周口店官地杂岩中斜长角闪岩的年代学、地球化学及其地质意义
2016-07-27苑东洋李德威陈棋曾平徐其虎
苑东洋,李德威,陈棋,曾平,徐其虎
(1.中国地质大学地球科学学院,湖北 武汉 430074;2. 中国地质大学地质调查院,湖北 武汉 430074)
周口店官地杂岩中斜长角闪岩的年代学、地球化学及其地质意义
苑东洋1,2,李德威1,2,陈棋1,2,曾平1,2,徐其虎1,2
(1.中国地质大学地球科学学院,湖北 武汉 430074;2. 中国地质大学地质调查院,湖北 武汉 430074)
摘要:周口店房山岩体南北两侧的官地杂岩主要由长英质片麻岩、斜长角闪岩和混合岩组成。笔者首次对东岭子官地杂岩中斜长角闪岩进行研究,斜长角闪岩LA-ICP-MS锆石U-Pb测年上交点年龄为(2 551±37)Ma,代表岩浆结晶年龄。其地球化学显示具有低TiO2,高MgO的特点,Mg#平均值为70, LREE与HREE分异度高,具有Eu的负异常。地球化学特征和岩相学揭示其岩浆经历分离结晶作用,原岩矿物主要由辉石、斜长石组成。锆石Hf同位素εHf(t)处于亏损地幔演化线和球粒陨石之间示踪源区为岩石圈富集地幔,微量元素方面富集LILE(Rb, Ba, K),亏损HFSE(Nb, Ta, Zr)的特点显示岛弧有关的富集地幔源区。初步认为大洋板片向东俯冲于增生岛弧和东部陆块之下,镁铁质成岩物质来源于大洋板片重熔流体交代的岩石圈地幔楔,同时,对于华北地块新太古宙末期大陆地壳生长的时间提供约束。
关键词:官地杂岩;斜长角闪岩;U-Pb定年;地球化学;Hf同位素;地幔楔交代作用
华北地块新太古宙—古元古代经历了复杂的演化历程,该时间段是华北地块形成演化的重要时期(KRONER et al.,2006)。对于华北地块新太古宙—古元古代区域构造划分和构造演化,多数学者提出了不同的模式(KRONER et al.,2005;KUSKY,2011;POLAT et al.,2006;ZHAI,2014; ZHAO et al.,2013)。其中,极具影响力的观点就是华北地块中部存在一条中部造山带,东西陆块最终沿着这条中部造山带拼合成统一的华北地块(KUSKY et al.,2003;ZHAO et al.,2005)。中部造山带的大致界线达成共识,但中部造山带的形成时代、机制仍存在较大的争议。KUSKY et al.,(2003,2011)认为~2.5 Ga向西俯冲作用形成的构造岩浆热事件是东西陆块聚合开始的标志,大洋岛弧增生到东部陆块后俯冲极性发生反转,于2.4~2.3 Ga东西陆块之间大洋最终消失而拼合。而另一部分学者也认识到了东西陆块之间俯冲、增生事件,但他们更趋向于将~1.8 Ga的岩浆热事件和广泛的区域变质作用事件作为东西陆块拼合的标志,且与哥伦比亚超大陆的聚合有密切联系(TRAP et al.,2012;WANG et al.,2009,2010;ZHAO et al.,2001,2005,2013)。
北京周口店官地杂岩处在中部造山带内(图1),曾有学者认为元古宙和古生代的变沉积岩与房山侵入体岩浆同化混染形成的混杂岩(郭沪祺,1985; 刘国惠等,1987)。但近年的研究基本确定官地杂岩为新太古宙杂岩体(陈能松等,2006;刘兵等,2008;颜丹平等,2005;王方正等,1990),其形成过程可能与新太古宙末期区域深熔作用、变质作用有关(刘兵等,2008)。因此,新太古宙的官地杂岩在整个华北地块新太古宙—古元古代地质演化中的地位及作用有待进一步研究和探讨。笔者首次以东岭子官地杂岩中斜长角闪岩为研究对象,通过锆石U-Pb定年、锆石Hf同位素、全岩地球化学等方法,拟对以下问题进行探讨:①官地杂岩中斜长角闪岩的形成时代、岩石成因。②官地杂岩形成的大地构造背景及意义。③结合前人对古老大陆地壳生长的研究成果,探讨对华北地块地壳生长的响应和约束。
1区域地质
周口店地区位于NNE向的太行山脉、近EW向的燕山山脉和华北平原的接壤地带,在前寒武纪地质背景上,周口店官地杂岩构造单位划分位于东部地块与西部陆块之间的中部造山带(KUSKY, 2011;ZHAO et al., 2005),是研究早前寒武纪时期华北地块基底形成与演化的重要窗口。
周口店地区为典型的变质核杂岩构造,符合核部-滑脱系-盖层组成的变质核杂岩三层结构模式(宋鸿林,1996;李德威等,2003;刘德民,2003;李建放等,2012)。核部为早白垩世房山岩体及其南北两缘的太古宙官地杂岩,房山岩体与官地杂岩呈侵入接触关系,且对官地杂岩有一定的改造作用 (王方正等,1990;颜丹平等,2005;何斌等,2005);中部为由具有韧性流变的拆离断层和后期脆性断层组成的滑脱系(宋鸿林,1996;姚丽景等,2007;颜丹平等,2005;张金阳等,2013);上覆盖层系统为受拆离断层影响发生不同程度缺失或者减薄的元古宇—上古生界(图2)。区域上,类似的变质核杂岩构造在云蒙山、松辽、赞皇等地广泛分布,它们可能都是晚中生代华北地块伸展构造的重要产物(刘俊来等,2008)。
TH. 太华杂岩;DF. 登封杂岩;ZT. 中条杂岩;ZH. 赞皇杂岩;LL. 吕梁杂岩;HS. 衡山杂岩;WT. 五台杂岩;FP. 阜平杂岩;HA. 怀安杂岩;XH. 宣化杂岩;CD. 承德杂岩图1 华北地块出露基底分布与构造单元划分地质图(据DENG et al.,2014;KUSKY,2011;ZHAO et al.,2013)Fig. 1 Geological map of the North china Block showing the distributions of exposed basement and tectonic subdivision
2宏观露头与岩相学特征
笔者研究对象为房山岩体北侧东岭子地区官地杂岩(图2),出露宽度160~500m。岩石组合主要为长英质片麻岩和斜长角闪岩,局部可见混合岩。官地杂岩整体经历了角闪岩相-绿片岩相的区域变质作用(也可能经历更高的变质作用,现退变质为角闪岩相-绿片岩相),拆离断层中,局部可见深部韧性左行剪切的构造形迹(图3e, 图3f),官地杂岩经历了从韧性-韧脆性-脆性的伸展抬升过程。官地杂岩的原生构造被多期构造事件改造而置换,使其形成NEE倾向的高角度片麻理,同时也保留了糜棱岩化特征。
房山岩体边缘相石英闪长岩直接侵入到官地杂岩浅色角闪斜长片麻岩(图3a),且石英闪长岩中发育斜长角闪岩包体(图3b),与房山岩体接触的角闪斜长片麻岩中发育S-L组构(图3c),其长英质矿物拔丝构造明显。官地杂岩中斜长角闪主要呈岩墙、岩脉状产出,岩脉状斜长角闪岩经历强烈改造形成石香肠和透镜体。在强烈挤压作用下,石香肠平行于围岩的片麻理(图3d);透镜状的斜长角闪岩主要分布于韧性剪切带中,深绿色斜长角闪岩呈带拖尾的旋转透镜状产出(图3e, 图3f);在官地杂岩的顶部,可见变形较弱的斜长角闪岩岩墙(图3g),其宽度为2~3m,延伸较远,斜长角闪岩与围岩呈侵入接触关系。
