APP下载

植物维生素生物强化进展

2016-04-10张春义

生物技术进展 2016年6期
关键词:胡萝卜素拟南芥叶酸

姜 凌, 张春义

中国农业科学院生物技术研究所, 北京 100081



植物维生素生物强化进展

姜 凌, 张春义*

中国农业科学院生物技术研究所, 北京 100081

维生素是动植物生长发育所必需的微量营养素,包括A、B族(B1、B2、B3、B5、B6、B7、B9、B12)、C、D、E和K等。这些物质由于人体内不能合成或合成量不足,所以虽然需要量很少,但必须从膳食特别是植物性食品中获得。因此,利用生物强化技术来提高植物合成的维生素含量可以有效地应对全球性维生素缺乏的问题,对人类的生存与健康具有重要意义。综述了近年来国内外植物中维生素代谢和生物强化的主要研究成果,并对利用分子设计育种进行维生素生物强化的未来发展方向进行了展望。

维生素;代谢;植物;生物强化

维生素(vitamin)是指人体不可缺少的、必须通过膳食来获得的小分子化合物,对预防营养缺乏性疾病非常重要。目前确认的人体必需维生素包括4种脂溶性维生素(维生素A、D、E、K)和9种水溶性维生素(维生素B1、B2、B3、B5、B6、B7、B9、B12和维生素C)。人体可以合成维生素D和维生素B12,但合成量不足以满足人体的需求;其余的维生素虽然不能在人体内合成,但可以在细菌、真菌和植物中合成并积累,而且维生素也是这些物种生长发育所必需的微量营养物质[1]。

维生素通常作为酶学反应的催化剂、辅酶或者辅酶的一部分,对人体和植物的生长发育都非常重要。在人体中维生素的缺乏通常会引起营养缺乏性疾病,如脚气病(维生素B1,硫胺焦磷酸)、糙皮病(维生素B3,烟酸)、贫血(维生素B6,吡哆醛)、坏血症(维生素C,抗坏血酸)和软骨病(维生素D)。同时叶酸(维生素B9)摄取不足会引发巨幼红细胞贫血和胎儿神经管发育缺陷;维生素A的缺乏导致全球上亿儿童有失明和易感疾病的风险;而维生素K的缺乏会导致中风风险的增加[1]。为了减少营养缺乏性疾病发生的风险,在发达国家中人们可以在食物中添加人工维生素或增加膳食的丰富性,但在发展中国家,数以亿计的人们由于饥饿和营养不良导致了维生素与矿物质的多重营养缺乏症。近些年,人们通过对慢性疾病(如心血管疾病、癌症、糖尿病、肥胖、骨质疏松和牙周炎)成因的了解,发现植物性膳食不仅能满足温饱,更重要的是为人体提供了必需营养素、防止营养缺乏造成的疾病[2]。因此,利用现代农业生物技术来提高植物维生素含量可以有效应对全球性维生素缺乏的问题,对人类的生存与健康具有重要意义。本文综述了近年来国内外植物中维生素代谢和生物强化的主要研究成果,并展望了利用分子设计育种来进行维生素生物强化的未来发展方向。

1 维生素的功能

维生素在各个物种中通常作为催化剂、辅酶或者辅酶的一部分参与酶学反应,此外人体中维生素C和E还具有抗氧化的作用、β-胡萝卜素与维生素D在动物血液中一起参与钙和磷的动态平衡[1]。除了维生素D和维生素B12之外,人类不能自身制造其他任何一种人体必需的维生素,但其原因只在少数维生素中被研究过。例如,人类由于L-古洛糖酸内酯氧化酶(L-gulonolactone oxidase, GULO)基因发生了严重突变,导致无法合成GULO酶,也就无法制造维生素C[3];人体中也缺乏有功能的二氢新蝶呤醛缩酶(dihydroneopterin aldolase, DHNA)、二氢蝶呤羟甲基焦磷酸激酶/二氢蝶呤合成酶(hydroxymethyldihydropterin pyrophosphokinase/dihydropteroate synthase, HPPK /DHPS)、分支酸合成酶(4-aminodeoxychorismate synthase, ADCS)、分支酸裂解酶(4-aminodeoxychorismate lyase, ADCL)和二氢叶酸合成酶(dihydrofolatesynthetase, DHFS)而导致必须从膳食中摄取叶酸[4]。因此科学家为了应对全球性维生素缺乏的问题,在植物维生素代谢领域开展了多方面的工作:一方面植物维生素代谢得到更多地阐释,关键酶基因不断地被克隆;另一方面人们利用获得的植物维生素的新知识,不断探讨如何将传统育种和分子育种结合以通过获得高品质的植物来源的天然维生素来有效应对全球性维生素缺乏的问题[2]。

