APP下载

小学数学教学的发散思维训练

2016-05-04杨海英

俪人·教师版 2016年4期
关键词:发散思维数学教学小学数学

杨海英

【摘要】要在小学数学教学中加强学生对基本数学思想的体验,这就要求我们在教学中注重对学生解题思路的点拨和培养、提炼和升华,在实际教学中要注重对学生思维做好导向性的培养。这其中创新思维是一个大的目标趋向,为了达成这样的目标,教学中可以有意利用合适的情境对学生进行发散性的思维训练,让学生在多角度、全方位的思维锻炼中提高综合解决问题的能力,养成成熟的思维品质。

【关键词】小学数学 数学教学 发散思维

思维的积极性、求异性、广阔性、联想性等是发散思维的特性,在数学教学中有意识地抓住这些特性进行训练与培养,既可提高学生的发散思维能力,又是提高小学数学教学质量的重要一环。

1. 激发求知欲,训练思维的积极性

思维的惰性是影响发散思维的障碍,而思维的积极性是思维惰性的克星。所以,培养思维的积极性是培养发散思维的极其重要的基矗在教学中,教师要十分注意激起学生强烈的学习兴趣和对知识的渴求,使他们能带着一种高涨的情绪从事学习和思考。例如:在一年级《乘法初步认识》一课中,教师可先出示几道连加算式让学生改写为乘法算式。由于有乘法意义的依托,虽然是一年级小学生,仍能较顺畅地完成了上述练习。而后,教师又出示3+3+3+3+2,让学生思考、讨论能否改写成一道含有乘法的算式呢?经过学生的讨论与教师及时予以点拨,学生列出了3+3+3+3+2=3×5-1=3×4+2=2×7……虽然课堂费时多,但这样的训练却有效地激发了学生寻求新方法的积极情绪。我们在数学教学中还经常利用“障碍性引入”、“冲突性引入”、“问题性引入”、“趣味性引入”等,以激发学生对新知识、新方法的探知思维活动,这将有利于激发学生的学习动机和求知欲。在学生不断地解决知与不知的矛盾过程中,还要善于引导他们一环接一环地发现问题、思考问题、解决问题。例如,在学习“角”的认识时,学生列举了生活中见过的角,当提到墙角时出现了不同的看法。到底如何认识呢?我让学生带着这个“谜”学完了角的概念后,再来讨论认识墙角的“角”可从几个方向来看,从而使学生的学习情绪在获得新知中始终处于兴奋状态,这样有利于思维活动的积极开展与深入探寻。

2. 转换角度思考,训练思维的求异性

发散思维活动的展开,其重要的一点是要能改变已习惯了的思维定向,而从多方位多角度――即从新的思维角度去思考问题,以求得问题的解决,这也就是思维的求异性。从认知心理学的角度来看,小学生在进行抽象的思维活动过程中由于年龄的特征,往往表现出难以摆脱已有的思维方向,也就是说学生个体的思维定势往往影响了对新问题的解决,以至于产生错觉。所以要培养与发展小学生的抽象思维能力,必须十分注意培养思维求异性,使学生在训练中逐渐形成具有多角度、多方位的思维方法与能力。例如,四则运算之间是有其内在联系的。减法是加法的逆运算,除法是乘法的逆运算,加与乘之间则是转换的关系。当加数相同时,加法转换成乘法,所有的乘法都可以转换成加法。加减、乘除、加乘之间都有内在的联系。如189-7可以连续减多少个7?应要求学生变换角度思考,从减与除的关系去考虑。这道题可以看作189里包含几个7,问题就迎刃而解了。这样的训练,既防止了片面、孤立、静止看问题,使所学知识有所升华,从中进一步理解与掌握了数学知识之间的内在联系,又进行了求异性思维训练。在教学中,我们还经常发现一部分学生只习惯于顺向思维,而不习惯于逆向思维。在应用题教学中,在引导学生分析题意时,一方面可以从问题入手,推导出解题的思路;另一方面也可以从条件入手,一步一步归纳出解题的方法。更重要的是,教师要十分注意在题目的设置上进行正逆向的变式训练。

3. 一题多解、变式引伸,训练思维的广阔性

思维的广阔性是发散思维的又一特征。思维的狭窄性表现在只知其一,不知其二,稍有变化,就不知所云。反复进行一题多解、一题多变的训练,是帮助学生克服思维狭窄性的有效办法。可通过讨论,启迪学生的思维,开拓解题思路,在此基础上让学生通过多次训练,既增长了知识,又培养了思维能力。要通过多次的渐进式的拓展训练,使学生进入广阔思维的佳境。

4. 转化思想,训练思维的联想性

联想思维是一种表现想象力的思维,是发散思维的显著标志。联想思维的过程是由此及彼,由表及里。通过广阔思维的训练,学生的思维可达到一定广度,而通过联想思维的训练,学生的思维可达到一定深度。例如有些题目,从叙述的事情上看,不是工程问题,但题目特点确与工程问题相同,因此可用工程问题的解题思路去分析、解答。让学生进行多种解题思路的讨论时,有的解法需要学生用数学转化思想,才能使解题思路简捷,既达到一题多解的效果,又训练了思路转化的思想。“转化思想”作为一种重要的数学思想,在小学数学中有着广泛的应用。在应用题解题中,用转化方法,有利于学生联想思维的训练。总之,在数学教学中多进行发散性思维的训练,不仅要让学生多掌握解题方法,更重要的是要培养学生灵活多变的解题思维,从而既提高教学质量,又达到培养能力、发展智力的目的。

5、结束语

思维是智力的核心。思维品质,是人的思维的个性特征,是反映了每个个体智力或思维水平的差异,主要包括深刻性、灵活性、独创性、批判性、敏捷性和系统性六个方面。而思维的独创性是推动社会变革和发展的原动力,发散思维是思维的独创性的前提和基础,“千里之行,始于足下”。小学生发散思维能力的培养要从低年级抓起,结合小学生的思维特点和年龄特征,创设问题情境,引导小学生多角度看问题,多个思路想问题,多种方法解决问题,充分利用数学开放题,培养小学生发散思维能力,进而提高小学生的思维水平,开发小学生的智力,提高小学生的素质和能力。

【参考文献】

[1]荆永才:换个角度思考是优化解题的有效途径[J]:数学教与学;2011(04)

[2]丛风雷:突破思维定势,培养逆向思维[J],晋东南师范专科学报:2000(03)

[3]谢荣亲:"四多"培养学生的发散思维[J],甘肃教育:2010(06)

猜你喜欢

发散思维数学教学小学数学
例谈发散性思维训练
金融新晋军的“发散思维”
对数学教学实施“素质教育”的认识