城乡交错带土壤氮素空间分布及其影响因素
2016-07-21陈青松张世熔刘续兰栾明明
陈青松, 李 婷,* , 张世熔, 刘续兰, 栾明明
1 四川农业大学资源环境学院,成都 611130 2 四川省土壤环境保护重点实验室,成都 611130
城乡交错带土壤氮素空间分布及其影响因素
陈青松1,2, 李婷1,2,*, 张世熔1,2, 刘续兰1,2, 栾明明1,2
1 四川农业大学资源环境学院,成都611130 2 四川省土壤环境保护重点实验室,成都611130
摘要:城乡交错带土壤氮素是城乡生态系统中最重要的氮源与氮汇,但是城市化下的土壤氮素分布及其影响机制还不清楚,基于3S平台研究了土壤氮素在成都西郊城乡交错带的空间分布特征及城市化对土壤氮素的影响。结果表明,研究区内土壤全氮(STN)、硝态氮-N)和铵态氮-N)含量均值分别为(1.46±0.06) g/kg、(50.04±3.59) mg/kg和(6.72±0.53) mg/kg。区内土壤氮素含量从近郊向远郊逐渐增高,STN和-N含量为中部高于南北部,-N含量则由西北部和东南部向中部递增。方差分析表明,区内不同土地利用方式下-N和-N含量差异显著(P<0.05)。回归分析显示STN含量与建筑密度(BD)、道路密度(RD)均呈现显著线性负相关(P<0.05)-N含量与道路密度呈极显著线性负相关(P=0.001),与建筑密度关系不明显(P=0.217)。土壤-N与建筑密度呈显著负线性相关(P=0.001),与道路密度呈显著指数相关关系(P=0.021)。研究结果显示城市发展使得城乡交错带土壤氮素含量降低,这种影响伴随着建筑面积的增加,道路长度的增加而加强。
关键词:城乡交错带;土壤氮素;空间分布;影响因素
城乡交错带是郊区城市化逐渐演变而来的一个过渡地带[1],伴有强烈的土地利用变化[2- 3],而这种农用地向非农用地快速转化对城乡交错带土壤养分产生了强烈的扰动[4- 5],并已经影响到土壤- 大气温室气体流通[5]。土壤氮素作为温室气体重要的源,其含量变化不仅会影响到温室气体排放,还会对植物氮素供给和水生生态系统造成威胁[6]。因此,了解城市扩张下土地利用变化对土壤氮素分布的影响机制是预测和管理城乡交错带土壤- 大气氮平衡,保护城市生态安全的前提。
目前,关于该区域土壤氮素的研究主要集中在森林土壤氮循环及其他不同土地利用方式下土壤全氮含量分布上,如森林土壤氮的矿化、硝化、淋失,以及季节性变动[7- 8]和不同土地利用变化对其时空变化特征的影响等方面[9]。但是,随着郊区城市化的不断推进,建筑用地、道路用地等非农业用地比例不断增加,土壤氮素空间分布受非农用地增加所造成的影响机制还不够清楚[10- 11]。因此,本研究将结合城市化过程中建筑密度(BD)和道路密度(RD)了解城市驱动土地利用变化下的城乡交错带土壤氮素含量变化机制。
成都市西郊城乡交错带位于成都平原国家级生态示范区腹地,近几年来建设步伐加快,居民区、道路等增长迅速,土地利用结构变化强烈。因此,研究该地带不同土地利用方式下土壤氮素的空间分布,弄清城市发展土地利用变化、建筑密度(BD)及道路密度(RD)对土壤氮素空间分布的影响,能够为成都市西郊城乡交错带农业氮肥施用管理,生态环境保护提供科学的基础数据。
1材料与方法
1.1研究区概况
研究区位于成都市西郊温江城区与郫县城区之间,位置介于30°41′46″—30°47′43″N,3°50′31″—103°52′52″E之间。其面积为41.6 km2,区内地势平坦,平均坡降3 ‰,适宜农业耕作,年降雨量平均达966.1 mm。土壤母质属第四系近代河流冲积物发育而成的水稻土,地下水位为1.0—2.0 m,易发生地表地下水物质迁移与交换。区内建筑面积7.41 km2,占区域总面积的17.73%,道路总长度为55.95 km(数据来源为ArcGIS 9.3统计数据)。土地利用主要以耕地、园地为主,耕地种植以大水稻、小麦、大蒜和油菜为主,经济园林种植以苗木花卉为主,种植面积已达万余亩。
1.2遥感影像的获取及处理
本研究通过高分辨率SPOT遥感影像(时间为2013年4月15日,分辨率为1 m)解译出研究区内不同土地利用方式(表1)。解译方法选用监督分类法,对不同土地利用方式分别建立训练样本,经过多次训练,直至分类精度符合要求为止,分类后处理、归类和筛选均在Erdas 9.2中进行,最终得到不同土地利用现状图(图1)。建筑面积、道路长度统计及空间分析均在ArcGIS 9.3软件平台中进行。
图1 研究区位置及不同土地利用现状图Fig.1 Location and different land use types in the study area