目前已经对各类维生素在植物器官水平和亚细胞水平的贮存位置有了比较清楚的了解:β-胡萝卜素主要在叶片和胡萝卜的块茎中富集;α-胡萝卜素富集在果实和胡萝卜的块茎中;β-玉米黄质主要在果实、种子和花中富集;这些化合物都储存在有色质体中。B族维生素主要聚集在种子中,在细胞质、叶绿体和线粒体中都存在;种皮中维生素B1和维生素B3的含量尤其高。维生素C主要贮存在果实中,位于叶绿体、非原质体、细胞质和液泡中。维生素E主要在油料作物的种子中富集,位于叶绿体和脂质体中;所有绿色蔬菜和胡萝卜中都含有叶绿醌(维生素K1),其主要存在于叶绿体和质膜上[5]。同时研究发现植物维生素代谢网络具有一些共性:①多种维生素的合成有着共同的碳水化合物来源;②多种维生素的合成具有共同的中间产物;③维生素合成的关键反应中必需有其他维生素的参与;④氨基酸代谢与维生素代谢密切相关[5]。由于这种网络内代谢的复杂性,改变一条维生素代谢通路常常伴随着其他维生素代谢通路的协同反应,例如在土豆块茎中过表达玉米黄质环氧化酶会导致玉米黄素和生育酚的含量同时增加[6];拟南芥中过表达生育酚环化酶基因使δ-生育酚含量增加了几倍,而维生素C含量却减少了60%[7]。这种调控机制可能是由于代谢底物的利用效率改变,也可能是产物对酶学反应的反馈抑制,或维生素小分子与基因的mRNA直接发生的核开关调控,上述可能性都非常值得探讨。上述新知识的获得都为人们在植物中进行维生素强化打下了深厚的研究基础。

目前维生素生物强化常用4种策略:①增强限速步骤的酶活性;②过表达反应的第一步;③抑制代谢支路;④增加代谢物的储藏空间[8]。下面将逐步介绍植物中各类维生素生物强化的研究进展。

2 植物中维生素生物强化进展

2.1 维生素A

维生素A是类视黄酮的总称,蔬果中的维生素A原(类胡萝卜素)可以在人体内转化为维生素A。类胡萝卜素广泛存在于蔬果中,如橙子、西兰花、菠菜、胡萝卜、南瓜等;土豆、大麦和小麦中含量低;而在水稻和小米中很难被检测到。植物中的类胡萝卜素有4类:α-胡萝卜素、β-胡萝卜素、γ-胡萝卜素和β-核黄素[9]。目前作物中维生素A原的生物强化中的重大技术突破就是黄金大米(golden rice)。八氢番茄红素去饱和酶(phytoenedesaturase, Crt1/PSY)在植物体内的过表达可以使水稻中类胡萝卜素的含量明显提高[10,11]。其中第二代黄金稻米的类胡萝卜素含量高达37 μg/g,而且84%为β-胡萝卜素[11]。目前临床试验表明第二代黄金稻米中的β-胡萝卜素能有效地转化为视黄醇,是一种优良的维生素A原[12,13]。类似的策略在油菜籽、胡麻籽、土豆、番茄、玉米和大豆中都获得了成功[14~20]。最新的报道显示,使用基因枪技术将融合了来自豌豆的叶绿体定位信号和菠萝泛菌的八氢番茄红素合成酶基因crtB转化大豆时,其种子中的β-胡萝卜素提高了1 500倍[20]。

还有两种提高类胡萝卜素含量的方法:①抑制番茄红素环化酶(lycopene β-cyclase, LYCB)和β-胡萝卜素羟化酶(β-carotene hydroxylase,HYDB)基因的转录水平使得代谢流朝形成β-胡萝卜素的方向进行,这个策略在土豆、红薯和小麦中得到成功应用[21~24];②调节橙色(Or)基因的活性。Or基因在橙色果肉的红薯中负责类胡萝卜素的积累,而且Or蛋白与PSY蛋白物理互作,可以在翻译后水平上增加PSY蛋白的稳定性和活性[25]。这个策略在红薯、土豆、花菜和番茄中均获得成功应用[26~31]。

不过上述策略也有不足之处。例如在番茄中类胡萝卜素基因过表达时,种子中的核黄素、β-胡萝卜素和玉米黄质的含量有所增加,但伴随着赤霉素含量的减少,导致植株的矮化[19]。因此,代谢工程育种会由于人们对内源代谢调控和基因表达的时空差异的了解有限而受到限制[32]。利用全基因组关联分析(genome-wide association studies,GWAS)可以确认更多的天然等位变异,从而通过不同位点优异等位基因的聚合协助维生素A原的强化。

由于玉米的遗传多样性比较丰富,通过GWAS来明确调控类胡萝卜素含量积累的工作主要在玉米中开展。目前了解到PSY的转录水平与类胡萝卜素的含量正相关,而编码类胡萝卜素合成的基因、编码玉米黄质氧化酶基因与类胡萝卜素的含量呈负相关[32]。此外研究者还发现很多参与类胡萝卜素代谢基因的优良等位变异与控制β-胡萝卜素含量的数量性状遗传位点(quantitative trait loci,QTL)紧密关联[32~34]。这意味着如果通过天然变异找到合适的供体亲本可以加速维生素A原的生物强化。目前利用分子辅助育种技术已经分别了获得了富含β-胡萝卜素的大田玉米和富含玉米黄质的甜玉米[35,36]。

在水稻中的最新研究表明,在黄金大米2号的基础上的多基因策略可以使胚乳中总类胡萝卜素的含量提高6倍。这个策略中分别表达了2个不同的酶:①拟南芥来源的1-脱氧木酮糖-5-磷酸合酶(1-deoxy-D-xylulose-5-phosphate synthase,AtDXS),它在赤藓醇磷酸合成途径中可以生成类胡萝卜素的前体,说明类异戊二烯底物的增加可以导致最终产物的增加;②拟南芥来源的橙色基因(AtOr),这个基因的导入可以使胚乳中储藏类胡萝卜素的空间增大[37]。上述结果表明确认代谢途径的瓶颈可以精确调整生物强化的策略,从而提高作物中维生素A原的含量。