官地杂岩顶部岩墙状斜长角闪岩的主要矿物为角闪石(80%~95%)、斜长石(5%~10%),次要矿物为白云母、绿帘石,副矿物为磁铁矿(图4a, 图4b),变晶糜棱结构,片麻状构造。角闪石主要由粗大的变形残斑和亚颗粒组成,角闪石沿c轴延伸,呈柱状、针状,{110}解理完全,多平行c轴,正中突起,斜消光,多色性较强,角闪石的最高干涉色为二级蓝、其中紫红、橙、亮黄较多见,且最高干涉色Ng∧c=19°~23°,属于普通角闪石,角闪石沿c组解理面析出定向性的针状磁铁矿。斜长石颗粒较小,分布在角闪石间隙中,极少斜长石具有聚片双晶,多发育绿帘石化和白云母化。角闪石发育强烈
图2 周口店地区地质图(据文献修改宋鸿林,1996)Fig.2 Geological map of Zhoukoudian area
的形态优选方位,可见沿角闪石解理和裂隙方向滑移形成的书斜式构造(图4a)和S-C组构(图4b)。
在韧性剪切带中透镜状的斜长角闪岩主要矿物为角闪石(85%)、辉石(5%)、斜长石(5%),角闪石具有环带结构(图4d),核部具有辉石假象,其内部较脏,环带边部纯净。辉石残斑为正高突起,斜消光,最高干涉色为二级蓝,一级橙较多见,其中Ng∧c=44°,属于单斜辉石(图4c)。该斜长角闪岩发育晶质塑性变形,角闪石因不均匀滑移而形成波状消光,同时可见动态重结晶作用形成的角闪石亚颗粒(图4e),张晓丽等(2014)对官地杂岩中角闪石矿物变形机制研究结果显示为彭凸动态重结晶,其温度为614.1~679.0℃,压力范围为0.11~0.31GPa。围岩角闪斜长片麻岩主要矿物为斜长石(40%)、石英(30%)、角闪石(20%)、和黑云母(5%),副矿物为磷灰石、榍石、锆石和绿帘石(图4f)。
a. 官地杂岩与房山岩体的侵入接触关系;b. 房山岩体的石英闪长岩中斜长角闪岩包体;c. 角闪斜长片麻岩;d. 石香肠状斜长角闪岩;e. 韧性剪切带中透镜状斜长角闪岩;f. 透镜状斜长角闪岩;g. 岩墙状斜长角闪岩图3 官地杂岩与区域地质关系和斜长角闪岩野外产出特征图Fig.3 Field photographs for Guandi complex relation with regional geology and the amphibolite outcrop characteristics
3分析方法
锆石测年、锆石Hf同位素分析、全岩地球化学样品均取自东岭子地区官地杂岩中斜长角闪岩。锆石单矿物分离在河北省廊坊市诚信地质服务有限公司完成。锆石制靶、透反射图像、阴极发光图像、LA-ICP-MS法U-Pb测年和锆石Hf同位素分析均在中国地质大学(武汉)地质过程与矿产资源国家重点实验室完成。U-Pb定年使用Geolas2005深紫外(DUV)193nm准分子激光剥蚀系统,ICP-MS测试仪器为Agilent 7500a,详细实验条件和分析过程见LIU et al.,(2010)发表文献,锆石年龄谐和图采用Isoplot3.0程序绘制(LUDWING,2003)。锆石Hf同位素分析运用LA-MC-ICP-MS法完成,详细仪器操作条件和分析方法参考HU et al.,(2012)发表文献。全岩主、微量元素分析在武汉岩矿综合测试中心分析,主量元素测定方法为X-射线荧光容片法(XRF),微量元素分析仪器为电感耦合等离子体质谱仪。样品主量、微量元素分析在武汉岩矿综合测试中心分析,主量元素测定方法为X-射线荧光容片法(XRF),微量元素分析仪器为电感耦合等离子体质谱仪。
4分析结果
4.1锆石U-Pb测年
样品锆石阴极发光(CL)图像显示外部形态为半自形-他形,多为浑圆状,锆石的粒径大小为60~160 um,背散射图像(BSE)多见包裹体和孔洞,CL图像显示复杂的内部结构,可见明显的核幔结构(图5a, 图5c, 图5d, 图5i, 图5j)和斑杂状环带结构(图5f, 图5g, 图5j, 图5k),且裂纹发育(图5h, 图5i, 图5j);另一些锆石结构简单,阴极发光均匀,为灰白色(图5m, 图5n, 图5o, 图5p)。其Th/U值介于0.47~3.39,部分锆石仍然保存了原始岩浆锆石的振荡环带结构(图5f, 图5j, 图5k)。因此,斜长角闪岩中的锆石是后期变质作用改造原岩锆石的产物。
a. 斜长角闪岩中的书斜式构造(+);b. 斜长角闪岩的S -C组构(+);c. 斜长角闪岩中单斜辉石残斑(+); d. 斜长角闪岩中角闪石的环带结构(+);e. 角闪石具有波状消光和角闪石亚颗粒(+);f. 角闪斜长片麻岩(+);Amp. 角闪石;Cpx. 单斜辉石;Ep. 绿帘石;Pl. 长石;Qtz. 石英图4 斜长角闪岩矿物组合与显微构造图Fig. 4 Photomicrographs for amphibolite mineral assemblages and microstructure
实线、虚线圆圈分别代表U-Pb测年和Hf同位素分析点位置;非括号、括号内分别代表207Pb/206Pb年龄(Ma)和εHf(t)值;短线长度为100μm图5 斜长角闪岩样品部分锆石阴极发光图Fig.5 Selected cathode luminescence images for analyzed zircons from samples of amphibolite
LA-ICP-MS法锆石U-Pb测年结果见表1,锆石分析点主要处于谐和线之下,具有良好的线性关系,上交点年龄为(2 551±37) Ma(图6a),代表原岩岩浆结晶年龄,下交点年龄误差较大,可能经历多期变质作用,无地质意义(吴元保等,2004)。
4.2锆石Hf同位素
选取20颗LA-ICP-MS法U-Pb测年的锆石进行原位Hf同位素分析,其结果见表2,176Hf/177Hf值为0.281256~0.281395,锆石t(207Pb/206Pb)-εHf(t)的关系图解中εHf(t)值为-9.0~4.7,其分布的主峰值为3.2(图6b)。
图6 斜长角闪岩的U-Pb年龄谐和图和Hf同位素特征图Fig.6 Zircon U-Pb concordia diagram and Hf isotopic compositions from the amphibolite
分析点ThUTh/U同 位 素 比 值年 龄(Ma)(10-6)(10-6)207Pb/206Pb±1σ207Pb/235U±1σ206Pb/238U±1σ207Pb/206Pb±1σ207Pb/235U±1σ206Pb/238U±1σ1695.92255.932.720.1110.00124.89940.05190.31820.0018181719.61802917818.62130.4751.762.520.1590.00199.38430.11140.42640.0032245620.4237611229014.53212.87201.931.050.15290.00148.6210.08560.40630.0024238916.122999.2219810.9454.92102.240.540.14620.00177.57330.11250.37290.0038230219218213.4204317.75157.42189.780.830.15620.001610.08290.10890.46480.0029241516.8244210.12461136174.04175.160.990.16140.001710.33470.11680.46110.0032247017.1246510.6244414.17525.05276.161.90.15590.00169.48970.10490.43780.0027241318.7238710.32341128144.8252.982.730.15880.00298.91690.16720.40550.005244229.8233017.2219422.8987.74145.70.60.15720.00199.87470.11850.45230.0028242620.7242311.2240612.610144.3755.682.590.16090.0029.74210.12040.43640.0031246615.7241111.5233413.811315.5238.651.320.15020.00159.30910.09790.44560.0028235016.723699.8237512.512147.6856.992.590.15860.00189.80610.11510.44590.0032244020.2241710.9237714.2
