APP下载

生物硝化抑制剂应用研究进展

2016-06-23王国强孙焕明彭婧薛书浩

安徽农业科学 2016年11期
关键词:温室效应

王国强,孙焕明,彭婧,薛书浩

(西藏职业技术学院农业科学技术学院,西藏拉萨 850030)

生物硝化抑制剂应用研究进展

王国强,孙焕明,彭婧,薛书浩

(西藏职业技术学院农业科学技术学院,西藏拉萨 850030)

摘要在现有相关研究的基础上,结合国内外研究进展,综述了国内外生物硝化抑制剂的特性及作用机理,总结了生物硝化抑制剂在农业生产中的应用效果,归纳了国内外当前生物硝化抑制剂的研究热点及取得的研究成果,并展望了今后的研究方向。

关键词硝化作用;生物硝化抑制剂;温室效应;氮素利用率;作物产量

从1978年到2008年,我国氮肥(氮肥用量均以纯氮计)施用量增加了3.58倍,平均每年增加约7.8×105t[1]。氮肥施用量在逐年增加,在提高作物产量和经济效益的同时,通过挥发、径流、淋溶以及硝化反硝化等途径对生态系统的健康和功能产生负面影响[2]。铵态氮肥和硝态氮肥是最常用的氮肥。铵态氮带正电荷,易被一般情况下带负电荷的土壤胶体吸附而不易流失,而硝态氮带负电荷,不易被壤胶体吸附,易在土壤中迁移和淋溶,是导致我国农业氮肥利用率低下以及地表水和地下水污染的主要原因[3]。并且通过施肥直接或间接从农田释放出来的N2O排放量占农业源N2O排放量的80%[4-5]。N2O浓度的增加不仅加剧了全球气候变暖,而且极有可能成为21世纪最主要的臭氧层破坏物质[6]。

1生物硝化抑制剂的来源及特性

Subbara 等[18]发现某些植物通过根系释放硝化抑制剂具有抑制土壤硝化作用的能力,被称为生物硝化抑制作用;分泌的能够抑制硝化作用并显著提高土壤氮素利用率的物质,被称为生物硝化抑制剂(BNIs)[19]。在热带草原中,非洲湿生臂形草(Brachiariahumidicola)和筋骨草(B.decumbens)对南美热带稀树草原的低氮环境有高度的适应能力,显示出很强的生物硝化抑制作用能力[20-22]。在谷类作物中,高粱(Sorghumbicolor)表现出显著的植物硝化抑制作用的能力[23]。此外,卡兰贾树(PongamiaglabraVent)、印度苦楝树(Azadiractaindica)、洋杨梅(Arbutusunedo)、茶树(Camelliasinesis)、水稻、野生型小麦、十字花科植物组织也具有生物硝化抑制作用能力[24-30]。通过生物活性导向分离纯化的方法,几个属于不同化学基团的生物硝化抑制剂已成功地从不同植物组织或根系分泌物中分离和鉴定出来[31-32](表1)。

表1 植物分离和鉴定出的生物硝化抑制剂及其效果

与目前市场上普遍应用的人工合成硝化抑制剂相比,生物硝化抑制剂有许多优点,如对农作物无毒害,易在土壤中分解,对土壤不产生污染,有环保、除草、杀虫、改良土壤等作用,但其最大的优点是易从自然界中获得,价格低廉,硝化抑制作用时间长,用量少,硝化抑制效率高,成本效益高。生物硝化抑制剂抑制土壤硝化作用,提高作物对土壤的氮素利用率。因此,对生物硝化抑制剂的开发和应用是一种转向低硝化农业生产的系统模式,是促进农业系统发展的强大战略[9]。对于根系释放生物硝化抑制剂的植物来说,利用农牧结合的方式来发展农业和畜牧业生产,即利用根系分泌的生物硝化抑制剂来抑制土壤硝化活性和硝化潜势,提高下一阶段1年生作物氮素利用率和经济效益。如臂形草生长3、4个月后生物量可作为覆盖层,接着在覆盖层上直接播种玉米或大豆。对于植物组织产生但不从根系释放生物硝化抑制剂的植物(如十字花科)来说,在土壤中加入植物残体是控制土壤硝化作用、提高氮素利用率的一种方式[30]。

