APP下载

基于EMD方法的煤矿绞车轴承故障诊断

2016-05-10乔淑云

工矿自动化 2016年4期
关键词:故障诊断

乔淑云

(1.徐州工程学院 信电工程学院, 江苏 徐州 221111;

2.中国矿业大学 信息与电气工程学院, 江苏 徐州 221116)



基于EMD方法的煤矿绞车轴承故障诊断

乔淑云1,2

(1.徐州工程学院 信电工程学院, 江苏 徐州221111;

2.中国矿业大学 信息与电气工程学院, 江苏 徐州221116)

摘要:根据煤矿绞车齿轮箱轴承在变速变载工况下振动信号的频率一直发生变化的特征,提出采用EMD方法进行绞车轴承故障诊断。在较大拖动力与较大转频阶段,根据轴承座在正常状态与故障状态下振动信号的IMF分量的能量与总能量的比值及均方根能量来判断轴承工作状态,通过提取故障信号频率的边际谱判断故障位置。实验结果证明了EMD方法能够有效检测出绞车齿轮箱轴承故障。

关键词:煤矿绞车; 齿轮箱轴承; 故障诊断; EMD方法

网络出版地址:http://www.cnki.net/kcms/detail/32.1627.TP.20160405.1131.012.html

0引言

煤矿绞车系统是联系井上和井下的唯一输送通道,不仅装载容量大、能耗高,而且可靠性要求高,其工作状况的好坏直接影响矿山建设与生产的安全。近年来,绞车齿轮箱轴承出现故障的概率为30%以上,因此,对齿轮箱轴承进行故障诊断,寻找故障发生的规律,避免重大事故发生,对煤矿安全生产具有重要意义。

绞车匀速运行时,齿轮箱故障振动信号与正常信号相比,相同频带内信号的能量变化较大;而在变速变载情况下,振动信号的频率一直发生变化,在变速振动信号的一系列时间切面上,相同瞬时频带内信号的能量分布不同。如何将变速振动信号中的各个单分量信号进行分解,是实现非平稳状态下轴承故障诊断的关键。传统的信号处理方法如短时傅里叶变换、小波分析在处理该类信号时分别存在难以找到合适的短时窗函数而导致效果较差和能量泄露、不具有自适应性的缺陷。EMD(Empirical Mode Decomposition,经验模态分解)方法[1]由于具有很好的自适应性得到了广泛研究和应用[2-4]。本文将EMD方法应用于煤矿绞车齿轮箱轴承在变速变载状态下的故障诊断,提高了绞车系统的安全性。

1EMD方法

EMD方法可将一个复杂的多分量信号x(t)(t为时间)分解为有限个IMF(Intrinsic Mode Function,本征模态函数)之和,具体步骤如下。

酒款亮点:这款葡萄酒就叫Let's Drink Cabernet Sauvignon,专门为喜庆畅饮场合而定制,来自南澳库纳瓦拉产区,未经过太多橡木桶陈年,散发出成熟甜美的黑色李子、黑莓浆果的香气以香料的气息,果香充沛,口感柔顺,单宁细腻,适合畅饮及制作圣诞红酒。

求取前5个IMF分量的能量与总能量的比值,结果见表1。

(2) 若h1不符合IMF条件,则将h1作为原始数据,重复步骤(1),得到上、下包络线的平均值m11。令h11=h1-m11,判断h11是否符合IMF条件,若不符合则循环k次,得h1k=h1(k-1)-m1k(m1k为第k次循环时上、下包络线的平均值),使h1k满足IMF条件。记c1=h1k,则c1为x(t)的第1个满足IMF条件的分量。

当rn成为一个单调函数不能再从中提取满足IMF条件的分量时,循环结束。由式(1)、式(2)得

(1)

将r1作为原始数据重复步骤(1)、步骤(2),得到x(t)的第2个满足IMF条件的分量c2;循环n次,得到x(t)的n个满足IMF条件的分量[6],从而得

研究进一步验证了环境心理学相关理论及Arthur Stamps的天际线美学理论,为城市天际线定量评价提供了探索性的研究方法。当前我国城市正处于快速建设的阶段,设计手段及反馈机制亟待更新,以上方法也为城市规划设计导则的科学化编制提供了可能性。关于现阶段城市设计得到如下启示:

(2)

(3) 将c1从x(t)中分离出来,得

3.1.3 湿化液 对照组采用生理盐水进行吸痰前的湿化,据报道,生理盐水湿化气道不但无帮助还可能有害[11]。对成人进行研究表明,吸痰时使用生理盐水不但不会使痰液松动、稀释分泌物,生理盐水还会刺激咳嗽反射引起烦躁,咳嗽胸廓内压会有相当大的升高,引起心率迟缓、低氧血症以及潜在引起感染[12]。能稀释痰液的唯一方法是使进入气道的水变成气雾状。因此,机械通气时良好的气道湿化是稀释痰液的关键[5]。