续表1
分析点ThUTh/U同 位 素 比 值年 龄(Ma)(10-6)(10-6)207Pb/206Pb±1σ207Pb/235U±1σ206Pb/238U±1σ207Pb/206Pb±1σ207Pb/235U±1σ206Pb/238U±1σ13615.43224.422.740.15720.00169.36580.09860.42870.002924261723749.8230013.214130.01191.070.680.16170.001910.00110.14980.44170.0037247420.2243513.9235816.715133.62282.620.470.14770.00177.7640.09190.3780.0027231918.7220410.8206712.61677.85148.290.520.14150.00177.67160.09210.39020.0028225620.4219310.92124131755.83103.20.540.15720.00189.76530.12040.44720.0033242624.8241311.5238314.818272.1110.62.460.15840.00179.85330.10990.44740.003243918.4242110.4238413.519431.12139.563.090.15510.00169.38480.09820.43580.0031240316.523769.72332142095.5738.872.460.16240.00210.4510.1340.46490.0039248120.2247612246117.221171.5971.272.410.15910.00199.82140.12260.44480.0036244620.7241811.6237215.922415.04185.462.240.15590.00239.45060.10940.42780.0031241324.7238310.8229614.323160.0567.392.370.12460.00186.06770.08320.35160.0027203325.81986121942132460.1427.252.210.14270.00227.86910.130.3980.0042226125.8221615216019.525119.09205.60.580.16170.001610.42080.12080.46360.0036247316.2247310.9245515.82660.69108.290.560.15120.00169.17250.10740.43640.003235918.5235510.8233513.527170.1169.892.430.160.00189.98920.11440.44970.0031245719.9243410.7239413.92885.8742.8520.11620.00165.35570.07460.33290.0029189824.1187812185213.929159.3461.772.580.16510.00210.43110.12210.45550.0032250920.1247411242014.53075.9627.182.790.16370.002410.4310.15630.46030.0042249424.4247414244118.731109.96124.390.880.160.00199.73850.12470.43780.0036245720.1241011.9234116.132267.6110.812.410.15050.00199.21650.12550.44030.0037235120.2236012.6235216.733356.77117.343.040.1580.00189.81630.11610.44760.0033243519.8241811238514.73487.07120.940.720.15580.00169.14310.09720.42280.0028241016.523529.9227312.935457.81145.873.140.15650.00159.6460.0940.44450.0028241816.824029.1237112.536197.21218.890.90.15330.00158.40430.08490.39490.0025238415.622769.3214611.837124.21184.380.670.15560.00159.32580.10720.43160.0033240916.7237110.7231314.938184.3273.52.510.15790.00189.30.10860.42490.003243519.6236810.8228313.539222.11363.040.610.14390.00158.08960.10230.40490.0033227618.5224111.5219115.440243.2171.733.390.11720.00165.37730.07460.33160.0026191519.4188111.9184612.84171.09120.730.590.16310.001710.72780.11470.47460.0029248816.2250010.1250412.64289.25138.260.650.15770.00179.47530.12540.43170.0032243118.7238512.3231414.343328.53539.520.610.16130.00159.39290.10.41940.0028246915.623779.9225812.944159.27186.370.850.13770.00146.83630.07420.35740.002219817.920909.719709.745215.0780.872.660.15990.00179.68620.11350.43640.0028245518.5240510.9233512.84671.71123.70.580.16550.001810.67890.12020.46530.003251318.2249610.6246313.44769.1125.160.550.16070.001910.06460.12310.45120.0031246519.8244111.4240113.8
