致吸附于这些颗粒基质上不同类型、不同性质的有机碳组分也发生分异,即有机碳会在不同的粒级和矿物组成的颗粒物甚至不同相之间进行重新分配[18, 20, 102],进而显著影响沉积有机碳在河口-陆架海的地球化学行为和归宿[15-16,19,101,103]。

国外学者在这方面开展了系统研究,例如,基于对墨西哥湾不同粒级沉积物中的木质素的分析,发现砂质沉积物中以木本植物有机质为主,而泥质沉积物中则富含草本植物有机质,砂质沉积物对陆源沉积有机质入海也具有重要作用[18]。Tesi等[104-105]利用典型生物标志物(木质素、正构烷烃)和稳定碳同位素组成对地中海沿岸和东西伯利亚海陆架地区有机碳的来源、传输和动力分异进行了研究,发现在陆源有机碳向海输运过程中,木质有机组分更易停留在河口附近,而赋存于细颗粒中降解程度较高的土壤有机碳更容易被优先搬运到离岸区域。运用粒度、有机碳和生物标志物(脂类、木质素和四醚膜酯)等多参数指标,发现伊比利亚海沉积物在水动力分选的作用下,来自土壤和维管植物的陆源有机碳主要赋存于粉砂粒级颗粒中,这类降解程度较高的有机碳能被输运到离岸较远的地方,并在水动力能量较低的离岸陆架泥质区沉积埋藏,而海洋自生的藻类等新鲜有机碳则主要沉积在内陆架区域[20]。

在我国,沉积动力对颗粒有机碳扩散输运的影响也受到较多关注,研究主要集中在长江口-东海内陆架。Bouloubassi等[106]对长江口烃类化合物空间分布的研究发现,烃类化合物的运移与其所吸附的颗粒的大小与密度有直接的关系,且不同烃类化合物的吸附能力有差异,这对它们的沉积分异特征有重要影响。基于木质素等参数的分析,发现长江口及邻近陆架区陆源有机质降解程度较高,且长江口31°30′N以南木质素降解程度比北部区域更高,草本植物贡献更大[90]。对长江口海域沉积物进行粒径分级,并结合同位素示踪研究,发现沉积物中的粗颗粒物(>250 μm)主要来源于人类活动产生的有机物,细颗粒物(<25 μm)主要来自于河口悬浮物,黏土组分中有机碳的含量最高[107]。基于长江口及邻近海域表层沉积物中正构烷烃、木质素和GDGTs的分子标志物组成特征,探讨了不同沉积动力环境中不同性质陆源有机碳的运移及其环境指示意义,发现除了细颗粒沉积物表面吸附作用外,河口区由于再悬浮过程导致的有机质解吸附以及陆架残留有机质对有机碳的扩散和循环也有重要作用,并以此划分了6类有机碳的赋存沉积环境[88]。Hu等[71]基于长江口-东海内陆架表层沉积物正构烷烃组成特征,发现吸附于细颗粒物质的贫木质陆源有机碳组分优先在河口-内陆架地区向南输运,并从物质汇和沉积水动力过程耦合的角度揭示了长江入海的陆源沉积有机质的环境归宿。Wang等[108]通过对长江口及邻近陆架区的沉积物不同密度和不同粒级的有机碳组成研究,则发现有机碳主要富集在密度为2.0~2.5 g/cm3的组分中,陆源有机碳主要富集在密度小的颗粒物上,海源有机碳优先富集在密度大的颗粒物上,表明不同密度级上不同来源有机碳输运与埋藏机制的不同;富含木质素的新鲜植物碎屑主要与粗颗粒相联系,并优先堆积在河口附近,而贫木质素、降解程度较高的土壤有机碳则主要赋存在细颗粒物上,可输运到离河口较远的位置,水动力分选过程在决定陆源有机碳(包括土壤、维管植物)和海洋源有机碳在河口外的输运和散布过程中发挥重要作用[108]。除东海外,基于渤、黄海沉积物总有机碳和生物标志物的多参数统计分析,并结合沉积物粒度组成和粒径趋势分析的结果,Hu等[70, 72]研究了水动力条件对沉积有机碳区域分布的控制作用,印证了陆源有机碳同位素的空间分布特征与黄河入海沉积物的扩散路径具有较好的一致性,黄、渤海陆架水动力能量较低的泥质区是黄河入海陆源沉积有机碳的重要远端汇;发现来源于植物叶蜡的正构烷烃作为土壤有机质的重要组成部分,受沉积水动力分选的作用易被优先传输并沉积在水动力能量较低的离岸泥质区,进而指出大河输入和陆架沉积水动力环境对本区陆源沉积有机碳选择性输运的控制作用,并提出现代黄河入海陆源沉积有机碳向渤、黄海远距离、选择性输运保存的概念模式(图4)。

图4 黄、渤海陆源沉积有机质的概念输运模式[72]Fig.4 Schematic plot showing the simplified circulation system and the transport pathways of terrigenous sedimentary organic carbon on the shelf coupled with spatial variability of terrigenous n-alkanes proportion[72]

3 陆架沉积有机碳的埋藏与保存

研究表明,全球大约90%的有机碳埋藏发生在大河影响下的边缘海及相应陆架区,这里是全球重要的碳储库[1-2],其变化对全球物质循环和气候变化有重要影响[8]。研究河口陆架地区有机碳的埋藏保存对于深入了解沉积有机质的生物地球化学循环及其对气候变化和人类活动的响应等方面具有重要意义[1,4,109-110]。前人对河口陆架沉积有机碳埋藏能力大小的评估往往取决于区域沉积有机碳的含量和质量年堆积速率(g·cm-3),后者主要是由放射性核素(如210Pb,137Cs,14C等)得到的沉积速率再结合沉积物干密度计算得出[12-14,111]。因此,在大河影响下的边缘海不同沉积环境中,由于TOC含量和质量埋藏速率的不同,有机碳的埋藏速率往往也有很大差异(表1)。

