APP下载

基于Wnt/β-catenin信号通路的骨质疏松靶向治疗研究进展

2016-03-14廖洪利

化学与生物工程 2016年9期
关键词:复合物成骨细胞靶向

吴 也,廖洪利

(成都医学院药学院,四川 成都 610083)



基于Wnt/β-catenin信号通路的骨质疏松靶向治疗研究进展

吴也,廖洪利

(成都医学院药学院,四川 成都 610083)

Wnt/β-catenin信号通路在胚胎发育、成人组织稳态以及组织再生等方面发挥着重要作用,同时对骨形成也起着重要的促进作用。随着Wnt/β-catenin信号通路在骨质疏松中作用的阐明,针对Wnt/β-catenin信号通路的靶向治疗已经成功地应用于临床。对基于Wnt/β-catenin信号通路的骨质疏松靶向治疗进行了综述,为抗骨质疏松药物的设计提供了理论依据。

Wnt/β-catenin信号通路;骨质疏松;靶向治疗;药物

骨质疏松症(osteoporosis,OP)是一种常见的全身性骨代谢疾病。1994年世界卫生组织将其定义为:一种以骨量低下、骨微结构破坏、骨脆性增加、易发生骨折为特征的全身性骨病,标准为骨密度较同性别、同种族健康成人的峰值降低程度≥2.5SD[1]。OP的发生与遗传、年龄、生活方式以及用药等多种因素有关[2]。随着我国社会人口老龄化,OP的发病率呈逐年上升趋势,由此带来的社会负担也在快速增加,全球各大制药公司也在逐步加大抗OP药物的研发投入。

近年来在对Wnt/β-catenin(β-连环蛋白)信号通路的研究发现,其除在胚胎发育、成人组织稳态以及组织再生等方面发挥着重要作用以外[3-4],该通路对骨形成也起着重要的促进作用[5-8]。随着Wnt/β-catenin信号通路在OP中作用的阐明,针对Wnt/β-catenin信号通路的靶向治疗已经成功地应用于临床。作者对基于Wnt/β-catenin信号通路的OP靶向治疗进行综述,拟为抗OP药物的设计提供理论依据。

1 Wnt/β-catenin信号通路的成骨作用

Wnt蛋白是一类分泌型的糖蛋白大家族,通过自分泌或旁分泌发挥作用,它介导的Wnt经典信号通路在许多生命过程中都是必不可少的。当Wnt通路下调时,β-catenin与支架蛋白(axin)、肠腺瘤息肉蛋白(adenomatouspolyposiscoli,APC)和糖原合酶激酶3β(glycogensynthasekinase3β,GSK3β)三者形成的聚合降解复合物相互作用,促进β-catenin的丝氨酸/苏氨酸磷酸化,并导致β-catenin通过泛素/蛋白酶体途径降解。而当Wnt通路上调时,Wnt蛋白能与其细胞膜上的受体-卷曲蛋白(frizzled,Frz)和低密度脂蛋白受体相关蛋白5/6(lowdensitylipoproteinreceptorrelatedprotein5/6,LRP5/6)相结合,促使胞内的蓬乱蛋白(dishevelled,Dvl)磷酸化,然后Dvl就会抑制GSK3β对β-catenin的磷酸化作用,避免该蛋白进入蛋白酶体中降解,从而增加胞内β-catenin的积累[9-10]。当β-catenin在胞质中达到稳定水平时,便可由胞浆进入核内,与T细胞因子/淋巴增强因子(Tcellfactor/lymphoidenhancingfactor,TCF/LEF)家族结合,调节包括Runx2、Dlx5等骨靶基因的表达,进而促进成骨细胞分化[11-12]。此过程对于骨形成非常关键,该信号通路发生异常时会产生许多骨骼性疾病[13-16]。基于Wnt/β-catenin信号通路在对成骨细胞的影响中扮演着重要角色,已成为药物设计的重要靶标[17-18]。

2 基于Wnt/β-catenin信号通路的骨质疏松靶向治疗策略

Wnt/β-catenin信号通路的调节通过多种因子的作用实现,阻断其中任何步骤的拮抗剂都有可能激活通路,从而促使β-catenin积累以调节成骨细胞分化。因此,这些特殊环节均为治疗OP的潜在靶点。