续表1
分析点ThUTh/U同 位 素 比 值年 龄(Ma)(10-6)(10-6)207Pb/206Pb±1σ207Pb/235U±1σ206Pb/238U±1σ207Pb/206Pb±1σ207Pb/235U±1σ206Pb/238U±1σ48134.9253.482.520.16170.00210.2240.13250.45660.0037247420.5245512.1242516.44989.87153.260.590.14870.00198.45090.14540.40660.0034233222.2228115.7219915.75074.0880.020.930.11810.00165.15390.06850.31470.0023192824.1184511.4176411.35175.99113.080.670.15490.00168.82780.09070.41070.0029280017.5923209.5221813.352527.39244.322.160.16060.001810.04050.10920.45090.0032246118.5243910.2239914.2
表2 斜长角闪岩锆石Hf同位素组成表
4.3地球化学
周口店官地杂岩中斜长角闪岩全岩主、微量元素数据见表3,斜长角闪岩的SiO2含量为49.73%~51.30%,属于基性岩范畴。TiO2含量为0.38%~0.88%,P2O5含量为0.08%~0.19%,富MgO(11.91%~15.10%)和CaO(11.09%~13.69%),Mg#平均值为70。
总稀土元素含量(ΣREE)为133.71×10-6~226.04×10-6,其ΣLREE/ΣHREE=3.49~5.36,(La/Yb)N=8.63~16.05,轻、重稀土分异度高,整体表现右倾的配分模式(图7a),且δEu为0.36~0.47,具有一定程度的负Eu异常,反应了岩浆演化早期可能经历了斜长石分离结晶。在原始地幔标准化微量元素蛛网图中,富集大离子亲石元素(LILE)Rb, Ba, K,亏损高场强元素(HFSE)U, Ta, Nb, Zr, Ti。
图7 (a)斜长角闪岩球粒陨石标准化稀土元素配分模式图与(b)原始地幔标准化微量元素蛛网图(标准化数据SUN et al.,1989,引文数据来源于DENG et al.,2013)Fig.7 (a) Chondrite-normalized REE patterns and (b)primitive mantle-normalized trace elementsspidergram for the amphibolite
样品号SiO2TiO2Al2O3Fe2O3FeOMnOMgOCaONa2OK2OP2O5H2O+CO2LOITotalMg#TFeONa2O+K2OZ23-151.300.888.873.627.000.2411.9111.091.490.710.192.000.081.6799.3867.4210.262.20Z23-250.520.409.463.786.100.2812.6911.701.810.700.101.650.161.5799.3670.429.502.51Z23-350.450.475.653.627.500.2714.4913.690.880.430.141.560.211.3599.3570.6010.761.30Z23-449.730.386.884.216.900.3015.1012.201.020.670.081.700.211.6799.3971.5710.691.69样品号ScVCrNiCuZnRbSrZrNbBaHfTaPbThULaCeZ23-141.41192.30410.10145.969.25111.1014.35319.8199.27.91452.211.70.403.113.460.2738.9082.65Z23-244.94163.701192247.3513.90119.708.34222.6136.93.932177.30.252.140.860.0825.5053.58Z23-348.24165.30713.40301.4113.32112.004.2275.074.03.8296.86.20.220.970.940.0327.7363.80Z23-445.11168.301294.00251.9412.63146.507.1660.2440.302.34104.902.430.160.891.040.0519.8245.65样品号PrNdSmEuGdTbDyHoErTmYbLuY∑REE(La/Yb)NδEuδCeNb*Z23-111.6646.218.952.156.250.894.250.751.920.281.740.2419.20104.4916.050.470.940.23Z23-27.8230.726.251.444.950.774.060.741.990.311.960.2719.0480.319.330.470.920.23Z23-39.3636.957.371.345.440.793.840.681.730.261.560.2117.5587.0912.770.360.970.21Z23-46.5025.665.331.004.140.653.470.651.740.271.650.2416.9568.248.630.380.980.16
5讨论
5.1岩石成因
周口店官地杂岩整体经历了角闪岩相的变质作用,其原岩的结构和构造被改造(张晓丽等,2014)。对于经历变质作用的太古宙岩石,其主、微量元素会受到影响,要对其影响程度评价。在变质变形作用过程中相对稳定的不活动性元素Zr与其他元素的线性关系可以作为元素是否发生迁移程度的标志(DENG et al.,2013)。笔者研究的斜长角闪岩REE, HFSE(Th, Nb, Ta, Ti)和过渡金属元素(Sc, Cr, Ni)与Zr元素具有良好线性关系,而LILE(K, Ba)与Zr元素线性关系较差(图略)。且Ce/Ce*值为0.93~0.99,表明其REE未发生显著元素迁移(POLAT et al.,2003)。HREE和HFSE(Nb、Ti)和过度金属元素在微量元素原始地幔标准化蛛网图中,同类型的元素保持大致相同的特征(图7),这些元素在后期的地质演化过程中元素迁移的程度有限(POLAT,2009)。
首先对斜长角闪岩的原岩性质判别,Simonen图解对于区分原岩为火成岩系还是变沉积岩系比较有效,所有分析投影点均分布在火山岩区域(图8a),在CaO-MgO-TFeO 图解中显示官地杂岩中的斜长角闪岩为正基性变质岩(图8b)。主量元素(SiO2, Ti2O, Al2O3)与MgO呈现负相关,相容元素(Co, Ni, Cr)与MgO呈正相关,微量元素(Nb, La, Y)与稳定元素Zr具有正相关(图9),揭示了岩石形成经历了分离结晶作用(DENG et al.,2013)。相容元素Ni, Co易进入橄榄石中,且二者与MgO呈正相关,显示橄榄石的分离结晶作用(图9)。另外,Eu的负异常(δEu=0.36~0.47)揭示斜长石分离结晶,结合岩相学中残余辉石和斜长石,其原岩主要矿物可能为辉石和斜长石,且斜长角闪岩野外主要呈岩墙状产出,其可能为辉绿-辉长岩形成的基性岩,后期经历较为复杂的变质作用。
