一种适用于物联网的入侵检测方法
2016-07-09王建邓开发
王建 邓开发
摘要:物联网的开放式部署环境和有限的资源,使其很容易受到恶意攻击,而传统入侵检测系统又很难满足物联网自身的异构和分布式特征。为了适应开放式部署环境、资源有限类物联网应用需求,提出了一种基于模糊聚类c均值算法(fuzzy c-means,FCM)和主成分分析算法(principal component analysis, PCA)相结合的轻量级入侵检测系统。相对于传统入侵检测方法,该方法能明显减少测试数据的计算量。仿真实验结果表明,该方案能明显缩短检测时间并具有较高的检测率。
关键词:物联网;模糊聚类c均值算法;主成分分析;入侵检测
DOIDOI:10.11907/rjdk.161248
中图分类号:TP309文献标识码:A文章编号:1672-7800(2016)006-0211-03
参考文献:
[1]CHANGJUN HAN,YI LV.An intrusion detection system based on neural network[C].Proc of 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC),2011:2018-2021.
[2]胡向东,魏琴芳,向敏.物联网安全[M].北京:科学出版社,2012.
[3]张馨,袁玉宇.入侵检测技术在物联网中的应用研究[J]. 软件,2012(11):156-159.
[4]CAIMING LIU, JIN YANG. Research on immunity-based intrusion detection technology for the Internet of Things[C].Proc of 2011 Seventh International Conference on Natural Computation(ICNC),2011:212-216.
[5]RONGRONG FU, KANGFENG ZHENG. An intrusion detection scheme based on anomaly mining in internet of things[C].Proc of 4th IET International Conferenc-e on Wireless, Moble & Multimedia Networks (ICWM-MN 2011), 2011:315-320.
[6]REN WULING, CAO JINZHU, WU XIANJIE. Application of network intrusion detection based on fuzzy c-means clustering algorithm[J]. 3rd International Symposium on Intelligent Information Technology Application, IITA ,2009(3):19-22.
[7]CHEN BO, MA,WU. Research of intrusion detection based on principal components analysis[C].Proc of Second International Conference on Information and Computing Science,2009:116-119.
[8]KDD CUP 1999 data[EB/OL]. http://kdd.ics.uci.edu/databases/kddc-up99/kddcup99.html.
[9]YU LEI, LIU HUAN. Feature selection for high-dimensional data:a fast correlation-based filter solution[C].Pr-oceedings of the 20th International Conference on Mac-hine Learning. San Francisco: Mogan Kaufmann Publi-shers, 2003:856-863.
[10]温重伟,李荣军.改进的粒子群优化模糊C均值聚类算法[J].计算机应用研究,2010,27(7):2520-2522.
[11]BEZDEK J C. Patten with fuzzy objective function algorithms[M]. New York:Plenum Press,1981.