不同土地利用DifferentLandUse简码Brief-code说明Illustration耕地CroplandCL依靠天然降雨,用于种植水旱轮作的耕地园地GardenG种植花卉等多年生作物的园地或有耕地改为苗圃,固定的林木育苗地林地WoodLandWL树木郁闭度≥10%但<20%的疏林地弃耕地IdleLandIL表层为土质,生长杂草城市绿地UrbanGreenLandUGL城市绿化用地住宅用地ResidentialLandRL指农村宅基地
参照《全国土地分类标准》(GB/T21010-2007)及《中华人民共和国行业标准城市绿地分类标准》(CJJT85-2002)
1.3土样采集与分析
1.4数据处理与分析
统计区域面积是通过ArcGIS 9.3缓冲分析模块并结合实地调查,以采样点为圆心500 m为半径的圆形范围,建筑面积与道路长度均以圆形范围内总面积和总长度计算。其中建筑密度,道路密度采用如下公式计算得到[15- 16]:
建筑密度(%)=建筑面积/统计区域面积
(1)
道路密度(km/km2)=道路长度/统计区域面积
(2)
空间分布图利用ArcGIS 9.3软件平台,选用空间内插方法,地统计分析模块(Geostatistic),普通克吕格内插法(Odinary Kriging)进行插值[17],其中用于计算半方差值的公式如下:
(3)
式中,Z(xi)代表在xi处的氮素含量,γ(h)是以间隔滞后距离为h的增量Z(xi)与Z(xi+h)之间的半方差,N(h)是以h为间距的所有观测点的成对数目。半方差值通过上述公示计算,根据平均预测误差(MSE),标准均方根预测误差(RMSSE)选取最优拟合模型。
常规统计包括K-S(olmogorov-Smirnov)检验、方差分析、最小显著差异法(Least-Significant Difference, LSD)和回归相关分析,所有统计分析均在统计学软件SPSS 17.0软件包中进行。
2结果与讨论
2.1描述性统计
表2 土壤氮素描述性统计
① Type of distribution;N:正态分布;S:偏峰态分布;②Standard Deviation;③Coefficient of variation
2.2半方差分析
表3 半方差分析
2.3城乡交错带土壤氮素空间分布特征
通过半方差模型选取最优普通克吕格(OK)插值模型,估算区域土壤氮素含量。参照全国土壤调查1980年制定的土壤全氮分级标准,将土壤氮素分为6个等级[12,20](图2)。
图2 城乡交错带土壤氮素空间变异Fig.2 Urban-rural ecotone the spatial variability of soil nitrogen
STN含量高低分布呈中部高南北低的态势,城区STN含量低于近郊STN含量,这与Zhu等人的研究一致[21],表明城市分布对土壤氮素含量有影响[8]。南北城市发展圈STN含量处于中等偏下水平(1.0—1.3 g/kg),STN含量较高区域(>1.5 g/kg)主要分布在中部(图2)。这是因为研究区中部多分布园地与耕地,园地多种植树苗,而采样期在春季之后,且园地树木的施肥已经完成,因此全氮表现出较高水平。其中耕地为稻蒜、稻麦轮作形式,对不同轮作方式下的施肥管理是导致其表现出较高的全氮水平的原因[18]。STN呈片状分布,由于本研究尺度相对较小[18],片状分布较明显。
2.4土壤氮素空间分布的影响因素
2.4.1不同土地利用对土壤氮素的影响
城乡交错带处在城市的边缘,土地利用变化剧烈[2- 3],这种变化会引起土壤中氮的强烈变化[9],其过程则是通过不同的耕作、轮作管理水平以及植被覆盖类型等造成土壤中氮素的差异分布[9,22- 23]。不同土地利用方式土壤氮素的方差分析表明(表4),STN含量在不同土地利用方式中差异显著(P<0.05),其中蔬菜地STN含量最高(>1.8 g/kg),其次是油菜地、园地和林地(1.5—1.8 g/kg),而大蒜地和弃耕地STN含量相对适中(1.0—1.5 g/kg),住宅用地和城市绿地中STN平均含量相对较低(<1 g/kg)。蔬菜地中STN含量最高可能是城郊大量无机肥和有机肥共同施用的结果[18],这与孔祥斌等人的研究类似[9]。油菜地STN平均含量表现较高水平可能是因为油菜地大都临近居民点,频繁的耕作施肥管理使得STN水平较高。园地和林地则是因为园林花卉植物的栽种,耕作减少,土壤有机质积累,而出现相对较高的全氮含量。由于采样期为大蒜收获期,大蒜在起蒜期需肥量大消耗了土壤中大量氮素养分,由此出现STN含量适中的情况。而弃耕地由于研究区在城市的扩张下,临近城市的耕地列为规划用地,由此闲置下来成为弃耕地,多年生草本植物替代了原有大蒜、油菜等作物,且土地缺乏人为管理,植株生长矮小,有机质积累少导致STN含量较低。研究区内废弃的宅基地上覆盖有水泥、石板等硬覆盖,这些硬覆盖对土壤进行压实,且不生长作物,所以STN的含量较低,这与Steve等人研究结果类似[11]。城市绿地土壤在形成初期混入大量建筑垃圾,使得土壤机械组成破坏严重[22],且城市绿地内植被覆盖类型单一,从而土壤中全氮含量相对较低。