图8 Simonen图解(SIMONEN,1953)和CaO-MgO-TFeO图解(WALKER et al.,1960)Fig.8 Simonen diagram and CaO-MgO-TFeO diagram
5.2构造环境
镁铁质岩的成岩物质一般来自岩石圈地幔或者软流圈,地球化学数据可以限定地幔源区的具体特征(ZOU et al.,2000)。岩石圈地幔的岩石富集LILE和HFSE(Nb, Ta) (ZOU et al.,2000)。而地幔楔源区的岩石富集LREE和LILE、亏损HFSE(Nb, Ta)的特征,与岛弧地球化学特征具有一定类似性(ZHAO et al.,2010)。官地杂岩中斜长角闪岩球粒陨石标准化稀土元素配分图中富集LREE,亏损重稀土元素HREE(图7a),在原始地幔标准化微量元素蛛网图中富集LILE,亏损HFSE(Nb, Ta, Zr, Ti),这些特征与俯冲环境下受到俯冲板片混染的富集地幔具有类似性(图7b)。强烈的Nb负异常(Nb*= 0.2)通常被认为是继承了地幔源区的特征(POLAT et al.,2011),其锆石Hf同位素εHf(t)主要处于亏损地幔演化线和球粒陨石之间揭示成岩物质来源于富集地幔(图6b)。具有高La/Ta值(La/Ta=30),表明熔体通常来源于被俯冲大洋板片流体富集的地幔源区(ZHAO et al.,2010),周口店官地杂岩中斜长角闪岩具有较高的La/Ta(98~127)、La/Nb(4.9~8.4)、Ba/Nb(25~57),进一步显示其熔体来源于俯冲大洋板片重熔交代地幔楔。同时,与周口店南部赞皇杂岩中出露的斜长角闪岩作对比,二者具有相似的野外产出形式,且配分模式图和蛛网图中曲线拟合性较好(图7),(DENG et al.,2013)认为其源区仍为俯冲大洋板片流体交代的地幔楔。
华北地块的中部造山带从南到北出露了较多与俯冲环境相关基性岩(KUSKY et al.,2003)。北部遵化杂岩中的斜长角闪岩地球化学数据特征富集LILE,亏损HFSE(Nb, Ta, Zr, Ti),具有俯冲环境特征,同时继承了地幔楔熔体的特征(POLAT et al.,2006)。五台山绿片岩带中出现了2.55~2.50Ga基性岩体,其地球化学特征具有俯冲环境下的富集地幔性质,于2.5Ga,这些基性岩体与TGG岩体一起增生到东部陆块的西部边缘(KUSKY et al.,2003;POLAT et al.,2006;POLAT et al.,2005)。河北东部的曹庄杂岩中出露了少量的橄榄辉长岩岩墙(2 526±26)Ma,根据岩石组构与地球化学特征判断形成于大陆地壳下部俯冲环境造成的岩石圈富集地幔(LI et al.,2010)。南部嵩山出露的新太古宙斜长角闪岩形成于主动大陆边缘的弧后盆地环境,熔体来源于地幔楔的部分熔融(周艳艳等,2009)。同时,在中部造山带,出露了大量新太古宙的TTG片麻岩、斜长花岗片麻岩等中酸性岩,这些中酸性岩具有岛弧成因,且随着俯冲作用增生到东部陆块(KUSKY,2011; POLAT et al.,2006;WANG,2009)。根据地幔楔、岛弧、俯冲板片的相对位置,于2.5Ga大洋板片向东俯冲于东部陆块之下,东部陆块与中部造山带边界形成广泛的俯冲环境下的中酸性侵入岩,同时,在弧后盆地的伸展环境下,形成了来自富集地幔的基性-超基性侵入岩。
图9 斜长角闪岩的MgO和Zr与主、微量元素分异图解Fig.9 Variation diagrams of MgO/Zr versus major and trace elements for the amphibolite
5.3华北地块~2.5Ga大陆地壳生长
大陆地壳的形成与演化经历了复杂的地质演化过程,大陆地壳来源于地幔的分异作用和后期陆壳物质的再造(CONDIE,1998)。CONDIE et al.(2011)对全球河流碎屑物样品进行锆石U-Pb和Hf同位素分析,大陆地壳具有幕式增长的特征,~2.5Ga是全球早期大陆地壳增生的重要时期。第五春荣等(2012)对华北地块的河流碎屑物用同样的方法研究,揭示华北地块地壳生长具有类似的特点。ZHAO et al.(2013)认为华北地块晚新太古宙形成的基底占前寒武纪形成基底的80%,指示晚新太古宙是华北地块地壳增生的最主要的时期。
晚新太古宙,华北地块的中部造山带中发育了2.6~2.5Ga基底岩石,其北部的怀安杂岩主体由TTG片麻岩、闪长质片麻岩和少量的麻粒岩组成,大部分岩浆锆石结晶年龄显示~2.5Ga,其εHf(t)主要分布于亏损地幔演化线与球粒陨石之间,其锆石Hf模式年龄为2.8~2.7Ga,反映了2.5Ga的构造热事件主要来源于新生地壳的重新熔融(刘富等,2009;魏颖等,2013)。在中部造山带的中部,五台、阜平区域出露了TTG、花岗片麻岩和变质表壳岩(滹沱群),其年龄分为2.6~2.50Ga(KRONER et al.,2005;WANG,2009;WILDE et al.,2005),部分花岗闪长质岩浆可以持续活动到2.48Ga(耿元生等,2010)。在南部的涑水杂岩、登封杂岩和太华杂岩等晚新太古宙基底年龄主要分为2.6~2.50Ga,Hf两阶段模式年龄为2.8~2.7Ga(HUANG et al.,2010; ZHANG et al.,2013; 郭丽爽等,2008)。
中部造山带~2.5Ga的TTG片麻岩、花岗片麻岩和闪长质片麻岩等中酸性侵入岩来自新生地壳的重新熔融。笔者研究的斜长角闪岩记录了(2 551±37)Ma的岩浆事件,锆石Hf同位素和地球化学特征揭示寄主岩浆来源于地幔楔,为直接地幔抽取的陆壳增生形式。它们可能为同一期次的构造热事件,且具有统一的早期大洋俯冲的构造环境,共同揭示了新太古宙末期华北地块的地壳增生事件。
6结论
(1)根据野外产出状况、岩相学和地球化学特征,官地杂岩中斜长角闪岩的原岩主要组成矿物为辉石和斜长石,可能为辉绿-辉长岩形成的基性岩墙。
(2)LA-ICP-MS锆石U-Pb测年显示斜长角闪岩的时代为(2 551±37)Ma,锆石Hf同位素εHf(t)主要处于亏损地幔演化线和球粒陨石之间与地球化学结果共同揭示其熔体来源于俯冲大洋板片重熔交代地幔楔,斜长角闪岩形成于早期大洋俯冲环境的大地构造背景,侵位于伸展环境下的弧后盆地。
(3)晚新太古代是华北地块地壳生长的重要的时期,笔者为华北地块~2.5Ga的大陆地壳生长提供了时代证据。
致谢:衷心感谢中国地质大学王仁镜老师、骆必继老师和湖北地质调查院陈超给予的指导和帮助,感谢审稿老师提出的宝贵意见,同时感谢野外作业中帮助的同学。
参考文献(References):
陈能松,王方正.北京西山周口店关坻杂岩蒸发法锆石Pb-Pb年龄:太古宙成因和克拉通化事件证据[J].地质科技情报,2006,25(3):41-44.
