由微分从属和卷积定义的解析函数类的包含性质
2016-04-23都俊杰秦川邹发伟等
都俊杰 秦川 邹发伟等
摘 要 本文由微分从属和卷积定义了在单位圆盘U={z∈C:|z|<1}内的三类单叶解析函数类Pa1,…,aq;b1,…,bs(μ,h,λ),Ta1,…,aq;b1,…,bs(μ,h,α),Ra1,…,aq;b1,…,bs(μ,h,α),并利用从属性质和凸函数的理论,研究得到了它们的包含关系.
关键词 从属;卷积;包含性质;星象函数;凸函数
中图分类号 O17451文献标识码 A文章编号 10002537(2016)02007705
Inclusion Properties for Subclasses of Analytic Functions
Defined by Differential Subordination and Convolution
DU Junjie1*, QIN Chuan1, ZOU Fawei1, LI Xiaofei2,3
(1.College of Engineering and Technology, Yangtze University, Jingzhou 434020, China;
2.School of Information and Mathematics, Yangtze University, Jingzhou 434020, China;
3.College of Science and Technology, University of Macau, Macau, 519040, China)
Abstract In this article, we define three subclasses of analytic functions Pa1,…,aq;b1,…,bs(μ,h,λ),Ta1,…,aq;b1,…,bs(μ,h,α),Ra1,…,aq;b1,…,bs(μ,h,α) by using of differential subordination and convolution in the open disc U={z∈C:|z|<1}. Inclusion properties of these subclasses are obtained by employing properties of subordination and theories of convex functions.
Key words subordination; convolution; inclusion properties; starlike function; convex function
设A表示单位圆盘U={z∈C:|z|<1}内具有泰勒展开式f(z)=z+∑∞n=2anzn的单叶解析函数族. f(z),g(z)在U内解析,称f从属于g,记作f (x)n=Γ(x+n)Γ(x)=1, (n=0,x∈C\{0}), x(x+1)…(x+n-1),(n∈N,x∈C). 记N表示由单位圆盘U内的单叶解析凸的函数h(z)组成的正实部函数类,即满足Re{h(z)}>0.Ozkan和Altintas[1]定义了下面的函数类: 参考文献: [1] OZKAN O, ALTNTAS O. Applications of differential subordination [J]. Appl Math Lett, 2006,19(3):728734. [2] TROJNARSPELINA L. On certain applications of the Hadamard product [J]. Appl Math Comput, 2008, 199(4):653662. [3] ELASHWAH R M, AOUF M K, ABDELTWAB A M. On certain classes of pvalent functions invoving DziokSrivastava operator [J]. Acta Univ Apulensis, 2013,35(2):203210. [4] XU Q H, XIAO H G, SRIVASTAVA H M. Some applications of differential subordination and the DziokSrivastava convolution operator [J]. Appl Math Comput, 2014, 230(3):496508. [5] SEOUDY T M, AOUF M K. Inclusion properties for some subclasses of analytic functions associated with generalized integral operator [J]. J Egypt Math Soc, 2013,21(3):1115. [6] KWON O S, CHO N E. Inclusion properties for certain subclasses of analytic functions associated with the DziokSrivastava operator [J]. J Inequal Appl, 2007,35(4):110. [7] 刘竟成,张学军. Cn中单位球上Bergman型空间的一种积分算子[J].数学年刊A辑, 2013,34(3):257268. [8] 李小飞,严 证.某类积分算子解析函数的性质[J].湖南师范大学自然科学学报, 2013,36(4):1115. [9] 田 琳,韩红伟.算子解析函数的系数不等式[J].数学的实践与认识, 2014,44(18):239245. [10] 高松云,刘名生.用算子Iδ,λ,lp,α,β定义的多叶解析函数子类的性质[J].华南师范大学学报:自然科学版, 2013,45(5):1922. [11] MILLER S S, MOCANU P T. Differential subordinations: theory and applications, series on monographs and textbooks in pure and applied mathematics [M]. New York: Marcel Dekker Incorporation, 2000. [12] RUSCHEWEYH S. Convolutions in geometric function theory [M]. Montreal: Les Presses de lUniversite de Montreal, 1982. [13] RUSCHEWEYH S, SHEILSMALL T. Hadamard product of schlicht functions and the polyaschoenberg conjecture [J].Comment Math Helv, 1973,48(4):119135. (编辑 HWJ)