表4 不同土地利用方式下土壤氮素含量
同一列不同小写字母表示显著水平P<0.05
2.4.2建筑密度对土壤氮素分布的影响
建筑面积的增加会对其周围温度[25],植被及地表径流[26]造成影响,使得其周围土壤温度,植被及水环境发生变化而影响相应土壤氮循环途径[27],进而影响到土壤氮素的空间分布。
图3 建筑密度与土壤氮素的相关性Fig.3 Correlation between building density and soil nitrogen
2.4.3道路密度对土壤氮素分布的影响
研究表明,道路的分布对城乡交错带土地利用及景观生态都具有重要影响[15,28],破碎化的景观分布导致了植被种类的差异[29],而这些会进一步影响到土壤氮循环及土壤氮的空间分布。
图4 道路密度与土壤氮素的相关性Fig.4 Correlation between road density and soil nitrogen
3结论
参考文献(References):
[1]Cash C. Towards achieving resilience at the rural-urban fringe: the case of Jamestown, South Africa. Urban Forum,2014,25(1):125- 141.
[2]Haregeweyn N, Fikadu G, Tsunekawa A, Tsubo M, Meshesha D T. The dynamics of urban expansion and its impacts on land use/land cover change and small-scale farmers living near the urban fringe: A case study of Bahir Dar,Ethiopia. Landscape and Urban Planning,2012,106(2):149- 157.
[3]Bittner C, Sofer M. Land use changes in the rural-urban fringe:An Israeli case study.Land Use Policy,2013,33:11- 19.
[5]Chen Y J, Day S D, Shrestha R K, Strahm B D, Wiseman P E. Influence of urban land development and soil rehabilitation on soil atmosphere greenhouse gasfluxes. Geoderma,2014,226- 227:348- 353.
[6]Ding Y, Wang W, Song X S, Wang Y H. Spatial distribution characteristics of environmental parameters and nitrogenous compounds in horizontal subsurface flow constructed wetland treating high nitrogen content wastewater. Ecological Engineering,2014,70:446- 449.
[7]Fan J, Wang J Y, Hu X F, Chen F S.Seasonal dynamics of soil nitrogen availability and phosphorus fractions under urban forest remnants of different vegetation communities in Southern China. Urban Forestry & Urban Greening, 2014, 13(3): 576- 585.
[8]Chen F S, Fahey T J, Yu M Y, Gan L. Key nitrogen cycling processes in pine plantations along a short urban-rural gradient in Nanchang, China. Forest Ecology and Management,2010,259(3):477- 486.
