APP下载

独立参数对氦低温制冷系统循环效率的影响

2016-06-05江荣霞谢秀娟邓笔财杨少柒

低温工程 2016年6期
关键词:冷箱温区制冷系统

江荣霞 谢秀娟 邓笔财,3 杨少柒

(1航天推进剂技术国家重点实验室 北京 100190) (2中国科学院理化技术研究所 北京 100190) (3中国科学院大学 北京 100049)

江荣霞1,2,3谢秀娟1,2邓笔财1,2,3杨少柒1,2

(1航天推进剂技术国家重点实验室 北京 100190) (2中国科学院理化技术研究所 北京 100190) (3中国科学院大学 北京 100049)

1 引 言

2 液氦温区大型低温系统的优化方法

液氦温区大型低温系统流程图如图1所示。系统由一个压缩机(C1),6个换热器(HEX1-6),2个透平膨胀机(E1、E2),1个节流阀(JT)和1个杜瓦瓶(Dewar)构成。高纯氦气从缓冲罐被吸入压缩机中,被压缩机压缩后经三级油过滤器过滤后进入冷箱,经过液氮预冷,透平膨胀机膨胀后经节流阀进入杜瓦瓶,杜瓦瓶蒸发的氦气再次经冷箱中的换热器,回到压缩机,完成工作循环。

图1 液氦温区大型低温制冷系统的流程图Fig.1 Process flow diagram of large-scale helium cryogenic system

mN2exNIN+mGex10+mex2+mLex1+mW1exW1+mW2exW1=

m1ex9+mex1+mN2exNOUT+mw1exw2+

mW2exw2+ExDest,coldbox

(1)

(2)

(3)

(4)

2.2 独立参数的选取[7]

氦制冷系统设计计算过程中涉及到很多参数,但是不同参数之间相互联系。通过对氦制冷系统的热力分析,得到各个参数间的关系,并且找出关键独立参数。

对于系统给定的制冷量和液化率:Q@4.5 K+mLLHe,故T9=T10=4.5 K。压缩机的吸气压力一般选为略高于大气压:P1=0.105 MPa,氮气排放压力也选为略高于大气压:PNOUT=0.105 MPa。但透平膨胀机T1和T2串联的中间压力P5-1要根据循环的计算来定。

对于整个循环,可用式(5)表示独立变量之间的关系:

f(Q,m1,m,mL,P2,ηHEX6,ηHEX5,ηT2,ηHEX4,

ηHEX3,ηT1,ηHEX2,ηHEX1,PLN,T2,T3,ηC)=0

(5)

在这17个变量中,Q和mL是制冷机的设计参数,它们表征了制冷机的容量大小,需要根据负载的热负荷来确定。根据压缩机、透平膨胀机的制造工艺水平给出效率:ηC=0.55,ηT1=ηT2=0.68。其中T2往往是环境温度,通常取300 K;T3为液氮预冷后的温度,通常取80 K;PLN为N2入口压力,通常取0.3 MPa。这样确认制冷循环的独立参数还剩下11个:Q,m1,m,mL,P2,ηHEX1-6。

(6)

因此,独立参数可化简为压缩机出口压力,透平分流率和换热器的效率。

3 优化结果

3.1 压缩机排气压力对循环性能的影响

图2 冷箱效率、压缩机效率和循环效率随压缩机排气压力的变化Fig.2 Effect of variation of compressor discharge pressure on cycle performance

因此,不管在制冷模式还是液化模式下,在制造工艺水平允许的范围内,换热器的效率越高越好,这里选取0.97。

图3 在不同换热器效率下,冷箱的效率随着压缩机出口压力的变化Fig.3 Effect of compressor discharge pressure on cold box exergy efficiency at different exchangers efficience

图4 在不同透平流量下,冷箱的效率随着压缩机出口压力的变化Fig.4 Effect of compressor discharge pressure on cold box exergy efficiency at different expander mass flow rate

图5 部件的损失占冷箱输入的比随着透平膨胀机分流率的变化Fig.5 Effect of variation in flow through expanders on exergy destruction in cold box components

4 结 论

对改进Claude循环的液氦温区低温制冷系统进行独立参数选取并优化,得出了以下结论:

(2)分析了换热器效率队循环性能的影响。发现在制造工艺允许的情况下,换热器效率越高越好,这里选取0.97。

1 叶斌,马斌,侯予. 大型氦低温制冷系统研究进展[J].低温工程,2010(4):18-23.