表1 世界上不同河口-近海沉积有机碳埋藏速率的比较

注:“-”表示无数据

Deng 等[14]根据表层沉积物TOC含量和沉积速率及干密度资料,对东海陆架不同区域沉积有机碳的埋藏速率和收支进行了系统研究,估算得到东海陆架有机碳的年平均埋藏速率为14.7 g·m-2,区域年埋藏通量为7.4×106t;其中,长江三角洲附近有机碳年埋藏速率最高,超过200 g·m-2,堆积在沉积物中的陆源和海源有机碳占各自总量的10%和5.5%,高于全球平均水平,并指出该区较高的有机碳埋藏特点可能跟本区年沉积速率较高有关,河流输入和黑潮侵入是影响东海陆架有机碳埋藏的主要因素;通过比较还发现,该结果(14.7 g·m-2)高于从PN断面利用同样的估算方法得到的结果(4.7~10.9 g·m-2)[112],同时也高于基于质量收支平衡模型估算出的区域有机碳年沉积通量结果(8.03 g·m-2)[114],这可能与不同研究的估算方法及所覆盖区域范围的差异有关。基于放射性碳同位素年代框架,Yang等[115]对长江口和珠江口全新世以来沉积有机碳埋藏的演变过程进行了比较研究,发现珠江口的沉积有机碳埋藏记录可较好用于重建东亚季风的演化史,而长江口沉积有机碳的埋藏记录及季风替代指标的关系较复杂,指示了该区沉积有机碳埋藏保存的影响因素较多(如流域风化和土壤类型)。通过收集近十年以来区域尺度的渤、黄海沉积有机碳和质量埋藏速率资料,Hu等[112]估算了渤、黄海陆架区百年尺度内沉积有机碳的年平均埋藏速率约为15.3 g·m-2,区域年埋藏量达5.6×106t,通过与世界上其他陆架地区的结果对比(表1),提出渤、黄海陆架区域是全球近海有机碳的重要储库,并指出大河物质输入、较高的海洋初级生产力以及陆架沉积作用可能共同支撑着本区较高的碳埋藏能力。通过对水体和沉积物中有机碳含量的分析,并结合文献资料,刘军等[116]对渤、黄海有机碳的收支进行了评估,结果表明有机碳的主要来源为初级生产力贡献,水体中外源输入和海洋自生有机碳约1.6%被埋藏,说明渤、黄海具有相对较高的生产力和埋藏效率,表现出潜在碳汇特性。利用浅地层剖面调查获得的全新世地层厚度,结合南黄海西部内陆架沉积柱样和钻孔岩心的沉积速率和有机碳含量资料,侯雪景[117]研究认为老黄河三角洲沉积区和山东半岛南部水下泥质区全新世以来有机碳年沉积通量较高(>30 g·m-2),并比较了海岸带和内陆架不同环境单元的碳汇能力。综上所述,不同地区、不同沉积年代的河口陆架环境中沉积有机碳的埋藏能力差异较大,沉积有机碳的埋藏主要还是受控于物源供应和沉积环境。

尽管河口陆架环境中沉积物被认为是陆源输入及海洋自生物质的归宿,但如前所述,受河口近海沉积水动力条件的控制,不同来源、不同性质的沉积有机质往往发生选择性输运和埋藏;而且,伴随这种活跃的沉积动力环境,沉积物中还广泛存在各种化学氧化过程和微生物活动,导致不同来源、不同类型的有机质组分的降解速率(早期成岩矿化)或生物可利用性并不相同,从而使得不同沉积环境中的有机碳的埋藏保存效率存在较大差异(图5)[24,118]。例如,在亚马孙河口-近海的移动泥(mobile mud)中,超过50%的河流输入的有机碳被氧化而分解,再悬浮过程显著促进了底边界层有机碳的再矿化降解,从而使得河口三角洲陆源有机碳的埋藏保存效率较低(约24%),而陆架能储存约30%~35%的河流输入的有机碳[10],表明这些大河影响下的河口陆架地区虽然是有机碳的堆积中心,但却并不一定是长期的保存中心[22,118]。我国东部陆架海地区沉积有机质保存及降解矿化的研究尚处在起步阶段。早期Aller等[119]对长江口和东海沉积物孔隙水的氧化还原条件及其中生源要素的扩散通量和降解成岩过程进行了初步研究,估算了陆源有机碳的保存效率;Yao等[120]发现长江口-东海内陆架沉积物单位比表面积有机碳含量普遍较低(<0.40 mg/m2),表明有机碳的保存效率不高,上层沉积物有机碳再矿化速率与上述热带海域的结果具有可比性,显示可能经历了比较显著的再矿化分解过程。基于粒度分级研究,发现长江口最大浑浊带附近小于32 μm的颗粒物有机碳保存效率相对较低,约71%的长江所输入的陆源有机碳在沉积过程中发生矿化分解[121]。受黄河输入的直接影响,沉积有机碳经历了较强的水动力分选和再矿化作用;渤、黄海陆架泥质区有机碳保存能力相对偏低(图6),可能与陆源颗粒物长距离输运、水柱沉降过程中的降解有关,并表现出泥质区的沉积动力机制对有机碳保存的影响[122]。总之,不同地区沉积有机碳的保存效率和再矿化路径(如有氧呼吸和反硝化等)不尽相同[123],定量开展这方面的研究对于揭示能量分配和碳循环过程具有重要的生态学和环境学意义[117,124-126]。

图5 不同沉积环境中有机碳的埋藏保存效率[26] Fig.5 The percentage of organic carbon deposited on the seafloor that is buried as a function of net sediment accumulation rate[26]

图6 单位比表面积不同来源沉积有机碳组成[121]Fig.6 The regional comparisons of TOC/SSA in varied origins in different depositional settings[121]

另一方面,除了海洋源自生的新鲜的有机质容易被有效分解,同时也发现以往认为难降解的陆源有机碳(如木质素)在这一过程中也会显著降解,这种被称为“激发效应”的现象(priming effect)可能是通过微生物引发、共氧化和共代谢作用而促进更难降解的陆源有机质的分解[10,24,128],但其中具体的过程和机制还不十分清楚。沿长江陆源沉积物的扩散输运路径,Hu等[71]发现在东海内陆架伴随着新鲜海洋源有机质的混入,陆源沉积有机质由北向南进一步发生降解,表现为陆源正构烷烃碳优势指数进一步的降低。在沉积物再悬浮-再搬运过程中,反复的氧化还原交替、局部新鲜海洋源有机质的供给和微生物分解作用可能共同支撑着沉积有机碳的再矿化分解[22]。