[9]孔祥斌, 张凤荣, 王茹, 徐艳. 城乡交错带土地利用变化对土壤养分的影响——以北京市大兴区为例,地理研究,2005,24(2):213- 221.
[10]Raciti S M, Burgin A J, Groffman P M, Lewis D N, Fahey T J. Denitrification in suburban lawn soils. Journal of Environment Quality,2011,40(6):1932- 1940.
[11]Raciti S M, Hutyra L R, Finzi A C. Depleted soil carbon and nitrogen pools beneath impervious surfaces. Environmental Pollution,2012,164:248- 251.
[12]Hu K L, Wang S Y, Li H, Huang F, Li B G. Spatial scaling effects on variability of soil organic matter and total nitrogen in suburban Beijing. Geoderma,2014,226- 227:54- 63.
[13]于向华, 张明. 氯化钾浸提法测定土壤中铵态氮含量条件研究.农业科技与装备,2013,(3):11- 12.
[14]宋歌, 孙波, 教剑英. 测定土壤硝态氮的紫外分光光度法与其他方法的比较.土壤学报, 2007,44(2):288- 293.
[15]Lin S C. The ecologically ideal road density for small islands:The case of Kinmen. Ecological Engineering,2006,27(2):84- 92.
[16]李锦业, 张磊, 吴炳方, 马新辉. 基于高分辨率遥感影像的城市建筑密度和容积率提取方法研究.遥感技术与应用,2007,22(3):309- 313.
[17]Oliver M A, Webster R.A tutorial guide to geostatistics: Computing and modelling variograms and kriging. CATENA,2014,113:56- 69.
[18]陈肖, 张世熔, 黄丽琴, 代英, 吴若玉. 成都平原土壤氮素的空间分布特征及其影响因素研究.植物营养与肥料学报,2007,13(1):1- 7.
[19]Tesfahunegn G B, Tamene L, Vlek P L G. Catchment-scale spatial variability of soil properties and implications on site-specific soil management in northern Ethiopia. Soil and Tillage Research,2011,117:124- 139.
[20]Huang H B, Ouyang W, Guo B B, Shi Y D, Hao F H. Vertical and horizontal distribution of soil parameters in intensive agricultural zone and effect on diffuse nitrogen pollution. Soil & Tillage Research,2014,144:32- 40.
[21]Zhu W X, Carreiro M M. Temporal and spatial variations in nitrogen transformations in deciduous forest ecosystems along an urban-rural gradient. Soil Biology and Biochemistry, 2004, 36(2): 267- 278.
[22]Zhao Y G, Zhang G L, Zepp H, Yang J L. Establishing a spatial grouping base for surface soil properties along urban rural gradient—A case study in Nanjing, China. CATENA ,2007,69(1):74- 81.
[23]Melero S, López-Bellido R J, López-Bellido L, Muoz-Romero V, Moreno F, Murillo J M. Long-term effect of tillage, rotation and nitrogen fertiliser on soil quality in a Mediterranean Vertisol. Soil and Tillage Research, 2011, 114(2): 97- 107.
[24]Xue Z J, Cheng M, An S S.Soil nitrogen distributions for different land uses and landscape positions in a small watershed on Loess Plateau, China. Ecological Engineering, 2013, 60: 204- 213.
[25]Perini K, Magliocco A.Effects of vegetation, urban density, building height, and atmospheric conditions on local temperatures and thermal comfort. Urban Forestry & Urban Greening, 2014, 13(3): 495- 506.
[26]Sjöman J D, Gill S E. Residential runoff—The role of spatial density and surface cover, with a case study in the Höjeå river catchment, southern Sweden. Urban Forestry & Urban Greening,2014,13(2):304- 314.
[27]张甘霖, 赵玉国, 杨金玲, 赵文君,龚子同. 城市土壤环境问题及其研究进展.土壤学报,2007,44(5):925- 933.
[28]刘世梁, 温敏霞, 崔保山, 杨敏. 基于网络特征的道路生态干扰——以澜沧江流域为例.生态学报,2008,28(4):1672- 1680.
[29]Hayasaka D, Akasaka M, Miyauchi D, Box E O, Uchida T. Qualitative variation in roadside weed vegetation along an urban-rural road gradient. Flora - Morphology, Distribution, Functional Ecology of Plants, 2012, 207(2): 126- 132.
