基于ANSYS的受拉杆件数值实验研究★
2016-04-08王磊薛娜
王 磊 薛 娜
(河南城建学院土木工程学院,河南 平顶山 467000)
·机械与设备·
基于ANSYS的受拉杆件数值实验研究★
王 磊 薛 娜
(河南城建学院土木工程学院,河南 平顶山467000)
摘要:运用有限元ANSYS软件建立了与实验试件类似的数值模型,模拟分析了杆件在单轴拉伸破坏过程中力学性能的变化规律,模拟结果表明:受拉杆件由于重力的作用及截面参数的不同,其最先受到破坏的部位及受应力集中影响的程度各有不同。
关键词:ANSYS,数值模型,力学性能,应力
0引言
拉杆是工业建筑、机械产业中常用的金属构件,具有工艺简洁,高速快节拍的工业化生产模式和强度高,作业范围广,便于施工的应用特点。拉杆应用的不断深入有利于实现工业产品的通用化、生产流程的标准化,在建筑施工行业中有利于节约用材,同时促进建筑材料的轻质化、环保化。因此,研究拉杆的截面形式、模具外形、材料力学参数是充分发挥材料机械性能和钢材断面性能的必要前提。本文主要研究了低碳钢的拉伸实验及数值模拟,并通过ANSYS有限元软件对工程中常用拉杆的可靠性进行数值比较。
1低碳钢拉伸实验
低碳钢拉伸实验是按目前GB/T 228—2002金属材料室温拉伸实验方法的规定,试件为圆形截面,截面半径为5 mm,轴长为100 mm,并在UTM5305电子万能试验机上进行试验,加载速率设置为15 mm/min 。实验结果如图1所示。
2ANSYS数值实验
2.1有限元模型及相关参数
考虑到此拉伸实验发生在理想状态下,简化实验模型如图2所示。试件模型的创建采用Solid95单元,且网格的划分方式采用映射。材料的物理参数是在拉伸实验所得数据的基础上进行调试,如表1所示。设置材料的本构关系时,考虑到实际材料应力—应变曲线的复杂性,且材料受实验温度、应变速率等外部因素和颗粒位错密度、颗粒分布方向等内部因素的影响较大,逐步提取材料应力—应变曲线图中的关键点作为计算的依据。关键点的拟合曲线图如图3所示。本模拟实验只计算到材料出现颈缩现象的初级阶段,故该阶段材料的伸长率不足19%。所以在材料的一端施加轴向位移荷载17 mm,同时约束另一端的位移,此处重力忽略不计。ANSYS求解参数设置为60个子步,保证子位移不大于单元长度的1/10。
2.2数值计算结果
在ANSYS后处理板块,查看模型应力云图和节点应力,图4为材料在颈缩状态时轴向应力的分布。图5为同一轴线上的节点应力值,可以观察出材料中间部分应力最大,并且应力值向两端逐渐减少。最外端出现应力的无序化可以依据圣维南提出的局部影响原理做出解释。图中A节点出现应力下跌表明材料已经进入颈缩状态。提取材料受拉破坏区域的节点应力及应变如图5所示,图6为84节点在受拉过程中的应力—应变曲线,可以看出材料的抗拉强度为400 MPa,为了验证材料在拉伸破坏过程中同截面正应力的同等性,提取坐标值Z1=36,Z2=48,Z3=60截面上节点的正应力,统计结果如图7所示,同一截面应力值都在一条直线上,表明同截面各节点正应力值相同,验证了数值模拟的正确性。
3常用拉杆的力学特性比较
3.1受拉杆件在弹性阶段的强度计算
对于体积小、截面形式单一的钢材,在弹性范围内往往只计算轴力对材料的影响。
σ=N/A
(1)
其中,N为轴向拉力;A为截面面积。
但对于截面形式复杂的材料,如图8,图9所示,就得考虑自重及附加弯矩的影响。在重力影响下,文献指出弹性阶段拉杆的挠度很大,轴力的延长线并不通过支点,由此产生的弯矩会与自重产生的弯矩叠加,最终截面上的最大弯矩会减小,其近似值为:
(2)
其中,q为自重产生的均布荷载;l为拉杆的总长度;F为外部荷载;E为材料的弹性模量;Ix为对x轴的惯性矩。
文献则认为弹性阶段材料受拉弯曲所产生的弯矩并不能通过叠加的方式计算,轴力与弯矩之间的关系是非线性的,并给出了推论公式:
(3)
其中,y为距端点为x处的截面竖向位移。
(4)
其中,c1,c2均为常系数。
由式(3),式(4)得:
(5)
而附加弯矩的产生是由于截面形式的不规则导致截面上的荷载作用点不能与截面形心重合。如图10所示,由材料力学知截面上的附加弯矩为:
M2=∑Mx+∑My=∫AyσdA+∫AxσdA
(6)
其中应力σ在弹性阶段满足胡克定律:
σ=Eε
(7)
所以在同一截面最大弯矩为:
M=M1±M2
(8)
通过上述不同的计算方法考虑受拉材料的界面弯矩,最终整理受拉材料在弹性阶段的应力表达式如下:
(9)
3.2受拉型钢在塑性状态下的应力表现
考虑到杆件拉伸进入塑性状态时其稳定性急剧下降,且各部分物理参数不断发生突变。所以这里采用有限元软件进行数值分析。有限元模型依据图7,图8建立,模型采用Shell181单元,模型的力学参数及求解参数均依据文章中低碳钢拉伸模拟的参数进行调试。约束方式如图8所示,重力方向与z—x平面垂直且向下。
文章编号:1009-6825(2016)14-0198-03
收稿日期:2016-03-09★:河南省高等学校重点科研项目(项目编号:15A560003)
作者简介:王磊(1993- ),男,在读本科生;薛娜(1981- ),女,讲师
中图分类号:TU311.41
文献标识码:A