高职院校数学建模教学的问题与对策
2016-07-04卢冬晖
卢冬晖
摘 要:高职数学建模教学存在诸多困难,针对这些困难,我们充分考虑了高职院校学生特点、教学实际、学校学风的整体状态后提出,在动员、日常教学融合建模、超越建模唯竞赛等方面均应有与专科特色的数学建模教育教学模式等对策
关键词:高职;数学建模;超越唯竞赛
中图分类号:G632 文献标识码:B 文章编号:1002-7661(2016)13-014-01
数学建模指对各类实际问题进行组建数学模型并使用计算机数值求解的过程。数学建模一般有下列步骤。(1)调查研究(2)抽象简化(3)建立模型(4)用数值计算方法求解模型(5)模型分析(6)模型检验,检验所建立的模型是否真实反映客观实际(7)模型修改(8)模型应用。高职数学建模教学存在诸多困难,针对这些困难,我们提出,在动员、日常教学融合建模、超越建模唯竞赛等方面均应有与专科特色的数学建模教育教学模式。
一、高职数学建模教学的困难
1、学生问题。而且学生基本数学知识和基本能力有较大欠缺的学生较多;
2、课程开设。通常高职高专从课程设置上,很少开设《数学建模》课程,原因包括师资准备不足,愿意学习的学生少,数学课时数少
3、数学建模的论文质量偏低。由于没有专门课程,大部分学生没有学习过Spss、Matlab、Lingo等软件,甚至多数学生数学公式都不会录人,绝大部分学生基本没听说过数学建模。在竞赛训练时生搬硬套参考书格式、程序不能运行、数据矛盾、问题解决答非所问等现象普遍,能完成论文任务就算不错,整体论文质量偏低。
4、结果导向,忽视过程。数学建模是一项系统工程,从参赛学生和指导教师的选拔、训练(培训),竞赛的组织开展,赛后的经验总结交流都应该是系统的、规范的,而现状是:参赛学生一部分是从学习成绩好的学生中挑选的(当然数学建模的能力未必就好),组队后参赛学生不积极参,竞赛结束后,队伍解散,不总结、不分析、无交流,更谈不上持续参赛。还存在参赛学生年级底、基础差,学科单一(通常是理工类学生)、资料缺乏,竞赛环境差(不能上知网等查阅资料)等现象。
二、对策
1、师生要充分认识数学建模的重要性。数学建模重要是因为它是联系数学与外部世界的桥梁,是数学通向实际应用的必经之路,是促进应用数学发展的动力,能启迪学生的数学心智,促进创新型优秀人才的培养,是对素质教育的重要贡献。各种数学模型及对其相应的研究就是我们现在的数学科学,数学建模是是从现实世界走向数学、从数学走向应用的必经之路。师生对数学建模有共同的正确认识,是开展下一步工作的基础
2、注重竞赛结果和参赛,但是不唯竞赛。数学建模竞赛需要三个同学在三天之内做出成果。为使数学建模竞赛能真正发挥积极的作用,不能仅仅满足于参加三天的竞赛,而要全程提高。一个数学建模的课题要真正得到彻底解决,三天时间通常是不可能的。为深入数学建模的核心思想,应当少些功利主义多进行赛后研究,做出更深入成果。为使数学建模的作用惠及更多的大学生,应该使数学建模在数学教学中发挥更加重要的引领作用,对整个数学课程体系及内容的改革发挥更大的影响。然而,这些课程在不少学校只是为准备参加建模竞赛的学生开设的,并没有面向广大的学生;另外一些学校,虽然在较大的范围中开设,但本质上还是为参赛为主要目标。数学建模的训练和数学建模能力的培养应该靠深入的实践和体验和感悟来实现。通过精心选择和设计一个有意义的模型,由简单到复杂,展现数学建模的逐步深入和发展的过程,学生才能真正学到数学建模的方法,领悟到数学建模的方法,感受到数学建模的魅力。必须说,最终参加数学建模竞赛的只是少数同学,而绝大多学习数学建模的课程,是为了提高在这方面的素养和能力。课程的开设,要针对绝大多数同学的情况与需要,而不是相反。将建模课程作为竞赛的培训课程来开设,这是本末倒置的行为。只有为课程的目标准确定位,才能真正找到奋斗目标和改革方向。
3、在数学教学中渗透数学建模思想。教学以传授理论知识为主,虽然也讲培养能力,但主要是解题能力,很少体现自学能力,分析解决实际问题的能力。传统的数学教育普遍存在着脱离实际,重理论,轻应用的倾向。这样的教学内容使学生感到的是数学的枯燥,远离生活实际,同时也使学生的创造性得不到充分发挥,不利于能力的培养。尽管目前大部分高校都开设了“数学建模”选修课,但仅此一举,对培养学生能力所起的作用是微弱的。由于“数学建模”所包含的内容非常广泛,对不同问题分析的方法又各不相同,真正掌握难度很大。另一方面,数学建模教育实质上是一种能力和素质的教育,需要较长的过程,单靠开设一门选修课还远远不够。另外,“数学建模”作为一门选修课,学习的人数毕竟是有限的,因此解决这一问题的有效办法是在数学教学中渗透数学建模思想,介绍数学建模的基本方法。正确的做法是数学建模教学的教师不要在数学建模的范围内贪多,要设法将数学建模的精神与方法融入到数学课程中去。但绝不是将课程内容生硬的处处用相应的数学建模来引入或驱动,而只要在关键概念、方法和结论的地方,适时、适当地用数学建模的思想和方法引领、启发、解释。做到自然的有机融入,需深入理解和巧妙安排。应当注意:(1)模型的选题要生活化。选择密切联系学生,易接受、且有趣味、实用的数学建模内容。(2)教学中的实例宜少而精,忌放弃高等数学理论知识的系统学习。 (3)从现实出发,引导学生观察、分析、概括、抽象出数学模型。
参考文献:
[1] 李大潜.在2015“高教社杯”全国大学生数学建模竞赛颁奖仪式上的讲话《数学建模及其应用》[J]2016.1
[2] 姜启源 等 数学模型第四版 [M]北京:高等教育出版社,2011