4 结 语

总体来说,近年来针对中国东部陆架海沉积有机碳来源、输运和埋藏等方面的研究取得了较多成果,对在大河输入、季节性再悬浮及沉积物远距离输运的宏观格局下,不同来源、不同类型沉积有机碳的迁移转化的源-汇过程有了较深入认识。但是,目前的研究进展与国际前沿研究仍有一定差距,今后应进一步从海陆结合的地球系统科学的角度,重点加强从流域到河口陆架乃至更广阔的空间尺度和地质时间尺度上对上述复杂生物地球化学过程的影响机制和环境响应开展研究,主要可包括如下几方面:1)加强对沉积作用过程的系统分析与有机碳迁移转化机制的整体研究,开展不同沉积环境下有机碳的埋藏保存及其对陆源物质供应通量变异、沉积过程和人类活动的响应研究;2)加强有机地球化学与矿物学、微生物学等其他多学科交叉的研究,从有机-无机相互作用的角度探讨不同类型有机碳与不同矿物和地球化学组成沉积物及微生物种群的相互关系及沉积物中有机碳的保存方式和归宿的影响机制;3)结合我国东部陆架海特有的沉积物源汇体系特征,重点从分子-同位素层面定量厘清不同来源沉积有机碳的年龄分布,研究不同类型陆源有机碳从流域到河口陆架这一连续体中的迁移转化过程,并在气候变化和人类活动影响日益显著的背景下,着重探究不同时空尺度下沉积有机碳的搬运和埋藏保存及其对大气CO2和全球变化的影响意义。

[1]BERNER R A. Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance[J].American Journal of Science, 1982, 282 (4): 451-473.

[2]HEDGES J I, KEIL R G. Sedimentary organic matter preservation: an assessment and speculative synthesis[J].Marine Chemistry, 1995, 49 (2-3): 81-115.

[3]ALLISON M, BIANCHI T, MCKEE B A, et al. Carbon burial on river-dominated continental shelves: impact of historical changes in sediments loading adjacent to the Mississippi River[J].Geophysical Research Letters, 2007, 34 (1), L01606.

[4]BIANCHI T, ALLISON M. Large-river delta-front estuaries as natural "recorders" of global environmental change[J].Proceedings of the National Academy of Sciences, 2009, 16 (20): 8085-8092.

[5]DE HAAS H, VAN WEERING T C E, DE STIGTER H. Organic carbon in shelf seas: sinks or sources, processes and products[J].Continental Shelf Research, 2002, 22(5): 691-717.

[6]GORDON E S, GONI M A. Sources and distribution of terrigenous organic matter delivered by the Atchafalaya River to sediments in the northern Gulf of Mexico[J].Geochimica et Cosmochimica Acta, 2003, 67 (13): 2359-2375.

[7]MCKEE B A, ALLER R C, ALLISON M A, et al. Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: benthic boundary layer and seabed processes[J].Continental Shelf Research, 2004, 24(7-8): 899-926.

[8]BERNER R A. The Phanerozoic Carbon Cycle: CO2and O2[M].New York: Oxford University Press, 2004: 150-156.

[9]BERNER W H, SMETACEK V S, WEFER G. Production of the ocean: past and present[M].New York:Wiley, 1989: 471.

[10]ALLER R C, BLAIR N E, XIA Q, et al. Remineralization rates, recycling, and storage of carbon in Amazon shelf sediments[J].Continental Shelf Research, 1996, 16(5): 753-786.

[11]DE HAAS H, VAN WEERING T C E. Recent sediment accumulation, organic carbon burial and transport in the northeastern North Sea[J].Marine Geology,1997, 136(3-4): 173-187.

[12]MACDONALD R W, SOLOMON S M, CRANSTON R E,et al. A sediment and organic carbon budget for the Canadian Beaufort Shelf[J].Marine Geology, 1998,144(4): 255-273.

[13]GORDON E S, GONI M A, ROBERTS Q N, et al. Organic matter distribution and accumulation on the inner Louisiana shelf west of the Atchafalaya River[J].Continental Shelf Research, 2001, 21(16): 1691-1721.

[14]DENG B, ZHANG J, WU Y. Recent sediment accumulation and carbon burial in the East China Sea[J].Global Biogeochemical Cycles, 2006, 20(3): 466-480.

[15]PRAHL F G. Chemical evidence of differential particle dispersal in the southern washington coastal environment[J].Geochimica et Cosmochimica Acta, 1985, 49(12): 2533-2539.

[16]GONI M A, RUTTENBERG K C, EGLINTON T I. A reassessment of the sources and importance of land-derived organic matter in surface sediments from the Gulf of Mexico[J].Geochimica et Cosmochimica Acta,1998, 62(18): 3055-3075.

[17]BIANCHI T S, MITRA S, MCKEE B A. Sources of terrestrially-derived organic carbon in lower Mississippi River and Louisiana shelf sediments: implications for differential sedimentation and transport at the coastal margin[J].Marine Chemistry, 2002, 77(2-3): 211-223.

[18]BIANCHI T S, WYSOCKI L A, STEWART M, et al. Temporal variability in terrestrially-derived sources of particulate organic carbon in the lower Mississippi River and its upper tributaries[J].Geochimica et Cosmochimica Acta, 2007, 71(18): 4425-4437.

[19]WAKEHAM S G, CANUEL E A, LERBERG E J, et al. Partitioning of organic matter in continental margin sediments among density fractions[J].Marine Chemistry, 2009, 115(3-4): 211-225.

[20]SCHMIDT F, HINRICHS K U, ELVERT M. Sources, transport, and partitioning of organic matter at a highly dynamic continental margin[J].Marine Chemistry, 2010, 118(1-2): 37-55.

[21]HEDGES J I, OADES J M. Comparative organic geochemistries of soils and marine sediments[J].Organic Geochemistry, 1997, 27(7): 319-361.

[22]ALLER R C. Mobile deltaic and continental shelf muds as suboxic, fluidized bed reactors[J].Marine Chemistry, 1998, 61(3-4): 143-155.

[23]BURDIGE D J. Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets[J].Chemical Reviews, 2007, 107(2): 467-485.

[24]BIANCHI T. The role of terrestrially derived organic carbon in the coastal ocean: A chaning paradigm and the priming effect[J].Proceedings of the National Academy of Sciences, 2011, 108(49): 19473-19481.