2.2 叶酸

叶酸是一种非常重要的水溶性B族维生素,包括四氢叶酸及其系列衍生物。它作为一碳单位的供体参与很多代谢反应。细菌、真菌和植物都可以合成叶酸,细菌和真菌都在细胞质中合成叶酸,而植物中的叶酸分别在细胞质、线粒体和质体中合成[38]。

研究者们在番茄、水稻、玉米、生菜、土豆和墨西哥豆中都进行过叶酸强化[17,39~43]。一般有两种策略:①过表达叶酸合成的限速酶DHFS,在玉米中过表达可以使叶酸含量提高2倍[17];②过表达叶酸合成支路的第一步反应酶。例如,过表达细胞质中的GTP环化酶(GTP cyclohydrolase I,GTPCHI)可以使番茄中的叶酸含量提高2倍、生菜中提高8.5倍、墨西哥豆中提高150倍[40~42]。与ADCS的转基因植株杂交,土豆中叶酸含量提高到原来的3倍、番茄提高到原来的25倍、水稻中提高到原来的100倍[39,40,47]。拟南芥来源的叶酰谷氨酸聚合酶和哺乳动物来源的叶酸结合蛋白在叶酸强化的水稻中过表达可以增加叶酸的储藏稳定性[44]。而且叶酸强化的番茄和水稻也被证实可以提高人们体内的叶酸含量[45,46]。上述结果说明对作物进行更有效的叶酸强化需要对植物的叶酸代谢途径进行更深入的研究[39]。

2.3 其他B族维生素

其他B族维生素包括维生素B1(硫胺素类化合物)、维生素B2(核黄素类化合物)、维生素B3(烟酸)、维生素B5(泛素)、维生素B6(吡哆醛、吡哆醇、吡哆胺及其磷酸化的衍生物)、维生素B7(生物素)和维生素B12(钴胺素)。到目前为止,已有研究只在拟南芥中进行过维生素B1和维生素B6的表达[47~50]。在维生素B1途径中磷酸甲基嘧啶合成酶(phosphomethylpyrimidine synthase,THIC)过表达后可以使硫胺素类化合物的含量有一些提高[47],但这种维生素B1的动态平衡能否在作物中实现还很难确定[48]。维生素B6是一大组水溶性的同效维生素,其中磷酸吡哆醛是超过140个细胞内酶学反应的辅酶,是主要的有效形式[49]。近年来有几个研究小组在拟南芥中过表达了吡哆醛磷酸合成酶(pyridoxal phosphate synthase,PDX)基因,但效果还不明显[50]。上述结果说明人们需要对B族维生素在植物体内的调控机制进行更深入的研究,才能进一步明确其在植物中的生物强化策略。

2.4 维生素C

维生素C又名抗坏血酸,在植物中主要有多条途径来生成维生素C,其中葡萄糖-6-磷酸是Smirnoff-Wheeler途径的底物、半乳糖醛酸是果胶降解途径的底物、肌醇是类动物途径的底物[51]。目前对植物维生素C含量的改良策略有3种:①提高合成途径关键酶基因的表达水平;②促进维生素C的再生循环,提高还原抗坏血酸和脱氢抗坏血酸的比例;③利用转录因子整体强化维生素C的代谢途径。利用维生素C合成途径和再循环利用途径的关键基因在番茄、土豆、玉米和草莓中都已经进行过维生素C的生物强化[17,52,58]。其中使用过的基因分别编码GDP-甘露糖焦磷酸化酶(GDP-mannose pyrophosphorylase,GMPase)、阿拉伯糖内酯氧化酶(arabinono-1,4-lactone oxidase,ALO)、肌醇加氧酶2(myo-inositol oxygenase 2,MIOX2)、GDP-甘露糖差相异构酶(GDP-mannose epimerase,GME)、半乳糖醛酸还原酶(galacturonatereductase,GaIUR)、L-古洛糖酸内酯氧化酶(L-gulono-1,4-γ-lactone oxidase,GuLO)和GDP-L-半乳糖磷酸化酶(galactosephosphorylase,GGP)[52,54,56,57,59,60]。其中目前发现的能使维生素C含量提高的最有效的方法是GGP的过表达,该方法能使猕猴桃的维生素C含量提高4倍,如果GGP和GME在烟草中共表达,其叶片的维生素C含量可以提高12倍[59]。在第2个策略的应用中,降低单脱氢抗坏血酸还原酶(monodehydroascorbatereductase,MDHAR)的转录水平可以使番茄中的抗坏血酸含量增加[55];在玉米和土豆中过表达脱氢抗坏血酸还原酶(dehydroascorbatereductase,DHAR)可以使植物的叶片、籽粒和块茎中的抗坏血酸含量明显增加[17,53,58]。在第3个策略的应用中发现过表达拟南芥中转录因子AtERF98可以使甘露糖/半乳糖途径中的许多关键基因和肌醇合成途径的MIOX4转录水平升高进而导致抗坏血酸含量的增加[60]。但主要粮食作物中维生素C的生物强化鲜见报道。

2.5 维生素E

维生素E对人类的膳食和健康都非常重要,外源的维生素E通过肝脏吸收[61]。植物是人类维生素E摄入的主要来源。维生素E包括生育酚和生育三烯酸,其中生育三烯酸是大多数单子叶植物和一部分双子叶植物维生素E的主要形式[62]。在各类维生素E化合物中,α-生育酚可以被人类的α-生育酚转运蛋白协助,因此维生素E的生物强化主要指提高总的含量和α-生育酚所占比例[61]。