CHEN Nengsong,WANG Fangzheng.Single-Grain Evaporation Zircon Pb-Pb Ages of Guandi Complex, Zhoukoudian Area, Western Hills of Beijing: Archaean Genesis and Cratonization Events of the North China Craton[J].Geological Science and Technology Information,2006,25(3):41-44.
第五春荣,孙勇,王倩.华北克拉通地壳生长和演化:来自现代河流碎屑锆石Hf同位素组成的启示[J].岩石学报,2012,28(11):3520-3530.
DIWU Chunrong,SUN Yong,WANG Qian.The crustal growth and evolution of North China Craton: Revealed by Hf isotopes in detrital zircons from modern rivers[J].Acta Petrological Sinica,2012,28(11):3520-3530.
耿元生,沈其韩,任留东.华北克拉通晚太古代末-古元古代初的岩浆事件及构造热体制[J].岩石学报,2010,26(07):1945-1966.
GENG Yuansheng,SHEN Qihan,REN Liudong.Late Neoarchean to early Palaoproterozoic magmatic events and tectonothermal systems in the North China Craton[J].Acta Petrological Sinica,2010,26(07):1945-1966.
郭沪祺.北京房山岩体北侧“片麻岩”的岩石学特征及其成因[J].中国地质科学院地质研究所所刊.1985,13:105-130.
GUO Huqi.Petrological characteristics and origin of gneissic rock along northern flank of Fangshan intrusion, Beijing[J].Chinese Academy of Geological Sciences,1985,13:105-130.
郭丽爽,刘树文,刘玉琳,等.中条山涑水杂岩中TTG片麻岩的锆石Hf同位素特征及其形成环境[J].岩石学报,2008,24(1):139-148.
GUO Lishuang,LIU Shuwen,LIU Yulin,et al.Zircon Hf istopic features of TGG gneisses and formation environment of Precambrian Sushui complex in Zhongtiao mountains[J].Acta Petrological Sinica,2008,24(01):139-148.
何斌,徐义刚,王雅玫,等.北京西山房山岩体岩浆底辟构造及其地质意义[J].地球科学-中国地质大学学报,2005,30(3):298-308.
HE Bin,XU Yigang,WANG Yamei,et al.Magmatic Diapir of Fangshan Pluton in the Western Hills, Beijing and Its Geological Significance[J].Earth Science -Journal of China University of Geosciences,2005,30(3):298-308.
李德威,刘德民,廖群安,等.藏南萨迦拉轨岗日变质核杂岩的厘定及其成因[J].地质通报,2003,22(5):303-307.
LI Dewei,LIU Demin,LIAO Qun'an,et al.Definition and significance of the Lhagoi Kangri metamorphic core complexes in Sa'gya, southern Tibet[J].Geologcal Bulletin of China,2003,22(5):303-307.
李建放,陈丽娟,任二峰,等.扎日加变质核杂岩的确定及地质意义[J].西北地质,2012,45(1):102-109.
LI Jianfang,CHEN Lijuan,REN Erfeng,et al.Redefinition and Geological Significance of Metamorphic Core Complex of Zarijia Area[j].Northwestern Geology,2012,45(1):102-109.
刘兵,巴金,张璐,等.北京周口店官地杂岩变质-深熔作用的锆石LA-ICP-MS U-Pb定年[J].地质科技情报,2008,27(6):36-42.
LIU Bing,BA Jin,ZHANG Lu,et al.Zircon LA-ICP-MS U-Pb Dating of Metamorphism and Anatexis of the Guandi Complex,Zhoukoudian Area, Beijing[J].Geological Science and Technology Information,2008,27(6):36-42.
刘德民.中国变质核杂岩的基本特征[J].现代地质,2003,17(2):125-130.
LIU Demin.Review of the basic characteristics of the metamorphic[J].Geoscience,2003,17(2):125-130.
刘富,郭敬辉,路孝平,等.华北克拉通2.5 Ga地壳生长事件的Nd-Hf同位素证据:以怀安片麻岩地体为例[J].科学通报,2009,54(17):2517-2526.
LIU Fu,GUO Jinghui,LU Xiaoping,et al. Crustal growth at~2.5Ga in the North China Craton: evidence from whole-rock Nd and zircon Hf isotopies in the Huai'an gniess terrane[J].Chinese Sci Bull,2009,54(17):2517-2526.
刘俊来,Gregory A. Davis,纪沫,等.地壳的拆离作用与华北克拉通破坏:晚中生代伸展构造约束[J].地学前缘,2008,15(3):72-81.
LIU Junlai,Gregory A.Davis,JI Mo,et al.Crustal detachment and destruction of the North China craton:constraints from Late Mesozoic extensional structures[J].Earth Science Frontiers,2008,15(3):72-81.
宋鸿林.北京房山变质核杂岩的基本特征及其成因探讨[J].现代地质,1996,10(2):149-158.
SONG Honglin.characteristics of fangshan metamorphic core complex, beijing and a discussion about its origin[J].Geoscience-Journal of Graduate School,China University of Geosciences,1996 ,10( 2) :149 - 158 .
王方正,肖龙,肖文松.北京周口店关坻杂岩太古宙成因的岩石学及地球化学证据[J].地球科学,1990,15(5):529-538.WANG Fangzheng,XIAO Long,XIAO Wensong.Geochronology of the Guandi Complex, Zhoukoudian Area, Beijing and Its geochemical evidences[J].Earth Sciences,1990,15(5):529-538.
魏颖,郑建平,苏玉平,等.怀安麻粒岩锆石U-Pb年代学及Hf同位素华北北缘下地壳增生再造过程研究[J].岩石学报,2013,29(7):2281-2294.
WEI Ying,ZHENG Jianping,SU Yuping,et al.Zircon U-Pb ages and Hf isotopes of granulites from the Huai'an complex: implications for the accretion and reworking of lower crust beneath the north margin of the North China Cranton[J].Acta Petrological Sinica,2013,29(7):2281-2294.
刘国惠,伍家善.北京房山地区的变质带[J].地球学报,1987,9(2):113-137.
LIU Guohui,WU Jiashan.Regional metamorphic belt of Fangshan, Beijing[J].Chinese Academy of Geological Sciences,1987,9(2):113-137.
吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604.
WU Yuanbao,ZHENG Yongfei.Zircon genetic mineralogy research and interpretation of U - Pb age restriction[J].Chinese Sci Bull,2004,49(16):1589-1604.