[25]CAI W J, DAI M H, WANG Y C. Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis[J].Geophysical Research Letters, 2006, 33: L12603.

[26]BLAIR N E, ALLER R C. The fate of terrestrial organic carbon in the marine environment[J].Annual Review of Marine Science, 2012, 4: 401-423.

[27]SAMPERE T P, BIANCHI T P, ALLISON M A. Historical changes in terrestrially derived organic carbon inputs to Louisiana continental margin sediments over the past 150 years[J].Journal of Geophysical Research: Biogeosciences(2005-2012), 2011,116(1):250-257.

[28]BAUER J E, CAI W J, RAYMOND P A, et al. The changing carbon cycle of the coastal ocean[J].Nature, 2013,504(7478): 61-70.

[29]GAO S. Shallow marine sedimentation and physical environment evolution as a part of global change: an example from the Bohai, Yellow and East China Sea regions[J].Earth Science Frontiers, 2002, 9(2): 329-335. 高抒. 全球变化中的浅海沉积作用与物理环境演化-以渤,黄,东海区域为例[J]. 地学前缘, 2002, 9(2): 329-335.

[30]LI G X, YANG Z G, LIU Y Y. Study of the mechanism of the sedimentary environment in the East China Seas[M].Beijing: Ocean Press, 2005. 李广雪, 杨子庚, 刘勇. 中国东部海域海底沉积环境成因研究[M].北京:科学出版社, 2005.

[31]YANG Z S, GUO Z G, WANG Z X, et al. Overall patterns of suspended matter transport from the Yellow and East China Seas towards deep water[J].Acta Oceanological Sinica, 1992, 14(2): 81-90. 杨作升, 郭志刚, 王兆祥, 等. 黄东海陆架悬浮体向其东部深海区输送的宏观格局[J]. 海洋学报, 1992, 14(2): 81-90.

[32]YANAGI T, TAKAHASHI S, HOSHIRA A, et al. Seasonal variation in the transport of suspended matter in the East China Sea[J].Journal of Oceanography, 1996,52(5): 539-552.

[33]GUO Z G, YANG Z S, ZHANG D Q, et al. Seasonal distribution of suspended matter in the northern East China Sea and barrier effect of current circulation on its transport[J].Acta Oceanological Sinica, 2002, 24(5): 71-80. 郭志刚, 杨作升, 张东奇, 等. 冬、夏季东海北部悬浮体分布及海流对悬浮体输运的阻隔作用[J].海洋学报, 2002, 24(5): 71-80.

[34]YANG Z, JI Y, BI N, et al. Sediment transport off the Huanghe(Yellow River) delta and in the adjacent Bohai Sea in winter and seasonal comparison[J].Estuarine, Coastal and Shelf Science, 2011, 93(3): 173-181.

[35]BI N, YANG Z, WANG H, et al. Seasonal variation of suspended-sediment transport through the southern Bohai Strait[J].Estuarine, Coastal and Shelf Science, 2011, 93(3): 239-247.

[36]XIE Q C, YE Y C, LU B W. Bathymetric features and sedimentation process at the shelf edge of the East China Sea[J].Acta Oceanological Sinica, 1984, 6(1): 61-71. 谢钦春,叶银灿, 陆炳文. 东海陆架坡折地形和沉积作用过程[J]. 海洋学报, 1984, 6(1): 61-71.

[37]HU D X. Upwelling and sedimentation dynamics[J].Chinese Journal of Oceanology and Limnology, 1984, 2(1): 12-19.

[38]DONG L X, SU J L, WANG K S. Tidal flow fields of the Bohai and Yellow Seas in relation to sediment transport[J].Acta Oceanological Sinica, 1989, 11(1): 102-114. 董礼先, 苏纪兰, 王康墡. 黄渤海潮流场及其与沉积物搬运的关系[J]. 海洋学报, 1989, 11(1): 102-114.

[39]GUO Z G, YANG Z S, QU Y H. Distribution pattern of carbon storage in the surface sediments in the middle continental shelf mud area and its adjoining East China Sea Areas[J].Oceanologia et Limnologia Sinica, 1999, 30(4): 421-426. 郭志刚, 杨作升, 曲艳慧. 东海中陆架泥质区及其周边表层沉积物碳的分布与固碳能力的研究[J]. 海洋与湖沼, 1999, 30(4): 421-426.

[40]SHI X F, CHEN C F, LIU Y G, et al. Trend analysis of sediment grain size and sedimentary process in the central South Yellow Sea [J].Chinese Science Bulletin, 2002, 47(6): 1202-1207. 石学法, 陈春峰, 刘焱光, 等.南黄海中部沉积物粒径趋势分析及搬运作用[J]. 科学通报, 2002, 47(6): 452-456.

[41]CHENG P, GAO S, BOKUNIEWICZ H. Net sediment transport patterns over the Bohai Strait based on grain size trend analysis[J].Estuarine, Coastal and Shelf Science, 2004, 60(2): 203-212.

[42]BORNHOLD B, YANG Z, KELLER G, et al. Sedimentary framework of the modern Huanghe(Yellow River) delta[J].Geo-Marine Letters, 1986, 6(2): 77-83.

[43]ALEXANDER C R, DEMASTER D J,NITTOUER C A. Sediment accumulation in a modern epicontinental-shelf setting: The Yellow Sea[J].Marine Geology, 1991, 98(1): 51-72.

[44]MARTIN J M, ZHANG J, SHI M C, et al. Actual flux of the Huanghe(Yellow River) sediment to the Western Pacific Ocean[J].Netherlands Journal of Sea Research, 1993, 31(3): 243-254.

[45]CHENG P, GAO S. Net sediment transport patterns over the northwestern Yellow Sea, based on upon grain size trend analysis[J].Oceanologia et Limnologia Sinica, 2000, 31(6): 604-615. 程鹏, 高抒. 北黄海西部海底沉积物的粒度特征和净输运趋势[J]. 海洋与湖沼, 2000, 31(6): 604-615.

[46]LIU J P, MILLIMAN J D, GAO S, et al. Holocene development of the Yellow River's subaqueous delta, North Yellow Sea[J].Marine Geology, 2004, 209(1): 45-67.

[47]YANG Z S, LIU J P. A unique Yellow River-derived distal subaqueous delta in the Yellow Sea[J].Marine Geology, 2007, 240(1-4): 169-176.