2生物硝化抑制剂的作用机理

图1 生物硝化抑制剂的作用机理示意Fig.1 Schematic diagram of inhibitory mechanisms of nitrification inhibitors

生物硝化抑制剂通过抑制氨单加氧酶和羟胺氧化还原酶来抑制硝化作用。非洲湿生臂形草地上部分含有BNI活性的化合物为不饱和游离脂肪酸、亚油酸(LA)和α-亚麻酸(LN),是相对较弱的硝化抑制剂。亚油酸和α-亚麻酸通过抑制氨单加氧酶和羟胺氧化还原酶来抑制亚硝化单胞菌,该反应是催化氨氧化过程中的基本反应(图1)[22]。苯丙素对香豆酸甲酯和阿魏酸甲酯是非洲湿生臂形草根组织中起生物硝化抑制作用的物质,非洲湿生臂形草分解或转化来自根系组织的硝化抑制剂对改变土壤硝化势可能起主要作用[38]。非洲湿生臂形草根系分泌的硝化抑制剂有近60%~90%均是来自臂形草内酯,是非洲湿生臂形草根系释放的主要硝化抑制剂。臂形草内酯通过抑制氨单加氧酶和羟胺还原酶的功能来抑制亚硝化单胞菌,但它似乎对氨单加氧酶的抑制作用比羟胺还原酶强[39]。高粱的根系分泌物高粱醌可同时抑制氨氧化和羟氨氧化过程,而另一种高粱根系分泌物对羟基苯丙酸甲酯仅能抑制氨单加氧酶催化氧化过程,而对羟胺氧化还原酶过程无抑制作用(图1)[39]。从印度卡兰贾树种子和苦楝树分离出来的水黄皮素(Karanjin)和Nimin对土壤硝化细菌活性有明显抑制作用,能有效抑制土壤硝化作用、提高土壤氮素利用率并减少N2O的排放[40-41]。洋杨梅在叶凋落物分解过程中释放儿茶素和儿茶酚抑制土壤硝化作用和N2O排放[29]。十字花科植物组织在降解过程中形成一些异硫氰酸盐(2-propenyl-glucosinolate,methyl-isothiocyanate,2-propenylisothiocyanate,butyl-isothiocyanate,phenyl-isothiocyanate,benzylisothiocyanate,phenethyl-isothiocyanate)对土壤硝化反应产生抑制作用[42]。此外,有些生物硝化抑制剂还可能扰乱硝化微生物中HAO与辅酶Q和细胞色素之间的电子传递(需要维护生成还原能力,例如NADPH)[14](图1)。

3生物硝化抑制剂的使用效果

3.3生物硝化抑制剂对全球增温潜势和温室气体强度的影响全球增温潜势(GWP)作为一种相对指标,用于定量衡量不同温室气体对全球变暖的相对影响。在评价农田生态系统全球增温潜势的同时,综合考虑作物生产效益对温室气体效应的影响是十分必要的。Van Groenigen 等[51]研究认为,产量尺度下的全球增温潜势即温室气体强度(GHGI)能够更加全面科学地评估农业生产对农田温室气体排放和作物产量的双重影响。生物硝化抑制剂能明显降低全球变暖潜势和温室气体强度。Zhang等[10]发现生物硝化抑制剂能明显降低全球变暖潜势和温室气体强度,与尿素处理相比,应用生物硝化抑制剂使全球变暖潜势和温室气体强度分别下降了10.1%和17.6%。Datta 等[45]通过热带稻田试验比较人工合成硝化抑制剂DCD、生物硝化抑制剂Nimin和水黄皮素对全球增温潜势的影响,与施用尿素相比,DCD能显著提高全球变暖潜势,而生物硝化抑制剂Nimin能降低全球变暖潜势;同时施用生物硝化抑制剂Nimin和水黄皮素生产单位重量水稻CH4和N2O排放量最低。

