APP下载

分数阶微分方程边值问题的Picards迭代方法

2016-04-23孙宇锋曾广钊

孙宇锋 曾广钊

摘 要 从分数阶微分方程边值问题的近似解出发,应用Picards迭代方法证明了其存在唯一解;研究了非线性函数f(t;x(t),x′(t))由一个函数序列{fm(t;x(t),x′(t))}近似代替时,边值问题解的Picards迭代序列满足的形式及其存在唯一解的充要条件;讨论了这类边值问题不考虑近似解以及非线性函数Lipschitz类的因素时,其解的一般性存在条件;最后通过两个数值算例验证了这类边值问题解的存在性以及解与其迭代序列的误差估计.

关键词 分数阶微分方程;迭代方法;近似解;误差估计

中图分类号 O175.8,O241.81文献标识码 A文章编号 10002537(2016)02008208

Picards Iterative Method for the Boundary Value Problem of

a Class of the Fractional Order Differential Equation

SUN Yufeng*, ZENG Guangzhao

(College of Mathematics and Statistics, Shaoguan University, Shaoguan 512005, China)

Abstract In this article the existence and uniqueness of the solution for the boundary value problem of a class of fractional differential equations is proved by the Picards iterative method starting form the approximate solution of boundary value problems of these equations. We also proved the existence and uniqueners of the solution and provided the sufficient conditions for the boundary value problem by the Picards iterative methods when the nonlinear function f(t;x(t),x′(t)) is approximated instead of by a sequence of functions {fm(t;x(t),x′(t))}. The general condition for the existence of its solution is discussed without considering factors like the approximate solution of such boundary value problems and nonlinear function Lipschitzclass. Finally, the existence of the solution of such boundary value problems and the estimation of error between the accurate solution and the solution of iterative sequence are verified by two numerical examples.

Key words fractional differential equations; iterative method; approximate solution; estimation of error

本文在文献[1~7]的基础上,讨论基于Caputos分数导数的一类分数阶微分方程的边值问题, 并通过其近似解的Picards迭代序列,得到相应的解的存在性和唯一性定理.

考虑如下分数阶微分方程的边值问题

致谢 感谢安徽大学郑祖庥教授、中科院俞元洪研究员的教诲和指导!

参考文献:

[1] AGARWAL R P, BENCHOHRA M, HAMANI S. Boundary value problems for fractional differential equations[J].J Georgian Math, 2009,16(3):401411.

[2] BENCHOHRA M, HAMANI S, NTOUYAS S K. Boundary value problems for differential equations with fractional order[J]. Surv Math Appl, 2008,3(3):112.

[3] BENCHOHRA M, HAMANI S, NTOUYAS S K. Boundary value problems for differential equations with fractional order and nonlocal conditions[J]. Nonlinear Anal, 2009,71(5):23912396.

[4] ZHANG S Q. Positive solutions for boundaryvalue problems of nonlinear fractional differential equations[J]. Electron J Diff Equ, 2006,36(2):112.

[5] SUN Y F, WANG P G. Quasilinear iterative scheme for a fourthorder differential equation with retardation and anticipation[J]. Appl Math Comput, 2010,217(4):34423452.

[6] WANG P G. Iterative methods for the boundary value problem of a fourth order DDE[J]. Appl Math Comput, 1995,73(2):257270.

[7] SUN Y F, WANG P G. Iterative methods for a fourthorder differential equations with retardation and anticipation[J]. Dyn Cont Disc Impuls Syst, Series B, 2010,17(1):487500.

[8] PODLUBNY I. Fractional Differential equations[M]. New York: Academic Press, 1999.

[9] RALL L B. Computational Solutions of Nonlinear Operator[M]. New York:John Wiley,1969.

[10] GRANAS A, DUGUNDJI J. Fixed point theory[M].New York:SpringerVerlag,2003.

[11] SUN Y F, LI T S. Quasilinearization methods for a fourthorder differential difference equations[J]. J. Biomath, 2007,22(5):840846.

[12] 孙宇锋.一类四阶微分差分方程的边值问题[D].保定:河北大学硕士论文, 2008.

[13] 郑祖庥.分数微分方程的发展和应用[J].徐州师范大学学报:自然科学版, 2008,26(2):110.

[14] 薛定宇,陈阳泉.高等应用数学问题的MATLAB 求解[M].北京:清华大学出版社, 2004.

[15] 陈 文,孙洪广.力学与工程问题的分数阶导数建模[M].北京:科学出版社,2010.

[16] 程金发.分数阶差分方程理论[M].厦门:厦门大学出版社,2011.

(编辑 HWJ)