维生素E生物强化的目标是提高维生素E的总量和改变维生素E各组分的比例,并将其他种类的生育酚类物质转化为活性最高的α-生育酚。维生素E生物强化主要利用单基因或多基因来进行。在油菜、烟草、生菜、番茄、大麦、水稻、大豆和玉米中都已经进行过维生素E的生物强化,其中使用过的基因分别编码生育酚环化酶(tocopherolcyclase,TC)、羟苯丙酮酸双加氧酶(hydroxyphenylpyruvic acid dioxygenase,HPPD)、尿黑酸植基转移酶(homogentisate phytyltransferase, HPT)、2-甲苯-6-叶绿基-1,4-苯醌甲基转移酶(2-methyl-6-phytyl-1,4-benzoquinol methyltransferase,MPBQ-MT)、尿黑酸牛儿基牻牛儿基转移酶(homogentisic acid geranylgeranyltransferase,HGGT)和γ-生育酚甲基转移酶(γ-tocopherol methyltransferase,γ-TMT)[62~70]。其中,最成功的转单基因应用是花椰菜35S启动子驱动的γ-TMT在植物中的过表达,植物种子中的α-生育酚的比例都得到了显著提高,例如油菜中增加了6倍、轮叶党参中增加了6.4倍、生菜中增加了2倍、紫苏中增加了1.8倍、大豆中增加了4倍,拟南芥中增加了80倍[72~77]。

同时过表达多个基因可以使维生素E的含量得到显著提高,并且增加了α-生育酚的比例[70,78~80]。油菜中同时过表达HPT和γ-TMT可以使维生素E的活性提高12倍,且几乎所有γ-和δ-生育酚都转化为α-生育酚和β-生育酚[78,79]。MT(VTE3)可以使大豆中的生育三烯酸比例由20%降低到2%,当与γ-TMT结合在一起过表达时,种子聚集的α-生育酚占比高达95%,α-生育酚的含量增加了至少8倍,种子维生素E的活性增加了最高5倍[70,80]。酵母中的tyrA(编码HPT)、拟南芥HPPD和HPT在大豆中过表达时,尿黑酸和生育酚在种子中的含量分别增加了800倍和15倍,维生素E的活性相对野生型增加了11倍[65];烟草中使用同样的策略时叶片总维生素E含量提高了约10倍[81]。不过在玉米中过表达拟南芥HPPD和MT后籽粒中只有γ-生育酚的含量增加了3倍,其他形式的维生素E都没有被检测到[82];而土豆中使用过表达拟南芥的HPPD或HPT都无法使生育酚的比例发生任何变化[83]。在玉米中通过GWAS方法确认了MT和γ-TMT的多个优良等位位点与维生素E的含量密切相关[84,85]。这些结果说明如果对植物的维生素E代谢调控有进一步了解,可以确定更多适用于生物强化的候选基因。

3 展望

联合国粮农组织(Food and Agriculture Organization of the United Nations,FAO)倡导,发展以食物为基础的营养型农业以减少人体微量营养素缺乏的状况。人们应按自己喜好通过丰富膳食种类、改变生活方式和增加运动来提高微量营养素的摄入[86]。膳食中过量添加的人工叶酸能影响人类DNA甲基化水平,与结肠癌和前列腺癌的患病率有一定的相关性[87,88]。因此,培育富含维生素的作物新品种具有非常广泛的应用前景。

有报道显示,发达国家(德国、英国、芬兰和美国)人群维生素摄入水平仍低于推荐水平,说明尽管有丰富的食品可供选择,人体对维生素的需求和实际摄入量之间仍存在明显差距[89]。目前很多生物强化的食物不需要蒸煮就可以被人们食用, 维生素生物强化的粮食作物可以对人体营养和健康产生积极影响[90]。不过到目前为止,还没有更好的可用于维生素B1、维生素B6和维生素C的技术策略。如果未来能将遗传网络、生化功能和分子机理有机地结合在一起,并借助同位素标记的代谢组学、代谢产物与大分子的互作和代谢产物与小分子互作等技术手段来进一步理解植物维生素代谢调控的过程,则未来的植物维生素生物强化将会有更加广阔的前景。

由于维生素是人体的必需微量营养元素,未来针对植物的维生素生物强化可以考虑针对人体的个性化需求来培育生物强化作物:①通过全基因组测序将建立作物的营养单倍型,进一步了解性状形成的遗传机制; ②通过大数据的挖掘确认与营养相关的表型,结合代谢组和GWAS明确作物的优良等位变异; ③通过代谢组学技术明确维生素代谢的中间产物和反应的限速步骤; ④明确设计特定的转基因策略和途径。最终,维生素强化的作物将能够满足人们对营养的个性化需求,在提高人类健康水平方面做出重要贡献。

[1] Fitzpatrick T B, Basset G J C, Borel P,etal.. Vitamin deficiencies in humans: Can plant science help [J]? Plant Cell, 2012, 24: 395-414.

[2] Betoret E, Betoret N, Vidal, D,etal.. Functional foods development: Trends and technologies [J]. Trends Food Sci. Technol., 2011, 22: 498-508.

[3] Yan J, Jiao Y, Li X,etal.. Evaluation of gene expression profiling in a mouse model of L-gulonolactone oxidase gene deficiency [J]. Genet. Mol. Biol., 2007, 30: 322-329.

[4] Hanson A, Gregory III J F. Folate biosynthesis, turnover, and transport in plants [J]. Annu. Rev. Plant Biol., 2011, 62: 105-125.