3.4生物硝化抑制剂对作物产量的影响生物硝化抑制剂施入土壤能降低土壤硝化细菌的活性和增加土壤氮吸存量,明显提高植物对氮素的吸收和利用,从而提高了农作物的产量[52-53]。印度通过长期和大量的试验发现施用印度苦楝饼和卡兰贾饼能显著提高水稻和小麦的产量[54-55]。Zhang等[10]发现施用生物硝化抑制剂处理的蔬菜总产量为(163.2±9.8)t/(hm2·a),比对照(施用尿素)增加了10.3 t/(hm2·a),施用生物硝化抑制剂的蔬菜产量最高。Datta 等[45]发现施用生物硝化抑制剂Nimin和水黄皮素能显著提高水稻产量,同时降低单位重量水稻CH4和N2O排放量,表明施用生物硝化抑制剂不仅降低了土壤CH4和N2O排放而且也增加了水稻产量。Roy 等[56]研究也发现,与对照相比施用Nimin水稻产量增加了5%~10%。

4展望

氮肥的投入是增加作物产量、提高经济效益的重要手段,然而氮肥过量施用产生湖泊水体富营养化、地下水污染,N2O甚至CH4排放量增加,导致全球温室效应日益严重。对生物硝化抑制剂的开发和应用是一种转向低硝化农业生产的系统模式,是促进农业系统发展的强大战略。农田生态系统中应用生物硝化抑制剂,可抑制土壤硝化作用,提高氮素的利用率和作物产量,降低N2O和CH4排放并降低全球增温潜势和温室气体强度。通过现代遗传学与分子生物学培育和改良具有生物硝化抑制作用的植物,开发出硝化抑制活性更高的生物硝化抑制剂,发挥生物硝化抑制剂最优的抑制效果是今后研究的一个重要方向。生物硝化抑制剂在印度和南美热带稀树草原的应用和研究较多,而我国应用和研究生物硝化抑制才刚刚起步,因此,在我国农田生态系统加强生物硝化抑制剂对氮素流失、温室气体排放效应、作用机理研究以及生物硝化抑制剂的开发、应用和推广显得尤为重要。另外,很多生物硝化抑制剂对土壤微生物以及一些酶类的影响效果还不够明确,尤其是生物硝化抑制剂抑制N2O等温室气体排放的微生物等深层机理以及生物硝化抑制剂的长期效应鲜见报道,也是今后研究的一个热点。

参考文献

[1] 于飞,施卫明.近10年中国大陆主要粮食作物氮肥利用率分析[J].土壤学报,2015(6):1311-1324.

[2] 朱兆良.农田中氮肥的损失与对策[J].土壤与环境,2000,9(1):1-6.

[3] FARMAHA B S.Evaluating Animo model for predicting nitrogen leaching in rice and wheat[J].Arid land research and management,2014,28(1):25-35.

[4] ZAEHLE S,CIAIS P,FRIEND A D,et al.Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions[J].Nature geoscinece,2011,4(9):601-605.

[5] PARK S,CROTEAU P,BOERING K,et al.Trends and seasonal cycles in the isotopic composition of nitrous oxide since 1940[J].Nature geoscinece,2012,5(4):261-265.

[6] RAVISHANKARA A R,DANIEL J S,PORTMANN R W.Nitrous oxide(N2O):The dominant ozone depleting substance emitted in the 21st century[J].Science,2009,326(5949):123-125.

[7] GUO Y J,DI H J,CAMERON K C,et al.Effect of 7-year application of a nitrification inhibitor,dicyandiamide(DCD),on soil microbial biomass,protease and deaminase activities,and the abundance of bacteria and archaea in pasture soils[J].Journal of soils & sediments,2013,13(4):753-759.

[8] CHEN D,SUTER H C,ISLAM A,et al.Influence of nitrification inhibitors on nitrification and nitrous oxide mission from a clay loam soil fertilized with urea[J].Soil biology & biochemistry,2010,42(4):660-664.

