数据库技术在大数据中的应用
2016-04-07孙银博
孙银博
摘要:随着互联网的高速发展,用户数量和数据规模急剧扩张,单一的数据库服务已无法满足当前应用的需求。在云计算技术日趋成熟的背景下,将数据库集群技术应用于大数据中,可以提高了系统可靠性和处理效率,用户能同时得到更高的处理速度和更高的数据可用性。该文结合大数据的应用特征,对大数据环境下的数据库集群技术进行分析总结。
关键词:大数据;分布集群;高可用;高可靠
中图分类号:TP391 文献标识码:A 文章编号:1009-3044(2016)03-0019-02
1 概述
当前,互联网的发展已经进入到一个全新阶段,互联网的应用已经深入到人们的日常生活中,尤其是移动互联网技术的发展和运用已经日益成熟,传统企业都已经开始自觉地运用移动互联网技术和概念拓展新业务和方向[1]。在此背景下,大数据技术应运而生,针对大数据这一新兴概念,麦肯锡全球研究所曾给出这样的定义:一种规模大到在获取、存储、管理、分析方面大大超出了传统数据库软件工具能力范围的数据集合,具有海量的数据规模、快速的数据流转、多样的数据类型和价值密度低四大特征。
2 分布集群数据库
组成分布集群数据库系统的每台计算机可单独放在一个地方,其中每台计算机都可能保存一份数据库的完整拷贝副本,或者是部分副本,每台计算机单元具有自己局部的数据库,位于不同地点。这些计算机之间通过网络进行连接,共同组成一个完整的、全局的逻辑上集中、物理上分布的大型数据库。
在分布式集群系统中,数据库对用户来说是一个逻辑上的数据库整体,数据库的一致性、完整性及安全性都是对这一逻辑整体进行管理控制的。分布集群服务器对共享的数据进行统一的管理,但是非数据库的处理操作可以由客户机来完成。
在分布式集群系统中,通常采用外部链接技术进行数据库的远程控制。组成分布式集群的各计算机之间可以通过网络进行相互通讯,用户可以远程透明地单独访问远程各数据库单元的数据,也可以组合多个数据库的数据以满足多工作组、部门的复杂应用需求。远程数据库链接技术连接了各分散的数据库单元,逻辑的将他们组合为一个整体,从应用视图的角度来看,分布集中数据库系统就是一个整体的数据库服务系统。用户对此系统的单一逻辑的数据库访问请求都被自动分解、自动寻址、自动转换为网络请求,并在相应数据库结点上实现相应的操作请求。
分布集群数据库系统支持混合的网络拓扑结构,并采用混合的网络协议,自动地进行网络协议的转换。在分布集群数据库系统中,在保证海量数据存储的基础上,混合了高可用集群和高可靠集群,提高了数据库系统的可用性和可靠性,满足了现代互联网应用的需求。
物化视图是从一个或几个基表导出的表,同视图相比,它存储了导出表的真实数据。当基表中的数据发生变化时,物化视图所存储的数据将变得陈旧,用户可以通过手动刷新或自动刷新来对数据进行同步。物化视图包括了查询结果的数据对象,是远程数据的本地副本快照。物化视图允许你在本地维护远程数据的副本,但是只能读取这些副本[2]。
3 高可用集群
数据库高可用集群通过缓存交换技术实现,它基于同一份数据文件、但提供了多个数据库实例,即数据库服务进程。高可用性首要确保数据不丢失,数据不丢失是高可靠性的最基本的要求,是必须要保证的;其次是使数据库一直维持在正常的运行状态,确保不停机,以避免给客户造成损失。
在大数据应用环境下,数据库系统的停机分为两类,即计划性停机和非计划性停机。计划性停机一般在数据库管理软件升级、系统维护或者硬件维护的情况下进行,是有计划地安排节点或者系统的停机。非计划性停机是异常突然停机,具有不可预见性,这种情况一般是数据库管理系统缺陷或系统故障或硬件故障等[3]。
高可用集群数据库技术主要包含如下几点:
1)负载均衡技术:支持静态和动态负载均衡技术,实现系统范围内各节点负载均匀,避免出现单一节点或者部分节点负载过重而影响整体性能。