[48]BIAN C, JIANG W. GREATBATCH R J. An exploratory model study of sediment transport sources and deposits in the Bohai Sea, Yellow Sea, and East China Sea[J].Journal of Geophysical Research: Oceans, 2013,118(11): 5908-5923.

[49]SHI X F, LIU Y Y, LI X S, et al. The bottom sediments in the coastal China Sea[M].Beijing:Ocean Press, 2014: 1-78. 石学法, 刘焱光, 李西双, 等. 中国近海海洋-海洋底质[M].北京:海洋出版社, 2014: 1-78.

[50]SHI X F, SHEN S X, YI H I, et al. Modern sedimentary environments and dynamic depositional systems in the southern Yellow Sea[J].Chinese Science Bulletin, 2001, 46(A1):1-6. 石学法, 申顺喜, Yi Hi-iL, 等. 南黄海现代沉积环境及动力沉积体系[J].科学通报, 2001, 46(A1): 1-6.

[51]MILLIMAN H D, SHEN H T,YANG Z S, et al. Transport and deposition of river sediment in the Changjiang estuary and adjacent continental shelf[J].Continental Shelf Research, 1985, 4(1-2): 37-45.

[52]LIU J P, XU K H, LI A C, et al. Flux and fate of Yangtze River sediment delivered to the East China Sea[J].Geomorphology, 2007, 85(3): 208-224.

[53]DEMASTER D J, MCKEE B A,NITTROUER C A, et al. Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea[J].Continental Shelf Research, 1985, 4(1-2): 143-158.

[54]GUO Z G, YANG Z S, FAN D J, et al. Seasonal variation of sedimentation in the Changjiang Estuary mud area[J].Journal of Geographic Science, 2003, 13(3): 348-354.

[55]REDFIELD A C, KETCHUM B H, RICHARDS F A. The influence of organisms on the composition of sea water[C]∥The Sea, New York: Interscience, 1963: 26-77.

[56]FRY B, SHERR E B. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems[J].Marine Science, 1984, 27(9): 13-47.

[57]MEYERS P A. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes[J].Organic Geochemistry, 1997, 27(5): 213-250.

[58]VOLKMAN J K. A review of sterol markers for marine and terrigenous organic matter[J].Organic Geochemistry, 1986, 9(2): 83-99.

[59]WU Y, ZHANG J. Application of molecular markers in the study of marine organic geochemistry: the occurrence and use of lipids[J]. Marine Environmental Science, 2001, 20(1): 71-77. 吴莹, 张经. 类脂分子标志物在海洋有机地球化学中的研究应用[J]. 海洋环境科学, 2001, 20(1): 71-77.

[60]PANCOST R D, BOOT C S. The palaeoclimatic utility of terrestrial biomarkers in marine sediments[J].Marine Chemistry, 2004, 92(1-4): 239-261.

[61]EGLINTON G, HAMILTON R J. Leaf epicuticular waxes[J].Science, 1967, 156(3780): 1322-1335.

[62]HEDGES J I, ERTEL J R. Characterization of lignin by gas capillary chromatography of cupric oxide oxidation products[J].Analytical Chemistry, 1982, 54(2): 174-178.

[63]HEDGES J I, MANN D C. The characterization of plant tissues by their lignin oxidation products[J].Geochimica et Cosmochimica Acta, 1979, 43(11): 1803-1807.

[64]TAREQ S M, TANAKA N, OHTA K. Biomarker signature in tropical Wetland: lignin phenol vegetation index(LPVI) and its implications for reconstructing the paleoenvironment[J].Science of the Total Environment, 2004, 324(1-3): 91-103.

[65]CAI D L, SHI X F, ZHOU W J, et al. Sources and transport of suspended particulate matter and sediment in the Southern Yellow Sea: evidence from stable carbon isotopes [J].Chinese Science Bulletin, 2001, 46(A): 16-23. 蔡德陵, 石学法, 周卫健, 等. 南黄海悬浮体和沉积物的物质来源和运移:来自碳稳定同位素组成的证据[J]. 科学通报, 2001, 46(A): 16-23.

[66]CAI D L, SUN Y, ZHANG X Y, et al. Reconstruction a primary productivity history over the past 200 a using sediment organic carbon content and the stable isotope composition from the East China Sea and the Yellow Sea[J].Acta Oceanologica Sinica, 2014, 36(2): 40-50. 蔡德陵, 孙耀, 张小勇, 等. 由东海、黄海沉积物中有机碳含量及稳定同位素组成重建200a以来初级生产力历史记录[J].海洋学报, 2014, 36(2): 40-50.

[67]LIN S, HSIEH I H,HUANG K M, et al. Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments[J].Chemical Geology, 2002, 182(2): 377-394.

[68]KAO S J, LIN F J, LIU K K. Organic carbon and nitrogen contents and their isotopic compositions in surficial sediments from the East China Sea shelf and the southern Okinawa Trough[J].Deep Sea Research Part II: Topical Studies in Oceanography, 2003, 50(6-7): 1203-1217.

[69]ZHANG J, WU Y, JENNERJAHN T C, et al. Distribution of organic matter in the Changjiang(Yangtze River) Estuary and their stable carbon and nitrogen isotopic ratios: Implications for source discrimination and sedimentary dynamics[J].Marine Chemistry, 2007, 106(1-2): 111-126.

[70]HU L M, SHI X F, GUO Z G, et al. Sources, dispersal and preservation of sedimentary organic matter in the Yellow Sea: The importance of depositional hydrodynamic forcing[J].Marine Geology, 2013, 335(1): 52-63.

[71]HU L M, SHI X F, YU Z G, et al. Distribution of sedimentary organic matter in estuarine-inner shelf regions of the East China Sea: Implications for hydrodynamic forces and anthropogenic impact[J].Marine Chemistry, 2012, 142-144: 29-40.

[72]HU L M, GUO Z G, FENG J L, et al. Distributions and sources of bulk organic matter and aliphatic hydrocarbons in surface sediments of the Bohai Sea, China[J].Marine Chemistry, 2009, 113(3-4): 197-211.

[73]LIU D, LI X, EMEIS K C, et al. Distribution and sources of organic matter in surface sediments of Bohai Sea near the Yellow River Estuary, China[J].Estuarine, Coastal and Shelf Science, 2015,165: 128-136.