[9] SUBBARAO G V,SAHRAWAT K L,NAKAHARA K,et al.A paradigm shift towards low-nitrifying production systems:The role of biological nitrification inhibition(BNI)[J].Annals of botany,2013,112:297-316.

[10] ZHANG M,FAN C H,LI Q L,et al.A 2-yr field assessment of the effects of chemical and biological nitrification inhibitors on nitrous oxide emissions and nitrogen use efficiency in an intensively managed vegetable cropping system[J].Agriculture,ecosystems and environment,2015,201:43-50.

[11] LAN T,HAN Y,ROELCKE M,et al.Effects of the nitrification inhibitor dicyandiamide(DCD)on gross N transformation rates and mitigating N2O emission in paddy soils[J].Soil biology & biochemistry,2013,67:174-182.

[12] DE ANTONI MIGLIORATI M,SCHEER C,GRACE P R,et al.Influence of different nitrogen rates and DMPP nitrification inhibitor on annual N2O emissions from a subtropical wheat-maize cropping system[J].Agriculture,ecosystems and environment,2014,186:33-43.

[13] SUBBARAO G V,ITO O,SAHRAWAT K L,et al.Scope and strategies for regulation of nitrification in agricultural systems-challenges and opportunities[J].Critical reviews in plant sciences,2006,25:303-335.

[14] SUBBARAO G V,SAHRAWAT K L,NAKAHARA K,et al.Biological nitrification inhibition-A novel strategy to regulate nitrification in agricultural systems[J].Advances in agronomy,2012,114:249-302.

[15] 俞巧钢,殷建祯,马军伟,等.硝化抑制剂DMPP应用研究进展及其影响因素[J].农业环境科学学报,2014,33(6):1057-1066.

[16] 李香兰,徐华,蔡祖聪.氢醌、双氰胺组合影响稻田甲烷和氧化亚氮排放研究进展[J].土壤学报,2009,46(5):917-924.

[17] LI X L,ZHANG X Y,XU H,et al.Methane and nitrous oxide emissions from rice paddy soil as influenced by timing of application of hydroquinone and dicyandiamide[J].Nutrient cycling in agroecosystems,2009,85:31-40.

[18] SUBBARAO G V,KISHII M,NAKAHARA K,et al.Biological nitrification inhibition(BNI):Is there potential for genetic interventions in the Triticeae?[J].Breeding science,2009,59:529-545.

[19] 曾后清,朱毅勇,王火焰,等.生物硝化抑制剂:一种控制农田氮素流失的新策略[J].土壤学报,2012,49(2):382-388.

[20] MILES J M,DO VALLE C B,RAO I M,et al.Brachiaria grasses[M]//MOSER L,BURSON B,SOLLENBERGER L E.Warm-season(C4)grasses.Madison,WI:ASA-CSSA-SSA,2004:745-783.

[21] SUBBARAO G V,RONDON M,ITO O,et al.Biological nitrification inhibition(BNI)- Is it a widespread phenomenon?[J].Plant and soil,2007,294:5-18.

[22] SUBBARAO G V,NAKAHARA K,ISHIKAWA T,et al.Free fatty acids from the pasture grassBrachiariahumidicolaand one of their methyl esters as inhibitors of nitrification[J].Plant and soil,2008,313:89-99.

[23] SUBBARAO G V,NAKAHARA K,ISHIKAWA T,et al.Biological nitrification inhibition(BNI)activity in sorghum and its characterization[J].Plant and soil,2012,366:243-259.

[24] MAJUMDER D.Suppression of nitrification and N2O emission by karanjine-A nitrification inhibitor prepared from karanja(PongamiaglabraVent.)[J].Chemosphere,2002,47:845-850.

[25] MAJUMDER D,PANDIYA B,ARORA A,et al.Potential use of karanjin(3-methoxy furano-20,30,7,8-flavone)as a nitrification inhibitor in different soil types[J].Archives of agronomy and soil science,2004,50:455-465.

[26] ABBASI M K,HINA M,TAHIR M M.Effect of Azadirachta indica(Neem),sodium thiosulphate and calcium chloride on changes in nitrogen transformations and inhibition of nitrification in soil incubated under laboratory conditions[J].Chemosphere,2011,82:1629-1635.