[5] Asensi-Fabado M A, Munné-Bosch S. Vitamins in plants: occurrence, biosynthesis and antioxidant function [J]. Trends Plant Sci., 2010, 15: 582-592.

[6] Römer S, Lübeck J, Kauder F,etal.. Genetic engineering of a zeaxanthin-rich potato by antisense inactivation and co-suppression of carotenoid epoxidation [J]. Metab. Eng., 2002, 4: 263-272.

[7] Kanwischer M, Porfirova S, Bergmüller E,etal.. Alterations in tocopherolcyclase activity in transgenic and mutant plants ofArabidopsisaffect tocopherol content, tocopherol composition, and oxidative stress [J]. Plant Physiol., 2005, 137: 713-723.

[8] Zhu C, Sanahuja G, Yuan D,etal.. Biofortication of plants with altered antioxidant contentand composition: genetic engineering strategies [J]. Plant Biotechnol. J., 2013, 11: 129-141.

[9] Bai C, Twyman R M, Farre G,etal.. A golden era-pro-vitamin A enhancement in diverse crops [J]. Vitro Cell. Dev. Biol. Plant., 2011, 47: 205-221.

[10] Ye X, Al-Babili S, Kloti A,etal.. Engineering the provitamin A (b-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm [J]. Science, 2000, 287: 303-305.

[11] Paine J A, Shipton C A, Chaggar S,etal.. Improving the nutritional value of golden rice through increased pro-vitamin A content [J]. Nat. Biotechnol., 2005, 23: 482-487.

[12] Tang G, Qin J, Dolnikowski G G. Golden Rice is an effective source of vitamin A[J]. Am. J. Clin. Nutr., 2009, 89: 1776-1783.

[13] Tang G, Hu Y, Yin S A,etal.. β-Carotene in Golden Rice is as good as β-carotene in oil at providing vitamin A to children [J]. Am. J. Clin. Nutr., 2012, 96: 658-664.

[14] Apel W, Bock R.Enhancementof carotenoid biosynthesis in transplastomic tomatoes by induced lycopene-to-provitamin A [J]. Plant Physiol., 2009, 151: 59-66.

[15] Ducreux L J, Morris W L, Hedley P E,etal.. Metabolic engineering of high carotenoid potato tubers containing enhanced levels of β-carotene and lutein [J]. J. Exp. Bot., 2005, 56: 81-89.

[16] Fujisawa M, Watanabe M, Choi S K,etal.. Enrichment of carotenoids in flaxseeds by metabolic engineering with introduction of bacterial phytoene synthase genecrtB[J]. J. Biosci. Bioeng., 2008, 105: 636-641.

[17] Naqvi S, Zhu C, Farre G,etal.. Transgenic multivitamin corn through biofortification of endosperm with three vitamins representing three distinct metabolic pathways [J]. Proc. Natl. Acad. Sci. USA, 2009, 106: 27762-7767.

[18] Ravanello M P, Ke D, Alvarez J,etal.. Coordinated expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production [J]. Metabolic. Eng., 2003, 5: 255-263.

[19] Rosati C, Aquilani R, Dharmapuri S,etal.. Metabolic engineering of beta-carotene and lycopene content in tomato fruit [J]. Plant J., 2000, 24: 413-420.

[20] Schmidt M A, Parrott W A, Hildebrand D F,etal.. Transgenic soya bean seeds accumulating β-carotene exhibit the collateral enhancements of oleate and protein content traits [J]. Plant Biotechnol. J., 2015, 13: 590-600.

[21] Diretto G, Welsch R, Tavazza R,etal.. Silencing of beta-carotene hydroxylase increases total carotenoid and beta-carotene levels in potato tubers [J]. BMC Plant Biol., 2007, 7: 11.

[22] Van Eck J, Conlin B, Garvin D,etal.. Enhancing beta-carotene content in potato by RNAi-mediated silencing of the betacaroteneh ydroxylase gene [J]. Am. J. Potato Res., 2007, 84: 331-342.

[23] Kim S H, Ahn Y O, Ahn M J,etal.. Down-regulation of b-carotene hydroxylase increases β-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato [J]. Phytochemistry, 2012, 74: 69-78.

[24] Zeng J, Wang X, Miao Y,etal.. Metabolic engineering of wheat provitamin A by simultaneously overexpressing CrtB and silencing carotenoid hydroxylase (TaHYD) [J]. J. Agric. Food Chem., 2015, 63: 9083-9092.

[25] Zhou X, Welsch R, Yang Y,etal..ArabidopsisOr proteins are the major posttranscriptional regulators of phytoene synthase in controlling carotenoid biosynthesis [J]. Proc. Natl. Acad. Sci. USA, 2015, 112: 3558- 3563.

[26] Bai C, Rivera S M, Medina V,etal.. An in vitro system for the rapid functional characterization of genes involved in carotenoid biosynthesis and accumulation [J]. Plant J., 2014, 77: 464-475.

[27] Goo Y M, Han E H, Jeong J C,etal.. Overexpression of the sweet potatoIbOrgene results in the increased accumulation of carotenoid and confers tolerance to environmental stresses in transgenic potato [J]. Comptes.Rendus.Biologies., 2015, 338: 12-20.

[28] Kim S H, Ahn Y O, Ahn M J,etal.. Cloning and characterization of an orange gene that increases carotenoid accumulation and salt stress tolerance in transgenic sweetpotato cultures [J]. Plant Physiol. Biochem., 2014, 70: 445-454.