[74]YU G, MARTIN J, ZHOU J, et al. Biogeochemical study of the Changjiang Estuary[M].Beijing:China Ocean Press, 1990, 642-666.

[75]LI D, YAO P, BIANCHI T S, et al. Organic carbon cycling in sediments of the Changjiang Estuary and adjacent shelf: Implication for the influence of Three Gorges Dam[J].Journal of Marine Systems, 2014, 139: 409-419.

[76]VILLINSKI J C, HAYES J M, BRASSELL S C, et al. Sedimentary sterols as biogeochemical indicators in the Southern Ocean[J].Organic Geochemistry, 2008, 39(5): 567-588.

[77]BENNER R, FOGEL M L, SPRAGUE E K, et al. Depletion of13C in lignin and its implications for stable carbon isotope studies[J].Nature, 1987, 329(6141): 708-710.

[78]RICE D L, HANSON R B. A kinetic model for detritus nitrogen: role of the associated bacteria in nitrogen accumulation[J].Bulletin of Marine Science, 1984, 35(3): 326-340.

[79]SIKES E L, UHLE M E, NODDER S D, et al. Sources of organic matter in a coastal marine environment: Evidence from n-alkanes and their δ13C distributions in the Hauraki Gulf, New Zealand[J].Marine Chemistry, 2009, 113(3): 149-163.

[80]XING L, ZHANG H, YUAN Z, et al. Terrestrial and marine biomarker estimates of organic matter sources and distributions in surface sediments from the East China Sea shelf[J].Continental Shelf Research, 2011, 31(10): 1106-1115.

[81]MULLER P J. C/N ratios in Pacific deep-sea sediments: Effect of inorganic ammonium and organic nitrogen compounds sorbed by clays[J].Geochimica et Cosmochimica Acta, 1977, 41(6): 765-776.

[82]SCHUBERT C J, CALVERT S E. Nitrogen and carbon isotopic composition of marine and terrestrial organic matter in Arctic Ocean sediments: implications for nutrient utilization and organic matter composition[J].Deep Sea Research Part I: Oceanographic Research Papers, 2001,48(3): 789-810.

[83]OLEARY M H. Carbon isotope fractionation in plants[J].Phytochemistry, 1985, 20(4): 553-567.

[84]YU F, ZONG Y, LLOYD J M, et al. Bulk organic δ13C and C/N as indicators for sediment sources in the Pearl River delta and estuary, southern China[J].Estuarine, Coastal and Shelf Science, 2010, 87(4): 618-630.

[85]LIN T, WANG L, CHEN Y, et al. Sources and preservation of sedimentary organic matter in the southern Bohai Sea and the Yellow Sea: Evidence from lipid biomarkers[J].Marine Pollution Bulletin, 2014, 86(1): 210-218.

[86]ZHAO M X, ZHANG Y Z, XING L, et al. The composition and distribution of n-alkanes in surface sediments from the south Yellow Sea and their potential as organic matter source indicators[J].Periodical of Ocean University of China, 2011, 41(4): 90-96. 赵美训, 张玉琢, 邢磊, 等. 南黄海表层沉积物中正构烷烃的组成特征、分布及其对沉积有机质来源的指示意义[J].中国海洋大学学报, 2011, 41(4): 90-96.

[87]ZHU C, WANG Z H, XUE B, et al. Characterizing the depositional settings for sedimentary organic matter distributions in the lower Yangtze River-East China Sea shelf system[J].Estuarine, Coastal and Shelf Science, 2011, 93(3): 182-191.

[88]ZHU C, XUE B, PAN J, et al. The dispersal of sedimentary terrestrial organic matter in the East China Sea(ECS) as revealed by biomarkers and hydro-chemical characteristics[J].Organic Geochemistry, 2008, 39(8): 952-957.

[89]WU P, BI R, DUAN S S, et al. Spatiotemporal variations of phytoplankton in the East China Sea and the Yellow Sea revealed by lipid biomarkers[J].Journal of Geophysical Research: Biogeosciences, 2015, 121(1): 109-125.

[90]YANG L Y, WU Y, ZHANG J, et al. Distribution of lignin and sources of organic matter in surface sediments from the adjacent area of the Changjiang Estuary in China[J].Acta Oceanological Sinica, 2008, 30(5): 35-42. 杨丽阳, 吴莹, 张经, 等.长江口邻近陆架区表层沉积物的木质素分布和有机物来源分析[J]. 海洋学报, 2008, 30(5): 35-42.

[91]LI X X, BIANCHI T S, ALLISON M, et al. Historical reconstruction of organic carbon decay and preservation in sediments on the East China Sea shelf[J].Journal of Geophsical Research: Biogeosciences, 2013, 118(4): 1-15.

[92]WU Y, EGLINTON T, YANG L, et al. Spatial variability in the abundance, composition, and age of organic matter in surficial sediments of the East China Sea[J].Journal of Geophysical Research: Biogeosciences, 2013, 118: 1495-1507.

[93]XIN Y. A primary study on the fatty acid as biomarker and its application in the study of the role in the nutrients interface exchange process[D]. Qingdao: Ocean University of China, 2005. 辛宇. 东海赤潮高发区沉积物中脂肪酸类生物标记物的初步分析及其在营养盐界面交换过程中的应用[D]. 青岛:中国海洋大学, 2005.

[94]CHU H D. Source and distribution of n-alkanes and fatty acids in sediments from the red tide-frequent-occurrence area in the East China Sea[D].Qingdao: Ocean Universityo of China, 2008. 褚宏大.东海赤潮高发区沉积物中正构烷烃、脂肪酸的组成与分布[D]. 青岛:中国海洋大学, 2008.

[95]LU X X, YANG H, SONG J M, et al. Sources and distribution of isoprenoid glycerol dialkyl glycerol tetraethers(GDGTs) in sediments from the east coastal sea of China: Application of GDGT-based paleothermometry to a shallow marginal sea[J].Organic Geochemistry, 2014, 75: 24-35.

[96]TAO S, EGLINTON T I, MONTLUCON D B, et al. Pre-aged soil organic carbon as a major component of the Yellow River suspended load: Regional significance and global relevance[J].Earth and Planetary Science Letters, 2015, 414: 77-86.