[27] KRISHNAPILLAI S.Inhibition of nitrification by waste tea(tea fluff)[J].Plant and soil,1979,51:563-569.

[28] TANAKA J P,NARDI P,WISSUWA M.Nitrification inhibition activity,a novel trait in root exudates of rice[J].AoB Plants,2010,61(4):705-720.

[29] CASTALDI S,CARFORA A,FIORENTINO A,et al.Inhibition of net nitrification activity in Mediterranean woodland:Possible role of chemicals produced byArbutusunedo[J].Plant and soil,2009,315:273-283.

[30] BENDING G D,LINCOLN S D.Inhibition of soil nitrifying bacteria communities and their activities by glucosinolate hydrolysis products[J].Soil biology and biochemistry,2000,32:1261-1269.

[31] SUBBARAO G V,ISHIKAWA T,ITO O,et al.A bioluminescence assay to detect nitrification inhibitors released from plant roots:A case study withBrachiariahumidicola[J].Plant and soil,2006,288:101-112.

[32] ZAKIR H A K M,SUBBARAO G V,PEARSE S J,et al.Detection,isolation and characterization of a root-exuded compound,methyl 3-(4-hydroxyphenyl)propionate,responsible for biological nitrification inhibition by sorghum(Sorghumbicolor)[J].New phytologist,2008,180:442-451.

[33] ZHANG L M,HU H W,SHEN J P,et al.Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils[J].Mccarthy,2012,6(5):1032-1045.

[34] ARP D J,SAYAVEDRA-SOTO L A,HOMMES N G.Molecular biology and biochemistry of ammonia oxidation byNitrosomonaseuropaea[J].Archives of microbiology,2002,178(4):250-255.

[35] TREUSCH A H,LEININGER S,KLETZIN A,et al.Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling[J].Environmental microbiology,2005,7(12):1985-1995.

[36] HALLAM S J,MINCER T J,SCHLEPER C,et al.Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota[J].PLoS Biology,2006,4(4):520-536.

[37] WALKER C B,DE LA TORRE J,KLOTZ M G,et al.Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea[J].Proceedings of the national academy of sciences of the United States of America,2010,107(19):8818-8823.

[38] GOPALAKRISHNAN S,SUBBARAO G V,NAKAHARA K,et al.Nitrification inhibitors from the root tissues ofBrachiariahumidicola,a tropical grass[J].Journal of agricultural and food chemistry,2007,55:1385-1388.

[39] SUBBARAO G V,NAKAHARA K,HURTADO M P,et al.Evidence for biological nitrification inhibition inBrachiariapastures[J].Proceedings of the national academy of sciences of the United States of America,2009,106(41):17302-17307.

[40] SAHRAWAT K L.Comparison of karanjin with other nitrification inhibitors for retardation of nitrification of urea N in soil[J].Plant and soil,1981,59:494-498.

[41] KUMAR R,DEVAKUMAR C,SHARMA V,et al.Influence of physicochemical parameters of Neem(AzadirachtaindicaA Juss)oils on nitrification inhibition in soil[J].Journal of agricultural and food chemistry,2007,55:1389-1393.

[42] FENWICK G R,HEANEY R K,MULLIN W J.Glucosinolates and their breakdown products in food and food plants[M]//FURIA T E.Critical reviews in food science and nutrition.Boca Raon,FL:CRC Press,1983:123-201.

[43] IPCC.Climate Change 2007-The Physical Science Basis[R].Cambridge:Cambridge University Press,2007.

[44] CHEN Z,LUO X Q,HU R G,et al.Impact of long-term fertilization on the composition of denitrifier communities based on nitrite reductase analyses in a paddy soil[J].Microbial ecology,2010,60(4):850-861.

[45] DATTA A,ADHYA T K.Effects of organic nitrification inhibitors on methane and nitrous oxide emission from tropical rice paddy[J].Atmospheric environment,2014,92:533-545.