2)全局事务并发控制技术:通过高速缓存复制技术,各节点保持字典数据一致,同时能够看到全局锁和事务视图,使得能够正常实现事务的ACID特性。
3)多节点并发访问文件控制技术:由于多个节点共享同一份数据,控制好各节点对同一份数据的更新操作,避免出现错误的文件读写导致的数据不一致的问题。
4)动态增加和移除节点技术:在高可用集群环境中,能够在不中断服务的情况下,通过增加节点来提升系统性能,同时也能够在节点出现故障时,从集群中自动移除该节点,并且不影响整个集群系统对外提供服务。
4 高可靠集群
一般采用数据复制技术来保证数据库系统的高可靠性,数据复制同时也是一种分担系统访问压力、加快异地访问响应速的技术,数据复制具有物理和逻辑之分。通过将一个服务器实例上的数据变更复制到另外的服务器实例。可以用于解决大、中型应用中出现的因来自不同地域、不同部门、不同类型的数据访问、请求导致数据库服务器超负荷运行、网络阻塞、远程用户的数据响应迟缓的问题。
高可靠集群提供数据库的容灾、数据保护、故障恢复等,实现数据库快速切换与灾难性恢复。在生产数据库的保证"事务一致性"时,使用生产库的物理全备份创建备库,备库能够通过生产库传输过来的归档日志或重做条目自动维护备用数据库。
高可靠集群的数据同步技术有以下优势:
1)数据库自身内置的功能;
2)配置管理较简单,不需要熟悉其他第三方的软件产品。
3)物理Standby数据库支持任何类型的数据对象和数据类型;
4)逻辑Standby数据库处于打开状态,可以在保持数据同步的同时执行查询等操作。
5)在最大保护模式下,可确保数据的零丢失。
5 MPP技术的应用
MPP 架构采用统一的并行操作数据库引擎,将数据分散在不同的数据库节点上,在高速的内部网络环境下,对于海量数据的并发查询可极大地减少 I/O,提高查询效率。MPP 系统工作起来就像是一台单独的计算机,由于采用自动化的并行处理,在分析型数据仓库等 OLAP 应用中,查询性能比传统的单节点数据库大大提高。MPP 系统为新一代数据仓库所需的大规模数据和复杂查询提供了先进的软件级解决方案,具有业界先进的架构和高度的可靠性,能帮助企业管理好数据,使之更好地服务于企业,推动数据依赖型企业的发展。
6 大数据中的应用
基于数据库管理系统,搭建高可用、高可靠的分布集群数据库系统,结构如图 1所示。
在此环境中,高可用集群之间可搭建成主备关系,与任意高可靠集群或任意单机数据库服务器通过外部链接构成逻辑上统一的分布集群数据库系统。对于用户而言,仍然是单一的数据库服务。
单机数据库服务器、高可用集群、高可靠集群都可通过外部链接作为单独节点加入到分布集群数据库系统中,利用数据库系统的分布集群事务机制,既保留了局部数据库的自治特性,又可以作为全局分布集群系统中的一员参与到整个海量数据分析中。
解决了海量规模数据存储的问题后,针对快速的数据流转、多样的数据类型和价值密度低问题,数据库技术还实现了以下功能:
1)物化视图技术和高级复制技术解决分布集群系统中数据流转速度慢的问题。
2)支持面相对象、xml数据类型,满足数据类型多样化的需求。
3)数据挖掘技术,是决策分析技术的一个更高层次,数据挖掘技术采用人工智能的决策分析方法,按照用户既定的业务目标,对数据进行筛选,揭示其中的规律,并进一步将其模型化。
7 结束语
随着计算机技术的发展,数据库管理系统作为处理数据的核心之一,在大数据中的应用不应被忽视。因此,加强数据库新技术的研发,对于各个国家在大数据时代的信息战中都显得尤为重要。
参考文献:
[1] 齐磊.大数据分析场景下分布式数据库技术的应用[J].移动通信,2015(12):58-62.
[2] 滕健鲲,孙桂琴.数据库技术应用问题研究[J].科技致富向导,2015(15):81-81.
[3] 音春.大数据时代数据库技术研究[J].广东通信技术,2015,35(3):12-14.