[97]YAO P, YU Z, BIANCHI T S, et al. A multiproxy analysis of sedimentary organic carbon in the Changjiang Estuary and adjacent shelf[J].Journal of Geophysical Research: Biogeosciences, 2015, 120(7): 1407-1429.

[98]XING L, HOU D, Wang X, et al. Assessment of the sources of sedimentary organic matter in the Bohai Sea and the northern Yellow Sea using biomarker proxies[J]. Estuarine, Coastal and Shelf Science, 2016, 176: 67-75.

[99]WRIGHT L D, WISEMAN W J, BORNHOLD B D, et al. Marine dispersal and deposition of Yellow River silts by gravity-driven underflows[J].Nature, 1988, 332(6165): 629-632.

[100]WANG X C, DRUFFEL E R M, GRIFFIN S, et al. Radiocarbon studies of organic compound classes in plankton and sediment of the northeastern Pacific Ocean[J].Geochimica et Cosmochimica Acta,1998, 62(8): 1365-1378.

[101]SAMPERE T P, BIANCHI T P, WAKEHAM S G, et al. Sources of organic matter in surface seidments of the Louisiana Continental margin: effects of major depositional/transport pathways and Hurricane Ivan[J].Continental Shelf Research, 2008, 28(17): 2472-2487.

[102]MAYER L M. Surface area control of organic carbon accumulation in continental shelf sediments[J].Geochimica et Cosmochimica Acta, 1994, 58(4): 1271-1284.

[103]YAO P, YU Z G, GUO Z G. Research progress in transport, burial and reminerzation of organic carbon at large river dominated ocean margins[J].Marine Geology & Quaternary Geology, 2013, 33(1):153-160. 姚鹏, 于志刚, 郭志刚. 大河影响下的边缘海沉积有机碳输运与埋藏及再矿化研究进展[J]. 海洋地质与第四纪地质, 2013, 33(1): 153-160.

[104]TESI T, MISEROCCHI S, GONI M A, et al. Source, transport and fate of terrestrial organic carbon on the western Mediterranean Sea, Gulf of Lions, France[J].Marine Chemistry, 2007,105(1-2): 101-117.

[105]TESI T, SEMILETOV I, HUGELIUS G, et al. Composition and fate of terrigenous organic matter along the Arctic land-ocean continuum in East Siberia: Insights from biomarkers and carbon isotope[J].Geochimica et Cosmochimica Acta, 2014, 133(2): 235-256.

[106]BOULOUBASSI I, FILLAUX J, SALIOT A. Hydrocarbons in surface sediments from the Changjiang(Yangtze River) Estuary, East China Sea[J].Marine Pollution Bulletin, 2001, 42(12): 1335-1346.

[107]ZHANG W Y, JIN H Y, ZHANG F Y, et al. Organic carbon distribution in the Yangtze River Estuary-Hangzhou Bay and its adjacent Sea Area[J].Advances in Earth Science, 2009, 24(11): 1202-1210. 章伟艳, 金海燕, 张福元, 等. 长江口-杭州湾及其邻近海域不同粒级沉积有机碳分布特征[J].地球科学进展, 2009, 24(11): 1202-1210.

[108]WANG J P, YAO P, BIANCHI T S, et al. The effect of particle density on the source, distribution, and degradation of sedimentary organic carbon in the Changjiang Estuary and adjacent shelf[J].Chemical Geology, 2015, 402(9): 52-67.

[109]BURDIGE D J. Burial of terrestrial organic matter in marine sediments: A reassessment[J].Global Biogeochemical Cycles, 2005: 19(4):922-932.

[110]SMITH R W, BIANCHI T S, ALLISON M, et al. High rates of organic carbon burial in fjord sediments globally[J].Nature Geoscience, 2015, 8(6): 450-454.

[111]TOLOSA I, BAYONA J M, ALBAIGES J. Aliphatic and polycyclic aromatic hydrocarbons and sulfur/oxygen derivatives in northwestern mediterranean sediments: spatial and temporal variability, fluxes, and budgets[J].Environmental Science & Technology, 1996, 30(8): 2495-2503.

[112]HU L M, SHI X F, BAI Y Z, et al. Recent organic carbon sequestration in the shelf sediments of the Bohai Sea and Yellow Sea, China[J].Journal of Marine Systems, 2016, 155: 50-58.

[113]OGURI K, MATSUMOTO E, SAITO Y, et al. Rates of sediment accumulation and carbon burial measured with210Pb in the East China Sea[C]∥Proceedings of the international marine science symposium on biogeochemical processes in the North Pacific.Tokyo:Japan Marine Science Foundation, 1997: 360-367.

[114]CHEN C T A, WANG S L. Carbon, alkalinity and nutrient budgets on the East China Sea continental shelf[J].Journal of Geographic Science: oceans, 1999, 104(C9): 20675-20686.

[115]YANG S Y, TANG M, YIM, W W S, et al. Burial of organic carbon in Holocene sediments of the Zhujiang(Pearl River) and Changjiang(Yangtze River) estuaries[J].Marine Chemistry, 2011, 123(1-4): 1-10.

[116]LIU J, YU Z G, ZANG J Y, et al. Distribution and budget of organic carbon in the Bohai and Yellow Seas[J].Advances in Earth Science, 2015, 30(5): 564-578. 刘军, 于志刚, 藏家业, 等. 黄渤海有机碳的分布特征及收支评估研究[J].地球科学进展, 2015, 30(5): 564-578.

[117]HOU X J. Geological carbon burial capacity of the coast and inner shelf of the Yellow Sea[D].Beijing: China University of Geosciences, 2013. 侯雪景. 南黄海海岸带和内陆架地质碳汇能力研究[D].北京:中国地质大学(北京), 2013.

[118]ZONNEVELD K, VERSTEEGH G, KASTEN S, et al. Selective preservation of organic matter in marine environments; processes and impact on the sedimentary record[J].Biogeosciences,2010,7(2): 483-511.

[119]ALLER R C, MACKIN J E, ULLMAN W J. Early chemical diagenesis, sediment-water solute exchange, and storage of reactive organic matter near the mouth of the Changjiang, East China Sea[J].Continental Shelf Research, 1985, 4(1-2): 227-251.

[120]YAO P, ZHAO B, BIANCHI T S, et al. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: Implications for carbon preservation and authigenic mineral formation[J].Continental Shelf Research, 2014, 91: 1-11.