[46] RATH A K,SWAIN B,RAMAKRISHNAN B,et al.Influence of fertilizer management and water regime on methane emissions from rice fields[J].Agriculture ecosystems & environment,1999,76:99-107.

[47] GLASS A D M.Nitrogen use efficiency of crop plants:Physiological constraints upon nitrogen absorption[J].Critical reviews in plant sciences,2003,22:453-470.

[48] FINZI A C,NORBY R J,CALFAPIETRA C,et al.Increases in nitrogen uptake rather than nitrogen-use efficiency support higher rates of temperate forest productivity under elevated CO2[J].Proceedings of the national academy of sciences of the United States of America,2007,104:14014-14019.

[49] LIU C,WANG K,ZHENG X.Effects of nitrification inhibitors(DCD and DMPP)on nitrous oxide emission,crop yield and nitrogen uptake in a wheat-maize cropping system[J].Biogeoscience,2013,10:2427-2437.

[50] ABBAS M K,HINA M,TAHIR M M.Effect ofAzadirachtaindica(Neem),sodium thiosulphate and calcium chloride on changes in nitrogen transformations and inhibition of nitrification in soil incubated under laboratory conditions[J].Chemosphere,2011,82:1629-1635.

[51] VAN GROENIGEN J W,VELTHOF G L,OENEMA O,et al.Towards an agronomic assessment of N2O emissions:A case study for arable crops[J].European journal of soil science,2010,61(6):903-913.

[52] SUBBARAO G V,RAO I M,NAKAHARA K,et al.Nitrogen management in grasslands in forage-based production systems :Role of biological nitrification inhibition(BNI)[J].Tropical grasslands-forrajes tropicales,2013,1(2):168-174.

[53] MORETA D,ARANGO J,SOTELO M,et al.Biological nitrification inhibition(BNI)inBrachiariapastures:A novel strategy to improve eco-efficiency of crop-livestock systems and to mitigate climate change[J].Tropical grasslands-forrajes tropicales,2014,2(1):88-91.

[54] PATRA D D,PANDE U K P.Urease and nitrification retardation properties in natural essential oils and their by-products[J].Communications in soil science & plant analysis,2006,37(11):1663-1673.

[55] PRASAD R.Efficient fertilizer use:The key to food security and better environment[J].Journal of tropical agriculture,2009,47:1-17.

[56] ROY R N,FRINK A,BLAIR G J,et al.Plant nutrition for food security[J].FAO fertilizer and plant nutrition bulletin,2006,16:141-186.

Research Progress of the Application of Biological Nitrification Inhibitors

WANG Guo-qiang, SUN Huan-ming, PENG Jing et al

(College of Agricultural Science and Technology, Tibet Vocational Technical College, Lhasa, Tibet 850030)

AbstractBased on the current research, the characteristics and action mechanism of biological nitrification inhibitors at home and abroad were reviewed by combining with the nearest research progress. Using effects of biological nitrification inhibitors on agricultural production were summarized. Research hotspot and achievements of biological nitrification inhibitors at home and abroad were summarized. The research direction in future was forecasted.

Key wordsNitrification; Biological nitrification inhibitors; Greenhouse effect; Nitrogen use efficiency; Crop yield

基金项目西藏自然科学基金项目(ZJ2014068);西藏职业技术学院校级重点课题(2012L07)。

作者简介王国强(1979- ),男,河南南阳人,副教授,在读博士,从事土壤生态与肥料研究。

收稿日期2016-03-22

中图分类号S 143.1+6

文献标识码A

文章编号0517-6611(2016)11-066-04

猜你喜欢

温室效应
神奇的樽海鞘
制冷工质的温室效应及其敏感性分析
浅述CO2过量排放对海洋生态系统危害
新常态下我国低碳经济发展之路探析
林业的历史性转变与碳交换机制的建立
农民工等人员返乡创业孵化基地建设问题研究
全球变暖的现状及对策
发电部门碳排放权交易体系的研究
采煤工作面瓦斯抽采技术的应用探讨
浅议城市进化程度与温室效应