[30]Spooner P G, Smallbone L. Effects of road age on the structure of roadside vegetation in south-eastern Australia. Agriculture, Ecosystems and Environment,2009,129(1/3):57- 64.
Spatial distribution of soil nitrogen in an urban-rural fringe and its influencing factors
CHEN Qingsong1,2, Li Ting1,2,*, ZHANG Shirong1,2, LIU Xulan1,2, LUAN Mingming1,2
1CollegeofResourceandEnvironment,SichuanAgriculturalUniversity,Chengdu611130,China2KeyLaboratoryofSoilEnvironmentProtectionofSichuanProvince,Chengdu611130,China
Abstract:Urban-rural fringe is a special zone that evolved from the suburbanization accompanying intensified land use changes from agricultural to non-agricultural land. Nitrogen in the soil of urban-rural fringe is an important nitrogen source and sink for urban and suburban ecosystems. The nitrogen content changes not only affect greenhouse gas emissions, but also threaten plant nitrogen supply and water ecosystems. However, in suburb urbanization, the proportion of non-agricultural land, construction land, and road land exhibited a successive increase. Currently, the mechanism of spatial distribution of soil nitrogen, caused by an increase in non-agricultural land, remains unclear. In the present study, the 3S platform was used to investigate the spatial distribution of soil nitrogen and its influencing factors in the urban-rural fringe of the western suburbs of Chengdu. Results showed that the average contents of soil total nitrogen (STN), nitrate -N), and ammonium -N) were (1.46±0.06) g/kg, (50.04±3.59) and (6.72±0.53) mg/kg, respectively. In the investigated region, average content of soil nitrogen gradually increased from the inner to the outer suburbs. The STN and -N distribution in the inner suburbs were higher than those of the northern and southern areas. High STN(>1.5 g/kg) and soil -N(> 62.2 mg/kg) values presented mass distribution in the eastern suburbs. In addition, -N in soil gradually increased from the northwest or southeast to the center, and the high values(> 8.5 mg/kg) presented irregular piece distribution in the eastern suburbs. Analysis of variance (ANOVA) showed that the difference of STN, NO3-N, and -N contents were significant under different land use patterns (P < 0.01). The STN content in vegetable fields was the highest (> 1.8 g/kg), followed by rape fields, gardens, and woodland (1.5—1.8 g/kg). Garlic fields and idle land were relatively moderate (1.0—1.5 g/kg), and residential land and urban green land were relatively low (< 1.0 g/kg). -N content was ranked as residential land > vegetable field > garlic field > garden > rape field > idle field > woodland > urban green land. -N content was ranked as vegetable field > woodland > garden > rape field > garlic field > residential land > idle field > urban green land. Correlation analysis indicated that average STN content and building density (BD) showed a negative linear correlation (P <0.05), and similar linear correlation was also observed between STN and road density (RD) (P < 0.05). -N content in soil and road density showed a negative correlation (P = 0.001). However, the correlation was not significant between -N and the building density (P = 0.217) after being analyzed using different curve models. -N content and building density showed a significant negative linear correlation (P = 0.001), and a significant exponential correlation existed in -N content and the road density (P = 0.021). Therefore, a significant effect on the development of urban distribution of soil nitrogen was observed, that was potentially strengthened by increasing road lengths and building areas. It can be suggested that the monitoring and management of soil nitrogen should be enhanced, and the cycling of soil nitrogen, atmospheric nitrogen, and water nitrogen should be investigated in future studies.
Key Words:urban-rural fringe; soil nitrogen; spatial distribution; influencing factors
基金项目:国家“十二五”科技支撑计划项目(2012BAD14B18-2)
收稿日期:2014- 10- 08; 网络出版日期:2015- 08- 24
*通讯作者
Corresponding author.E-mail: lt_sicau@163.com
DOI:10.5846/stxb201410081969
陈青松, 李婷, 张世熔, 刘续兰, 栾明明.城乡交错带土壤氮素空间分布及其影响因素.生态学报,2016,36(8):2133- 2141.
Chen Q S, Li T, Zhang S R, Liu X L, Luan M M.Spatial distribution of soil nitrogen in an urban-rural fringe and its influencing factors.Acta Ecologica Sinica,2016,36(8):2133- 2141.