[121]PAN H H, YAO P, ZHAO B, et al. Sources, distribution and preservation of size-fractionated particulate organic carbon in the turbidity maximum zone of the Changjiang Esturay based on water elutriation[J].Acta Oceanological Sinica, 2015, 37(4): 1-15. 潘慧慧, 姚鹏, 赵彬, 等. 基于水淘选分级的长江口最大浑浊带附近颗粒有机碳的来源、分布和保存[J].海洋学报, 2015, 37(4): 1-15.

[122]GAO L M. Distribution, sources and preservation of organic carbon in surface sediments of the Bohai Sea and Yellow Sea[D].Qingdao: Ocean University of China, 2016. 高立蒙. 渤、黄海表层沉积物中有机碳的分布、来源与保存[D]. 青岛:中国海洋大学, 2016.

[123]ZHU M X, SHI X N, YANG G P, et al. Relative contributions of various early diagenetic pathways to mineralization of organic matter in marine sediments: an overview[J].Advances in Earth Science, 2011, 26(4): 355-364. 朱茂旭, 史晓宁, 杨桂朋, 等. 海洋沉积物中有机质早期成岩矿化路径及其相对贡献[J].地球科学进展,2011, 26(4): 355-364.

[124]ALLER R C, BLAIR N E. Carbon remineralization in the Amazon-Guianas tropical mobile mudbelt: A sedimentary incinerator[J].Continental Shelf Research, 2006, 26(17-18): 2241-2259.

[125]YAO P, GUO Z G, YU Z G. Remineralization of sedimentary organic carbon in river dominated ocean margins[J].Acta Oceanological Sinica, 2014, 36(2): 23-32. 姚鹏, 郭志刚, 于志刚. 大河影响下的陆架边缘海沉积有机碳的再矿化作用[J].海洋学报, 2014, 36(2): 23-32.

[126]SONG G, LIU S, ZHU Z, et al. Sediment oxygen consumption and benthic organic carbon mineralization on the continental shelves of the East China Sea and the Yellow Sea[J].Deep Sea Research Part II: Topical Studies in Oceanography, 2015, 124: 53-63.

[127]WATERSON E J, CANUEL E A. Sources of sedimentary organic matter in the Mississippi River and adjacent Gulf of Mexico as revealed by lipid biomarker and δ13C TOC analyses[J].Organic Geochemistry, 2008, 39(4): 422-439.

[128]KUZYAKOV Y, FRIEDEL J K, STAHR K. Review of mechanisms and quantification of priming effects[J].Soil Biology & Biochemistry, 2000, 32(11): 1485-1498.

Progress in Research of Sedimentary Organic Carbon in the East China Sea: Sources, Dispersal and Sequestration

SHI Xue-fa1,2,3, HU Li-min1,2,3, QIAO Shu-qing1,2,3, BAI Ya-zhi1,2

(1.TheFirstInstituteofOceanography,SOA, Qingdao 266061, China;2.KeyLaboratoryofMarineSedimentologyandEnvironmentalGeology, Qingdao 266061, China;3.LaboratoryforMarineGeology,QingdaoNationalLaboratoryforMarineScienceandTechnology,Qingdao 266061, China)

The coastal system, especially for the river-influenced estuary and shelf serve as the major repository of sedimentary organic carbon (OC), is an active interface between terrestrial and oceanic environments, and plays an important role in the global biogeochemical cycles of carbon. The East China Shelf Sea (ECS) includes the Bohai Sea, Yellow Sea and East China Sea, which was directly influenced by the Yellow River (Huanghe) and Yangtze River (Changjiang). This study overviewed the recent developments of the study of this field, especially focusing on the key points of the sources, dispersal and burial of the sedimentary OC. It is found that soil-derived OC is a major contributor to the sedimentary OC, and marine primary production is the main source for the OC deposited in the shelf region. The multiproxies approach (e.g., biomarkers), together with the statistics analysis model, could yield a more precise assessment for the sources of sedimentary OC. The shelf mud deposit areas in the ECS are the main repository of land-based OC from the Yellow River and Yangtze River. Some factors such as riverine input, sediment re-suspension and long-distance transportation, can influence the quality, fate and behavior of the terrigenous OC. The overall organic carbon storage capacity in this region is mainly sustained by the fluvial/land-based input, high phytoplankton primary productivity, convergent hydrodynamic and stable depositional settings. However, a large knowledge gap exists between the international frontier and the present research progress in ECS, and more efforts could be put on the systematic and multidisciplinary work on the land-sea interaction, especially for indicating its mechanism and the relationship between the sedimentary processes and transformation of carbon components as a whole system. Based on the typical sediment source to sink property in the ECS, the future work could pay attention to the residence time and age of sedimentary OC from the drainage basin to the sea, and examine the significance of the behavior and burial of OC on the atmospheric carbon dioxide and global change.

east China shelf sea; sedimentary organic carbon; sources; dispersal path; carbon sequestration

June 16,2016

2016-06-16

国家自然科学基金项目——亚洲大陆边缘演化及环境效应(U1606401);“全球变化与海气相互作用”专项——亚洲大陆边缘“源-汇”过程与陆海相互作用(GASI-GEOGE-03);中央级公益性科研院所基本科研业务费专项资助项目——不同能源下的有机分子标记物海洋沉积记录(GY0214G28);青岛海洋科学与技术国家实验室鳌山科技创新计划项目——亚洲大陆边缘地质过程与资源环境效应(2015ASKJ03)

石学法(1965-),男,山东潍坊人,研究员,博士,主要从事海洋沉积学方面研究. E-mail: xfshi@fio.org.cn

(陈靖编辑)

P736

A

1671-6647(2016)03-0313-15

10.3969/j.issn.1671-6647.2016.03.001

猜你喜欢

陆架陆源沉积物
晚更新世以来南黄海陆架沉积物源分析
南海北部白云南洼陆架坡折带演化特征及其控制因素
渤海油田某FPSO污水舱沉积物的分散处理
陆源有机碳对黄河口及周边近海4种常见鱼类的营养贡献
水体表层沉积物对磷的吸收及释放研究进展
陆源有机碳对莱州湾浮游动物能量贡献的初步研究
控制陆源污染,保护海洋环境
求友声的变奏
南大西洋深海沉积物中可培养放线菌的多样性
南海北部陆架表层沉积物重矿物分布特征及物源意义