颜丹平,周美夫,宋鸿林,等.北京西山官地杂岩的形成时代及构造意义[J].地学前缘,2005,12(2):332-337.
YAN Danping,ZHOU Meifu,SONG Honglin,et al.A geochronological constraint to the Guandi complex, Western Hills of Beijing, and its implications for the tectonic evolution[J].Earth Science Frontiers,2005,12(2):332-337.
姚丽景,颜丹平,胡玲.房山变质核杂岩基底拆离断层韧性剪切变形构造及环境分析[J].地球科学-中国地质大学学报,2007,32(3):357-365.
YAO Lijing,YAN Danping,HU Ling. Structure Style and Temperature-Pressure Estimation of the Detachment Fault Zone around Fangshan Dome,Western Hills of Beijing[J].Earth Science -Journal of China University of Geosciences,2007,32(3):357-365.
张晓丽,胡玲,纪沫,等.北京西山官地杂岩中角闪石变形显微构造及变形机制研究[J].中国科学:地球科学,2014,44(3):429-438.
ZHANG Xiaoli,HU Ling,JI Mo,et al. Microstrucures and deformation mechanism of hornblende in Guandi complex, the Western Hills[J].Earth Science,2014,44(3):429-438.
张金阳,马昌前,王人镜,等.周口店岩体矿物学、年代学、地球化学特征及其岩浆起源与演化[J].地球科学-中国地质大学学报,2013,38(1):68-86.
ZHANG Jinyang,MAChangqian,WANG Renjing,et al. Mineralogical, Geochronological and Geochemical Characteristics of Zhoukoudian Intrusion and Their Magmatic Source and Evolution[J]. Earth Science -Journal of China University of Geosciences,2013,38(1):68-86.
周艳艳,赵太平,薛良伟,等.河南嵩山地区新太古代斜长角闪岩的地球化学特征与成因[J].岩石学报,2009,25(11):3043-3056.
ZHOU Yanyan,ZHAO Taiping,XUE Liangwei,et al. Geochemistry and origin of Neoarchean ampphibolites in Songshan, Henan province[J].Acta Petrological Sinica,2009,25(11):3403-3056.
CONDIE K C.Episodic Continental Growth and Supercontinents: A Mantle Avalanche Connection?[J].Earth and Planet Science Letters,1998,163(1):97-108.
CONDIE K C,Bickford M E,Aster R C,et al.Episodic Zircon Ages, Hf Isotopic Composition, and the Preservation Rate of Continental Crust[J].Geological Society of America Bulletin,2011,123(5-6):951-957.
DENG H,KUSKY T M,POLAT A,et al.Geochronology, Mantle Source Composition and Geodynamic Constraints On the Origin of Neoarchean Mafic Dikes in the Zanhuang Complex, Central Orogenic Belt, North China Craton[J].Lithos,2014,205:359-378.
DENG H,KUSKY T M,POLAT A,et al.Geochemistry of Neoarchean Mafic Volcanic Rocks and Late Mafic Dikes in the Zanhuang Complex, Central Orogenic Belt, North China Craton: Implications for Geodynamic Setting[J].Lithos,2013,175-176:193-212.
HU Z C,LIU Y S,GAO S,et al.Improved in Situ Hf Isotope Ratio Analysis of Zircon Using Newly Designed X Skimmer Cone and Jet Sample Cone in Combination with the Addition of Nitrogen by Laser Ablation Multiple Collector ICP-MS[J].Journa of Analytical Atomic Spectrometry,2012,27(9):1391-1399.
HUANG X L,NIU Y L,XU Y G,et al.Geochemistry of TTG and TTG-like Gneisses From Lushan-Taihua Complex in the Southern North China Craton: Implications for Late Archean Crustal Accretion[J].Precambrian Research,2010,182(1-2):43-56.
KRONER A,WILDE S A,LI J H,et al.Age and Evolution of a Late Archean to Paleoproterozoic Upper to Lower Crustal Section in the Wutaishan-Hengshan-Fuping Terrain of Northern China[J].Journal of Asian Earth Sciences,2005,24(5):577-595.
KRONER A,WILDE S A,ZHAO G C,et al. Zircon Geochronology and Metamorphic Evolution of Mafic Dykes in the Hengshan Complex of Northern China: Evidence for Late Palaeoproterozoic Extension and Subsequent High-Pressure Metamorphism in the North China Craton[J]. Precambrian Research,2006,146(1-2):45-67.
KUSKY T M.Geophysical and Geological Tests of Tectonic Models of the North China Craton[J].Gondwana Research,2011,20(1):26-35.
KUSKY T M,LI J H.Paleoproterozoic Tectonic Evolution of the North China Craton[J].Journal of Asian Earth Sciences,2003,22(4):383-397.
LI T S,ZHAI M G,PENG P,et al.Ca. 2.5 Billion Year Old Coeval Ultramafic-Mafic and Syenitic Dykes in Eastern Hebei: Implications for Cratonization of the North China Craton[J].Precambrian Research,2010,180(3-4):143-155.
LIU Y S,HU Z C,ZONG K Q,et al.Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J].Chinese Science Bulletin,2010,55(15):1535-1546.
LUDWING K R.User's Manual for Isoplot 3.00: A Geochronological Toolkit for Microsoft Excel[J].Berkeley: Berkeley Geochronology Center, Special Publication,2003,4:1-71.
POLAT A.The Geochemistry of Neoarchean (Ca. 2700Ma) Tholeiitic Basalts, Transitional to Alkaline Basalts, and Gabbros, Wawa Subprovince, Canada: Implications for Petrogenetic and Geodynamic Processes[J].Precambrian Research,2009,168(1-2):83-105.
POLAT A,APPEL P W U,FRYER B J.An Overview of the Geochemistry of Eoarchean to Mesoarchean Ultramafic to Mafic Volcanic Rocks, SW Greenland: Implications for Mantle Depletion and Petrogenetic Processes at Subduction Zones in the Early Earth[J].Gondwana Research,2011,20(2-3):255-283.
POLAT A,HERBERG C,MUNKER C,et al.Geochemical and Petrological Evidence for a Suprasubduction Zone Origin of Neoarchean (Ca. 2.5 Ga) Peridotites, Central Orogenic Belt, North China Craton[J].Geological Society of America Bulletin,2006,118(7-8):771-784.
POLAT A,HOFMANN A W.Alteration and Geochemical Patterns in the 3.7-3.8 Ga Isua Greenstone Belt, West Greenland[J].Precambrian Research,2003,126(3-4):197-218.