(3)

对图2所示的轴承故障信号进行EMD分解,得到分解后的IMF。IMF均方根能量为

2实验设计

发烧是人体的自我保护机制之一,是人体在调动免疫系统对抗疾病的过程中表现出来的一种症状,因此发烧不完全是坏事儿。很多种疾病都可能引起发烧,体温的高低与疾病的严重程度也不一定成正比。个人的体质不同,体温调节的敏感度也会不同,有的人轻微感冒就能烧很高,有的人即使严重感染了也不见得有很高的体温。这里说的“感染”可能是病毒感染,也可能是细菌等其他病原体感染。

图1 实验装置

测量振动信号时,3个压电式加速度传感器分别布置在齿轮箱轴承座的水平、垂直及轴向方向。电荷放大器采集轴承座的振动信号,信号经数据采集箱处理后,上传到计算机进行分析。在正常和故障情况下测得轴承座水平方向的振动信号如图2所示。

实验装置如图1所示。将压电式加速度传感器安装在故障轴承的轴承座上,调节变频器使齿轮箱加速运行,采集轴承座的振动信号。信号采样频率设置为1 000 Hz,分别采集转速变化相同阶段轴承座的振动信号,以便对比分析轴承的故障状态与正常状态。采用的故障轴承为SKF-6205型单列深沟球轴承,调速电动机为直流电动机,功率为5 kW,通过变频器实现调速。

绞车轴承发生故障时,测得的振动信号的幅值随电动机输出转矩的变化而变化,对其进行时频变换后,特征频率的幅值也随电动机的输出扭矩而变化。轴承座的受力情况比较复杂,包括钢丝绳的动张力、齿轮之间的啮合径向力等,因此轴承座上的外力表现为波动力,使得测量的振动信号幅值发生变化。另外,由于振动信号随轴承转动频率的变化而变化,所以当轴承存在故障时,轴承故障频率分量会随轴承转动频率而变化。可见,在进行轴承故障分析时,需对存在较大拖动力与较大转动频率阶段的振动信号进行分析,对故障特征进行提取。

再次,社会有关部门在支持和鼓励青少年科学运用网络的同时,应进一步加大对网络信息的管理力度。按照心理学的社会学习理论的观点,我们主要是根据情境的特性来调整自己的行为,相关法律、规章、制度的完善是保证社会网络环境净化的必备条件,也是减少学生人格障碍产生的重要因素。

(a) 正常振动信号

(b) 故障振动信号

3故障特征提取

由式(3)得到一个用于信号分解自适应的广义基。在信号自适应分解过程中,基函数是一系列可变幅度和可变频率的函数。利用EMD方法在分解信号过程中,外界噪声及间歇性冲击的幅值随分解次数的增加而逐渐减小,从而抑制噪声。因此,可利用EMD方法将绞车齿轮箱在加速过程中产生的非平稳信号进行自适应分解,得到不同的单分量信号,再根据边际谱判断出轴承故障信息。

(4)

(1) 确定x(t)所有的局部极值点,用三次样条曲线将所有的局部极大值、极小值点连接起来形成上、下包络线。将上、下包络线的平均值[5]记为m1,令h1=x(t)-m1。理想地,若h1为一个IMF,那么h1即为x(t)的第1个满足IMF条件的分量。

星雨向李离扑过来,作势要撕他的嘴:“你这个死妮妮,宇晴姐姐刚才要打,也应该来打你,在你头上敲出三个熟板栗分给我们三个吃!”

表1 前5个IMF分量的能量与总能量的比值

根据IMF均方根能量分别计算齿轮箱轴承正常状态与故障状态下的能量值,结果见表2。

表2 轴承正常和故障状态下IMF均方根能量

由表1和表2可看出,轴承正常状态下,振动信号的瞬时频率成分能量主要集中在轴承固有频率及高阶倍频处,能量分布的不确定性较小,经EMD分解后各IMF分量的能量分布的不确定性相对减少,所得的能量值也较小。在故障状态下,固有振动频率周围存在一定的边频带,振动信号的瞬时频率成分能量分布相对均匀,受边频带的影响,所得的能量分布的不确定性较大,经EMD一次分解后得到的各IMF分量能量分布的不确定性也较大,所得的能量值偏大。