[29] Li L, Yang Y, Xu Q,etal.. TheOrgene enhances carotenoid accumulation and stability during post-harvest storage of potato tubers [J]. Mol. Plant, 2012, 5: 339-352.

[30] Lopez A B, Van Eck J, Conlin B J,etal.. Effect of the cauliflowerOrtransgene on carotenoid accumulation and chloroplast formation in transgenic potato tubers [J]. J. Exp. Bot., 2008, 59: 213-223.

[31] Lu S, Van Eck J, Zhou X,etal.. The cauliflower Or gene encodes a DnaJ cysteine-rich domain-containing protein that mediates high levels of β-carotene accumulation [J]. Plant Cell, 2006, 18: 3594-3605.

[32] Vallabhaneni R, Wurtzel E T. Timing and biosynthetic potential for carotenoid accumulation in genetically diverse germplasm f maize [J]. Plant Physiol.,2009, 150: 562-572.

[33] Suwarno W B, Pixley K V, Palacios-Rojas N,etal.. Genome-wide association analysis reveals new targets for carotenoid biofortification in maize [J]. Theor. Appl. Genet., 2015, 128: 851-864.

[34] Yan J, Kandianis C B, Harjes C E,etal.. Rare genetic variation atZeamayscrtRB1 increases β-carotene in maize grain [J]. Nat. Genet., 2010, 42: 322-551.

[35] Muthusamy V, Hossain F, Thirunavukkarasu N,etal.. Development of β-carotene rich maize hybrids through marker-assisted introgression of β-carotene hydroxylase allele [J]. PLoS ONE, 2014, 9: e113583.

[36] O’Hare T J, Fanning K J, Martin I F. Zeaxanthinbio-fortification of sweet-corn and factors affecting zeaxanthin accumulation and colour change [J]. Arch. Biochem. Biophys., 2015, 572: 184-187.

[37] Bai C, Capell T, Berman J,etal.. Bottlenecks in carotenoid biosynthesis and accumulation in rice endosperm are influenced by the precursor- product balance [J]. Plant Biotechnol. J., 2016, 14: 195-205.

[38] Blancquaert D, Storozhenko S, Loizeau K,etal.. Folates and folic acid: from fundamental research toward sustainable health [J]. Crit. Rev. Plant Sci., 2010, 29: 14-35.

[39] Blancquaert D, Storozhenko S, Van Daele J,etal.. Enhancing pterin and para-aminobenzoate content is not sufficient to successfully biofortify potato tubers andArabidopsisthalianaplants with folate [J]. J. Exp. Bot., 2013, 64: 3899-3909.

[40] Díaz de la Garza R D, Gregory III J F, Hanson A D. Folate biofortification of tomato fruit [J]. Proc. Natl. Acad. Sci. USA, 2007, 104: 4218-4222.

[41] Nunes A C, Kalkmann D C, Aragao F J. Folate biofortification of lettuce by expression of a codon optimized chicken GTP cyclohydrolase I gene [J]. Transgenic Res., 2009, 18: 661-667.

[42] Rivera N G R, García-Salinas C, Aragão F J L,etal.. Metabolic engineering of folate and its precursors in Mexican common bean (PhaseolusvulgarisL.) [J]. Plant Biotechnol. J., 2016, doi: 10.1111/pbi.12561.

[43] Storozhenko S, De Brouwer V, Volckaert M,etal.. Folate fortification of rice by metabolic engineering [J]. Nat. Biotechnol., 2007, 25: 1277-1279.

[44] Blancquaert D, Van Daele J, Strobbe S,etal.. Improving folate (vitamin B9) stability in biofortified rice through metabolic engineering [J]. Nat. Biotechnol., 2015, 33: 1076.

[45] Castorena-Torres F, Ramos-Parra P A, Hernández-Méndez R V,etal.. Natural folates from biofortified tomato and synthetic 5-methyl-tetrahydrofolate display equivalent bioavailability in a murine model [J]. Plant Foods Hum.Nutr., 2014, 69: 57-64.

[46] Kiekens F, Blancquaert D, Devisscher L,etal.. Folates from metabolically engineered rice: a long-term study in rats [J]. Mol. Nutr. Food Res., 2015, 59: 490-500.

[47] Bocobza S E, Malitsky S, Araujo W L,etal.. Orchestration of thiamin biosynthesis and central metabolism by combined action of the thiamin pyrophosphate riboswitch and the circadian clock inArabidopsis[J]. Plant Cell, 2013, 25: 288-307.

[48] Pourcel L, Moulin M, Fitzpatrick T B. Examining strategies to facilitate vitamin B1 biofortification of plants by genetic engineering [J]. Front. Plant Sci., 2013, 4: 1-8.

[49] Vanderschuren H, Boycheva S, Li K T,etal.. Strategies for vitamin B6 biofortification of plants: a dual role as a micronutrient and a stress protectant [J]. Front. Plant Sci., 2013, 4: 1-7.

[50] Leuendorf J E, Osorio S, Szewczyk A,etal.. Complex assembly and metabolic profiling ofArabidopsisthalianaplants overexpressing vitamin B6 biosynthesis proteins [J]. Mol. Plant, 2010, 3: 890-903.

[51] Locato V, Cimini S, De Gara L. Strategies to increase vitamin C in plants: from plant defense perspective to food biofortification [J]. Front. Plant Sci., 2013, 4: 1-12.

