APP下载

试析证明三角形全等的技巧

2016-05-14刘安建

教育界·上旬 2016年5期
关键词:证明

刘安建

【摘 要】全等三角形是初中平面几何知识中最为重要的部分,也是中考的必考内容。通常情况下,初中几何都会通过角边角、边角边、边边边、角角边四种基本判定定理来求证三角形全等,而本文则分析了利用两个关键、三类图形和两种方法来证明三角形全等的技巧,希望可以帮助中学生丰富解题手段,更深层次了解三角形全等的解题技巧。

【关键词】三角形全等 证明 两大关键 三类图形 两种方法

一般来说,证明三角形全等就是证明三角形的角和线段相等,这也是初中平面几何的基础理论。所以说,以多角度学习证明三角形全等的方法就是学好初中平面几何的关键,对后续更复杂的几何知识学习也很有帮助。

一、证明三角形全等的两大关键

三角形全等的基本理念就是找准角与角、边与边之间的对应关系,所以本文针对三角形全等证明归纳两大关键要点:

第一,全等三角形的公共边一定要是对应边,而其公共角即对顶角也必须全是对应角。

第二,在全等三角形中,相等的边边关系所对应的角也必须为对应角;反之,相等的角其所对应的边也一定是对应边,如此才能成立三角形全等这一结论[1]。

二、证明三角形全等的三类图形

在初中平面几何教学中,通常认为的全等三角形图形形态应该包括三种:

(一)平移型全等三角形

图1 平移型全等三角形

如图1中所示的即为平移型全等三角形,两个三角形在平移后依然是保持全等关系不变的,以下举例来说。

例1:如图2,在两个三角形△DEF与△ABC中,如果边EF∥BC,且有 ∠EDF=∠BAC,已知边DE=AB=8,AC=12,BC=10,那么边EF的长度为多少?

图2 平移三角形DEF和ABC

因为△DEF与△ABC符合ASA判定定理,∠EDF=∠BAC且AB=DE=8,那么BC=10,所以就有EF=BC=10.

(二)对称型全等三角形

图3 对称型全等三角形

例2:如图4,已知∠DBA=∠CAB,边DB=CA,DA与CB的相交点为O,而E为AB边的中点,试证明OE与AB的位置关系.

图4 对称三角形CAB和DBA

首先,根据ASA判定定理可以得知,因为∠DAB=∠DBA,所以△DBA与△CAB应该为全等三角形,E为AB边的中点,所以OB=OA,∠OBA=∠OAB,所以边OE与边AB应该呈垂直关系,即OE⊥AB.

(三)旋转型全等三角形

图5 旋转型全等三角形

例3:如图6,在平行四边形ABCD中,E、F两点位于对角边AC之上,如果AF=CE,求问DF与BE边的关系.

图6 旋转三角形ADF与CBE

该题求解的是DF与BE两边的关系,从经验来看,两边应该属于平行关系,若想证明DF∥BE,就必须先证明△ADF与△CBE为全等三角形。因为AD∥BF,且AD=BC,∠DAC=∠BCA,AF=CE,所以根据SAS判定定理,可以证明△ADF与△CBE为全等三角形。在证明两三角形全等后,就可以得出结论,边DF=BE,且两边也是平行关系,DF∥BE.

以上三种图形就是在对称、平移和旋转状态下的三种全等三角形,对它们的判定还是要基于四大判定定理,并通过变换图形的角度、位置、垂直平行关系来证明它们可能存在的全等关系。对于初中生来说,它的难点就在于要用角度变换的思维来看待对三角形全等的证明,并学会灵活运用三角形全等的四个判定定理进行证明[2]。

三、证明三角形全等的两种方法

在初中平面几何学习中,对三角形全等的证明存在顺推和逆推两种方法,本文将做出一一解析。

(一)顺推分析法

所谓顺推分析自然是从已知条件出发,利用上述提到的四种判定定理或其他平面几何知识进行推导,再联系结合题目中的已知条件来发展推理过程,最后得出结论。

例4:如图7,线段AB中点为C,其中DC边平分∠ACE,有∠1=∠2,EC边平分∠BCD,有∠2=∠3,且EC=DC,证明△DAC与△EBC为全等三角形.

图7

该题目中所给出的已知条件十分充分,因为C点为线段AB的中点,所以CA=CB。因为DC、EC边平分∠ACE与∠BCD,所以∠1=∠2=∠3。又因为DC=EC,根据SAS判定定理,至此可以说明△DAC≌△EBC.

(二)逆推分析法

逆推分析法是从结论入手的解题方法,它所分析的是到达结论的可行性路径,并且根据结合所给出的已知条件和结论来寻找到正确的证明方法。在三角形全等的求解过程中,逆推分析法是十分常见的。

例5:如图8,已知BA=CA,DA=EA,请求证BD=CE.

∵DA=EA,BA=CA

∴∠C=∠B,∠1=∠2

根据SAS,∵∠B+∠3=∠1,∠C+∠4=∠2

∴∠3=∠4

DA=EA,BA=CA,∴可得△BAD≌△CAE,∴BD=CE.

以上为顺推分析和逆推分析的例题求证,如果能够娴熟掌握上述两种方法技巧,学生还可以结合顺推与逆推,用两种技巧共同解决习题,求证三角形的全等关系[3]。

四、总结

除上述解题方法外,利用公共边、公共角、对顶角等方法也能证明三角形的全等关系。因此可以说,初中平面几何中三角形全等的求解方法是丰富多样的,教师在教学过程中应该在扎实掌握四大判定定理、边角关系的基础理论的基础上,充分打开学生的思路,开阔学生的视野,从不同角度、不同层面来启迪和开发学生的解题能力。而三角形全等证明问题作为初中平面几何的基础知识,也应该被学生所熟悉运用,这对他们未来面对和解决更复杂的几何题型很有帮助。

【参考文献】

[1]娄菊红.浅谈证明三角形全等的一些技巧[J].中学生数理化(八年级数学人教版),2012(07):6-7.

[2]钱燕群.三角形全等的证明及应用举例[J].读写算(教育教学研究),2011(08):118-119.

[3]王志玲.八年级学生学习全等三角形推理与证明的错误分析[D].漳州:闽南师范大学,2015.

猜你喜欢

证明
活到老,学到老
不等式的证明与函数构型
Poisson公式的详细证明
Amer不等式的证明及其类似
《结合证明选讲》拔高必刷题
证明我们的存在
Nesbitt不等式的十七种证明
对“构造切线法”证明对称不等式的一点改进