POLAT A,KUSKY T M,LI J H,et al.Geochemistry of Neoarchean (Ca. 2.55~2.50 Ga) Volcanic and Ophiolitic Rocks in the Wutaishan Greenstone Belt, Central Orogenic Belt, North China Craton: Implications for Geodynamic Setting and Continental Growth[J].Geological Society of America Bulletin,2005,117(11):1387.
SIMONEN A.Stratigraphy and Sedimentation of the Svecofenidic, Early Archean Supracrustal Rocks in South-Western Finland [J].Bull. Comm. geol. Finland,1953,160:64.
SUN S S,MCDONOUGH W F.Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes[A].Saunders A D, Norry M J. London: Geological Science of Special Publication,1989:313-345.
TRAP P,FAURE M,LIN W,et al.Paleoproterozoic Tectonic Evolution of the Trans-North China Orogen: Toward a Comprehensive Model[J].Precambrian Research,2012,222-223:191-211.
WALKER K B, JOPLIN G A.Metamorphic and metamorphic convergence of basic igneous rocks and lime magnesia sediments of the precambrian of northwestern Queensland[J].Geol. Soc. Australia,1960,6:149-178.
WANG Z H.Tectonic Evolution of the Hengshan-Wutai-Fuping Complexes and its Implication for the Trans-North China Orogen[J].Precambrian Research,2009,170(1-2):73-87.
WANG Z H,WILDE S A,WAN J L.Tectonic Setting and Significance of 2.3-2.1Ga Magmatic Events in the Trans-North China Orogen: New Constraints From the Yanmenguan Mafic-Ultramafic Intrusion in the Hengshan-Wutai-Fuping Area[J].Precambrian Research,2010,178(1-4):27-42.
WILDE S A,CAWOOD P A,WANG K Y,et al.Granitoid evolution in the Late Archean Wutai Complex, North China Craton[J].Journal of Asian Earth Sciences,2005,24(5):597-613.
ZHAI M G.Multi-Stage Crustal Growth and Cratonization of the North China Craton[J].Geoscience Frontiers,2014,5(4):457-469.
ZHAI M G,GUO J H,LIU W J.Neoarchean to Paleoproterozoic Continental Evolution and Tectonic History of the North China Craton: A Review[J].Journal of Asian Earth Sciences,2005,24(5):547-561.
ZHANG J A,ZHANG H F,LU X X. Zircon U-Pb Age and Lu-Hf Isotope Constraints On Precambrian Evolution of Continental Crust in the Songshan Area, the South-Central North China Craton[J].Precambrian Research,2013,226 1-20.
ZHAO G C,CAWOOD P A,LI S Z,et al.Amalgamation of the North China Craton: Key Issues and Discussion[J].Precambrian Research,2012,222-223:55-76.
ZHAO G C,SUN M,WILDE S A,et al.Late Archean to Paleoproterozoic Evolution of the North China Craton: Key Issues Revisited[J].Precambrian Research,2005,136(2):177-202.
ZHAO G C,WILDE S A,CAWOOD P A,et al.Archean Blocks and their Boundaries in the North China Craton: Lithological, Geochemical, Structural and P-T Path Constraints and Tectonic Evolution[J].Precambrian Research,2001,107(1):45-73.
ZHAO G C,ZHAI M G.Lithotectonic Elements of Precambrian Basement in the North China Craton: Review and Tectonic Implications[J].Gondwana Research,2013,23(4):1207-1240.
ZHAO G C,SUN M,WILDE S A,et al.Some Key Issues in Reconstructions of Proterozoic Supercontinents[J].Journal of Asian Earth Sciences,2006,28(1):3-19.
ZHAO J H,ZHUO M F,ZHENG J P.Metasomatic Mantle Source and Crustal Contamination for the Formation of the Neoproterozoic Mafic Dike Swarm in the Northern Yangtze Block, South China[J].Lithos,2010,115(1-4):177-189.
ZOU H B,ZINDLER A,XU X S,et al.Major, Trace Element, and Nd, Sr and Pb Isotope Studies of Cenozoic Basalts in SE China: Mantle Sources, Regional Variations, and Tectonic Significance[J].Chemical Geology,2000,171(1-2):33-47.
收稿日期:2015-12-29;修回日期: 2016-01-27
基金项目:中国地质调查局“云南1∶5万龙朋等六幅区域地质调查”(1212011220400)
作者简介:苑东洋(1990-),男,河南周口人,中国地质大学(武汉)构造地质学硕士研究生,主要从事构造地质学及其资源方面的应用研究。E-mail: 286988073@qq.com
中图分类号:P597
文献标志码:A
文章编号:1009-6248(2016)02-0149-16
Geochronology and Geochemical Characteristics of Amphibolite in Guandi Complex,Zhoukoudian Area and Its Geological Significance
YUAN Dongyang1,2, LI Dewei1,2, CHEN Qi1,2, ZENG Ping1,2, XU Qihu1,2
(1. School of Earth Science, China University of Geosciences, Wuhan 430074, Hubei, China;2.Institute of Geological Survey, China University ofGeosciences, Wuhan 430074, Hubei, China)
Abstract:The Guandi complex outcrops on both the north and south sides of the Fangshan pluton,being composed offelsic gneiss, plagioclase amphibolite and migmatite. The amphibolites are dispersed throughout the gneiss in Guandi complex. Metamorphic zircons from the amphibolite dike yield a LA-ICP-MS U-Pb upper intercept age of (2 551±37)Ma, which have been interpreted as the crystallization age. According to the geochemical results, these amphibolites are characterized by low TiO2 and high MgO contents, with Mg-number of 70. These amphibolites display the enriched LREE, depleted HREE pattern with pronounced negative Eu anomaly. Element variation diagrams and petrography characteristics indicate that the protolith consists of clinopyroxene and plagioclase. Hf isotopic compositions indicate that they are sourced from an enriched lithospheric mantle. Data of trace elements illustrates that these amphibolitic dikes are characterized by enriched LILE (Rb, Ba, K), and have depleted HFSE patterns with pronounced negative Nb, Ta and Zr anomalies, which are consistent withan arc-related enriched mantle source region. Therefore, it’s proposed that the amphiboliticdikes were formed during the east-dipping subduction. The enriched mantle signatures are consistent with the metasomatization of melts and fluids derived from the subducted slab. Combining previous research results, these results help elucidate important components about the crustal growth of the North China Block during the Neoarchean.
Keywords:Guandi complex; amphibolite; U-Pb dating; geochemistry; Hf isotope; mantle wedge metaso matism