[52] Bulley S, Wright M, Rommens C,etal.. Enhancing ascorbate in fruits and tubers through overexpression of the l-galactose pathway gene GDP-l-galactosephosphorylase [J]. Plant Biotechnol. J., 2012, 10: 390-397.

[53] Chen Z, Young T, Ling J,etal.. Increasing vitamin C content of plants through enhanced ascorbate recycling [J]. Proc. Natl. Acad. Sci. USA, 2003, 100: 3525-3530.

[54] Cronje C, George G M, Fernie A R,etal.. Manipulation of L-ascorbicacid biosynthesis pathways inSolanumlycopersicum: elevated GDP-mannosepyrophosphorylase activity enhances L-ascorbate levels in red fruit [J]. Planta, 2012, 235: 553-564.

[55] Gest N, Garchery C, Gautier H,etal.. Light-dependent regulation of ascorbate in tomato by a monodehydroascorbate reductase localized in peroxisomes and the cytosol [J]. Plant Biotechnol. J., 2012, 11: 344-354.

[56] Hemavathi A, Upadhyaya C P, Ko E Y,etal.. Overexpression of strawberry D-galacturonicacid reductase in potato leads to accumulation of vitamin C with enhanced abiotic stress tolerance [J]. Plant Sci., 2009, 177: 659-667.

[57] Jain A, Nessler C. Metabolic engineering of an alternative pathway for ascorbic acid biosynthesis in plants [J]. Mol. Breed., 2000, 6: 73-78.

[58] Qin A, Shi Q, Yu X. Ascorbic acid contents in transgenic potato plants overexpressing two dehydroascorbate reductase genes [J]. Mol. Biol. Rep., 2011, 38: 1557-1566.

[59] Bulley S M, Rassam M, Hoser D,etal.. Gene expression studies in kiwifruit and gene over-expression inArabidopsisindicates that GDP-L-galactoseguanyltransferase is a major control point of vitamin C biosynthesis [J]. J. Exp. Bot., 2009, 60: 765-778.

[60] Zhang C, Liu J, Zhang Y,etal.. Overexpression of SlGMEs leads to ascorbate accumulation with enhanced oxidative stress, cold, and salt tolerance in tomato [J]. Plant Cell Rep., 2011, 30: 389-398.

[61] Traber M G. Vitamin E regulatory mechanisms [J]. Ann. Rev. Nutr., 2007, 27: 347-362.

[62] Cahoon E B, Hall S E, Ripp K G,etal.. Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content [J]. Nat. Biotechnol., 2003, 21: 1082-1087.

[63] Falk J, Brosch M, Schafer A,etal.. Characterization of transplastomic tobacco plants with a plastid localized barley 4-hydroxyphenylpyruvate dioxygenase [J]. J. Plant Physiol., 2005, 162: 738-742.

[64] Farre G, Sudhakar D, Naqvi S,etal.. Transgenic rice grains expressing a heterologous q-hydroxyphenylpyruvate dioxygenase shift tocopherol synthesis from the c to the a isoform without increasing absolute tocopherol levels [J]. Transgenic Res., 2012, 21: 1093-1097.

[65] Karunanandaa B, Qi Q, Hao M,etal.. Metabolically engineered oilseed crops with enhanced seed tocopherol [J]. Metab. Eng., 2005, 7: 384-400.

[66] Kumar R, Raclaru M, Schusseler T,etal.. Characterisation of plant tocopherol cyclases and their overexpression in transgenicBrassicanapusseeds [J]. FEBS Lett., 2005, 579: 1357-1364.

[67] Lee B K, Kim S L, Kim K H,etal.. Seed specific expression of perilla γ-tocopherol methyltransferase gene increases α-tocopherol content in transgenic perilla (Perillafrutescens) [J]. Plant Cell Tiss. Organ. Cult., 2008, 92: 47-54.

[68] Seo Y S, Kim S J, Harn C H,etal.. Ectopic expression of apple fruit homogentisate phytyltransferase gene (MdHPT1) increases tocopherol in transgenic tomato (Solanumlycopersicumcv. Micro-Tom) leaves and fruits [J]. Phytochemistry, 2011, 72: 321-329.

[69] Tang Y, Fu X, Shen Q,etal.. Roles of MPBQ-MT in promoting α/γ-tocopherol production and photosynthesis under high light in lettuce [J]. PLoS ONE, 2016, 11(2): e0148490.

[70] Van Eenennaam A L, Lincoln K, Durrett T P,etal.. Engineering vitamin E content: fromArabidopsismutant to soy oil [J]. Plant Cell, 2003, 15: 3007-3019.

[71] Yabuta Y, Tanaka H, Yoshimura S,etal.. Improvement of vitamin E quality and quantity in tobacco and lettuce by chloroplast genetic engineering [J]. Transgenic Res, 2013, 22: 391-402.

[72] Cho E A, Lee C A, Kim Y S,etal.. Expression of gamma-tocopherol methyltransferase transgene improves tocopherol composition in lettuce (LatucasativaL.) [J]. Mol. Cells, 2005, 19: 16-22.

[73] Ghimire B K, Seong E S, Goh E J,etal.. Improving antioxidant activity in transgenicCodonopsislanceolataplants via overexpression of the c-tocopherol methyltransferase (γ-TMT) gene [J]. Plant Growth Regul., 2011, 63: 1-6.

[74] Ghimire B K, Seong E S, Lee C O,etal.. Enhancement of γ-tocopherol content in transgenicPerillafrutescenscontaining the γ-TMT gene [J]. African J. Biotechnol., 2011, 10: 2430-2439.