Ye Bin,Ma Bin,Hou Yu. Development of large helium cryogenic system[J]. Cryogenics,2010(4):18-23.

2 Thomas R J,Ghosh P,Chowdhury K. Exergy analysis of helium liquefaction systems based on modified Claude cycle with two-expanders [J]. Cryogenics,2011a,51:287-294.

3 Thomas R J,Ghosh P,Chowdhury K. Role of expanders in helium liquefaction cycles:parametric studies using Collins cycle[J]. Fusion Eng. Des,2011,86:318-324.

4 Caillaud A,Crispel S,Grabie V,et al. Evolution of the standard helium liquefier and refrigerator range designed by air liquide DTA,France[J]. Proceedings of the 11th European Particle Accelerator Conference,2008:2497-2499.

5 Matsubara Y,Kaneko M,Hiresaki Y,et al. Exergy analysis of multi-staged Claude cycle helium refrigerator[J]. Proceedings of Cryogenic Processes and Equipment in Energy Systems Conference. 1980:131-134.

6 Arpan Kundu,Kanchan Chowdhury. Evaluating performance of mixed mode multistage helium plants for design and off-design conditions by exergy analysis[J]. International Journal of Refrigeration,2014,38:46-57.

7 白红宇,毕延芳. 2KW/4K氦制冷机制冷循环的优化计算[J]. 真空与低温,2002,8(3):144-148.

Bai Hongyu,Bi Yanfang. The refrigeration cycle optimization of 2KW@4K helium refrigerator[J]. Vacuum and Cryogenics,2002,8(3):144-148.

Effect of independent variables on cycle exergy efficiency of helium cryogenic refrigeration system

Jiang Rongxia1,2,3Xie Xiujuan1,2Deng Bicai1,2,3Yang Shaoqi1,2

(1State Key Laboratory of Technologies in Space Cryogenics Propellants,Beijing 100190, China) (2Technical Institute of Physics and Chemistry,Chinese Academy of Sciences,Beijing 100190,China) (3University of Chinese Academy of Sciences,Beijing 100049,China)

Energy balance eqation of the modified Claude cycle of large helium cryogenic refrigeration system was established,and the computational formula of cycle exergy efficiency was obtained. Through the thermal analysis of the refrigeration mode and liquefaction mode of helium refrigerator,the relation between parameters of the cycle was determined and the key independent variables:compressor discharge pressure,the turbine expander flow rate and heat exchanger efficiency were extracted. Based on static model of the modified Claude cycle of large helium cryogenic refrigeration system,the effect of compressor discharge pressure,the turbine expander flow rate and heat exchanger efficiency on cycle exergy efficiency was studied,and the optimize design parameters was obtained.

helium cryogenic refrigeration system;independent variables;exergy efficiency

2016-08-10;

2016-11-03

航天低温推进剂技术国家重点实验室基金课题(SKLTSCP1502)资助。

江荣霞,女,25岁,硕士研究生。

TB611

A

1000-6516(2016)06-0024-05

猜你喜欢

冷箱温区制冷系统
PPRTs 偏差方程外推至-189.344 2~156.598 5 ℃温区的研究
1 m3/h 氦膨胀制冷氢液化冷箱模态与地震响应谱分析
R290/R170单级压缩回热制冷系统模拟研究
R134a-DMF吸收式制冷系统性能仿真研究
空分装置冷箱泄漏分析与处理
质子交换炉温控系统的模糊解耦预测控制
带RCP入级符号的集装箱船配电系统设计
关于空分冷箱泄漏分析与应急处理
航空配餐楼中温区空调系统设计探讨
奥迪A6L车制冷系统工作异常