结合采集信号进行分析判断,该齿轮箱轴承故障信号存在于高频段。图3为轴承故障信号经EMD分解后的前5个IMF分量。

图3 轴承故障信号经EMD分解后的前5个IMF分量

对轴承故障信号的边际谱进行计算,结果如图4所示。通过边际谱得出故障频率为128.9 Hz,与根据轴承参数计算出的轴承滚动体故障特征频率129.6 Hz相近,因此判断为滚动体故障。

图4 轴承故障信号的边际谱

4结语

通过对煤矿绞车齿轮箱轴承振动特性进行分析,提出在较大拖动力与较大转频阶段采用EMD方法来提取轴承故障信息,得到能够提取故障频率的边际谱,进而判断轴承故障类型及发生位置。实验验证了EMD方法在检测绞车齿轮箱轴承故障方面的有效性。

参考文献:

[1]HUANG N E, SHEN Z, LONG S R,etal. The empirical mode decomposition and the Hilbert spectrum for nonlinear and nonstationary time series analysis[J]. Proceedings of the Royal Society, 1998, 454: 903-995.

[2]庞维建,马海龙,益军.EMD滤波在煤矿电动机故障诊断中的应用[J].工矿自动化,2015,41(3):93-95.

[3]刘自然,熊伟,颜丙生,等.EMD方法和倒频谱在齿轮箱故障诊断中的应用[J].组合机床与自动化加工技术,2014,56(9):102-104.

[4]华伟,荆双喜,牛振华.基于经验模态分解的矿用通风机故障诊断研究[J].矿山机械,2008,36(17):17-19.

[5]LEI Y G, HE Z J, ZI Y Y. Application of the EEMD method to rotor fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing, 2009, 23(4):1327-1338.

[6]周将坤.基于Hilbert-Huang变换和BP神经网络的滚动轴承故障诊断研究[D].镇江:江苏大学,2010.

Fault diagnosis for mine hoist bearing based on EMD method

QIAO Shuyun1,2

(1.College of Information and Electrical Engineering, Xuzhou Institute of Technology, Xuzhou 221111,

China; 2.School of Information and Electrical Engineering, China University of Mining and Technology,

Xuzhou 221116, China)

Abstract:According to characteristics that frequency of vibration signals of hoist gear box bearing in coal mine changes all the time under varying load and speed conditions, EMD method was adopted for fault diagnosis for hoist bearing. In phase of larger drag force and greater rotating frequency, working status of bearing is adjusted according to energy ratio and root mean square energy of IMF components of bearing vibration signal under normal status and fault status, and fault position is determined by extracting marginal spectrum of fault signal frequency. The experimental results show EMD method can detect bearing fault of hoist gear box effectively.

Key words:mine hoist; bearing of gear box; fault diagnosis; EMD method

作者简介:乔淑云(1967-),女,江苏徐州人,副教授,博士研究生,研究方向为煤矿安全生产通信与监控、智能信息处理,E-mail:qsyhchhq@163.com。 王耀辉(1981-),男,陕西咸阳人,硕士,助理研究员,主要从事煤矿开采装备开发及工艺研究工作,E-mail:wyaohui@126.com。

基金项目:江苏省大型工程装备检测与控制重点建设实验室开放课题资助项目(JSKLEDC201312);住房和城乡建设部研究开发项目(2014-k1-045);徐州市科技计划项目(KC14SM095)。 “十二五”国家科技支撑计划资助项目(2012BAK04B08);天地科技开采设计事业部生产力转化基金资助项目(KJ-2014-TDKC-02)。

收稿日期:2016-01-11;修回日期:2016-02-23;责任编辑:李明。 2015-10-26;修回日期:2016-02-05;责任编辑:李明。

中图分类号:TD633

文献标志码:A网络出版时间:2016-04-05 11:31

文章编号:1671-251X(2016)04-0051-04

DOI:10.13272/j.issn.1671-251x.2016.04.012

乔淑云.基于EMD方法的煤矿绞车轴承故障诊断[J].工矿自动化,2016,42(4):51-54.

猜你喜欢

故障诊断
基于包络解调原理的低转速滚动轴承故障诊断
ILWT-EEMD数据处理的ELM滚动轴承故障诊断
冻干机常见故障诊断与维修
基于EWT-SVDP的旋转机械故障诊断
数控机床电气系统的故障诊断与维修
基于改进的G-SVS LMS 与冗余提升小波的滚动轴承故障诊断
基于量子万有引力搜索的SVM自驾故障诊断
因果图定性分析法及其在故障诊断中的应用
改进的奇异值分解在轴承故障诊断中的应用
基于LCD和排列熵的滚动轴承故障诊断