[75] Kim Y J, Seo H Y, Park T,etal.. Enhanced biosynthesis of α-tocopherol in transgenic soybean by introducing γ-TMT gene [J]. J. Plant Biotechnol., 2005, 7: 1-7.

[76] Tavva V S, Kim Y H, Kagan I A,etal.. Increased α-tocopherol content in soybean seed overexpressing thePerillafrutescensγ-tocopherol methyltransferase gene [J]. Plant Cell Rep., 2007, 26: 61-70.

[77] Yusuf M A, Sarin N B. Antioxidant value addition in human diets: genetic transformation ofBrassicajunceawith gamma-TMT gene for increased alpha-tocopherol content [J]. Transgenic Res., 2007, 16: 109-113.

[78] Collakova E, DellaPenna D. Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis inArabidopsis[J]. Plant Physiol., 2003, 131: 632-642.

[79] Collakova E, DellaPenna D. The role of homogentisate phytyltransferase and other tocopherol pathway enzymes in regulation of tocopherol biosynthesis during abiotic stress [J]. Plant Physiol., 2003, 133: 930-940.

[80] Sattler S E, Cheng Z, Della P D. FromArabidopsisto agriculture: engineering improved vitamin E content in soybean [J]. Trends Plant Sci., 2004, 9: 365-367.

[81] Rippert P, Scimemi C, Dubald M,etal.. Engineering plant shikimate pathway for production of tocotrienol and improving herbicide resistance [J]. Plant Physiol., 2004, 134: 92-100.

[82] Naqvi S, Farre G, Zhu C,etal.. Simultaneous expression ofArabidopsisq-hydroxyphenylpyruvate dioxygenase and MPBQ methyltransferase in transgenic corn kernels triples the tocopherol content [J]. Transgenic Res., 2011, 20: 177-181.

[83] Crowell E F, McGrath J M, Douches D S. Accumulation of vitamin E in potato (Solanumtuberosum) tubers [J]. Transgenic Res. 2008, 17: 205-217.

[84] Lipka A E, Gore M A, Magallanes-Lundback M,etal.. Genome-wide association study and pathway-level analysis of tocochromanol levels in maize grain [J]. G3 (Bethesda), 2013, 3: 1287-1299.

[85] Quadrana L, Almeida J, Asís R,etal.. Natural occurring epialleles determine vitamin accumulation in tomato fruits [J]. Nat. Commun., 2014, 5: 3027.

[86] Food and Agriculture Organization of the United Nations and World Health Organization. Food and nutrition in numbers: Report of a joint FAO/WHO expert consultation [R]. FAO,2014.

[87] Badiga S, Johanning G L, Macaluso M,etal.. A lower degree of PBMC L1 methylation in women with lower folate status may explain the MTHFR C677T polymorphism associated higher risk of CIN in the US post folic acid fortification era [J]. PLoS ONE, 2014, 9: e110093.

[88] Bae S, Ulrich C M, Bailey L B,etal.. Impact of folic acid fortification on global DNA methylation and one-carbon biomarkers in the women’s health Initiative observational study cohort [J]. Epigenetics, 2014, 9: 396-403.

[89] Troesch B, Hoeft B, McBurney M,etal.. Dietary surveys indicate vitamin intakes below recommendations are common in representative Western countries [J]. British J. Nutri., 2012, 108: 692-698.

[90] De Moura F F, Palmer A C, Finkelstein J L,etal.. Are biofortified staple food crops improving vitamin A and iron status in women and children [J]? New Evidence Efficacy Trials. Adv. Nutr., 2014, 5: 568-570.

Progress on Vitamins Fortification in Plants

JIANG Ling, ZHANG Chun-yi*

BiotechnologyResearchInstitute,ChineseAcademyofAgriculturalSciences,Beijing100081,China

Vitamins are vital nutrients that plants and animals require in limited amounts, including A, B1, B2, B3, B5, B6, B7, B9, B12, C, D, E and K. Human cannot synthesize the compounds in sufficient quantities, and they must be obtained from the diet, especially from plant foods. Vitamin deficiency is still prevalent in large population across the world, and closely associated with increasing risks of diseases. Scientists have made great efforts on the enhancement of vitamins in plants through biofortification to tackle this global problem. This review summarized the progress of vitamin metabolism and fortification in plants, and sheds light on the trends in breeding by molecular design for vitamin-enriched crops.

vitamin; metabolism; plant; biofortification

2016-09-18; 接受日期:2016-10-19

国家973计划项目(2013CB127003)资助。

姜凌,副研究员,主要从事植物生物强化研究。E-mail:jiangling@caas.cn。*通信作者:张春义,研究员,博士生导师,主要从事植物生物强化研究。E-mail:zhangchunyi@caas.cn

10.3969/j.issn.2095-2341.2016.06.01

猜你喜欢

胡萝卜素拟南芥叶酸
拟南芥:活得粗糙,才让我有了上太空的资格
准备怀孕前3个月还不补叶酸就晚了
正在备孕的你,叶酸补对了吗
准备怀孕前3个月还不补叶酸就晚了
尿黑酸对拟南芥酪氨酸降解缺陷突变体sscd1的影响
两种LED光源作为拟南芥生长光源的应用探究
用猕猴桃补叶酸?未必适合你
拟南芥干旱敏感突变体筛选及其干旱胁迫响应机制探究
β-胡萝卜素微乳液的体外抗氧化性初探
RP-HPLC法测定螺旋藻中β-胡萝卜素的含量