2.1Sclerostin

骨硬化蛋白(sclerostin)是硬化蛋白基因SOST编码的糖蛋白,由骨细胞合成和分泌[19],通过与Wnt蛋白竞争结合受体LRP5/6来阻止Wnt/β-catenin 信号通路转导,抑制成骨细胞的募集和活化[20]。sclerostin单克隆抗体可激活该通路,从而促进成骨作用。此类蛋白是目前非常有前景的OP治疗药物,相较传统的骨吸收抑制剂阿仑膦酸钠和骨形成促进剂特立帕肽,它的最大特点在于能够逆转妇女绝经后源于雌激素缺乏的OP[21-23]。目前Romosozumab (AMG 785/CDP-7851)、Blosozumab 和BPS804已经完成临床Ⅱ期研究阶段[24-25]。Graeff等[26]发现,经过Romosozumab 3个月的治疗后,骨小梁和骨皮质的质量、结构及韧性能快速、显著地改善,这为Romosozumab正在进行的临床Ⅲ期研究提供了很好的临床支持。

2.2DKKs

Dickkopfs(DKKs)是由2个富含半胱氨酸的结构域组成的分泌型糖蛋白,在体内有4种同源形式(DKK-1~4)[27],而DKK-1与骨量联系较为密切[28]。DKK-1通过直接与LRP5/6结合抑制Wnt/β-catenin 信号通路,同时也可以和含Kringle结构域的跨膜蛋白Kremen结合形成复合物,增加细胞的内吞作用,降低LRP5/6含量,使后者无法参与Wnt通路[29-30]。和sclerostin单克隆抗体类似,DKK-1的单克隆抗体可以提高小鼠的骨小梁质量和密度[31],并有助于恢复OP小鼠和恒河猴的骨密度[32]。DKK-1的单克隆抗体包括PF04840082[33]和BHQ880[34],但都处于临床前期研究阶段。

2.3SFRPs

分泌型卷曲相关蛋白(secreted frizzled-related proteins,SFRPs)由成骨细胞分泌,已知的SFRPs家族有5个成员(SFRP-1~5) ,其中SFRP-1具有和Frz受体高度一致的富含半胱氨酸的结构域,可直接结合Wnt蛋白,阻止其与Frz受体/LRP复合物作用[35],或者与Frz受体/LRP复合物竞争结合,使Wnt蛋白无法结合复合物[36]。敲除SFRP-1的小鼠表现出更高的骨小梁体积、密度和质量[35,37],甚至加速小鼠骨折的恢复[38],这都是骨形成的表现,表明该靶点有望成为一个促进骨折愈合的途径。对SFRP-1抑制剂的研究集中在小分子化合物,其中亚氨基羰基噻唑和二苯砜磺胺在体内外均有促进骨形成的作用[39-40],有望成为新一类骨合成代谢药物。

2.4WIF1

Wnt抑制因子1(Wnt inhibitory factor 1,WIF1)是保守的分泌型蛋白,和SFRP-1一样,直接与Wnt蛋白结合,阻断Wnt/β-catenin信号通路。WIF1的表达是成骨细胞从成熟到凋亡的标志[41],WIF1可抑制小鼠的胚胎间充质干细胞向成骨细胞分化,表明抑制WIF1可作为一个成骨的靶点[42],但近年来鲜有报道。

2.5GSK3β

GSK3β是β-catenin在细胞质内被axin/APC/GSK3β复合物磷酸化和降解的关键酶,只要抑制GSK3β对β-catenin的磷酸化,稳定后者的细胞质水平,即可激活通路[10],因此,GSK3β被认为是治疗OP的潜在靶标。氯化锂是一种非特异性的GSK3β抑制剂,通过抑制GSK3β促进小鼠骨形成并增加骨量[43]。化合物AZD2858能显著改善骨小梁的质量,可有效治疗低骨量疾病,同时也能驱动间充质干细胞向成骨细胞分化,快速促进骨折愈合[44-45]。值得注意的是,虽然GSK3β的活性限制骨形成,但也参与一些胞内的其它进程,过度抑制其活性可能会有致癌的风险[46]。

2.6Cby

Chibby(Cby)是一个高度保守的核内蛋白,当Cby的C端绑定在β-catenin的C端后,前者的N端随即灵活地掩盖住TCF/LEF在β-catenin上的结合位点,以此拮抗Wnt/β-catenin信号通路[47-48]。因此,β-catenin和Cby的蛋白-蛋白相互作用抑制剂被认为是在核内水平激活Wnt/β-catenin信号通路的一个可能方式。

3 展望

目前,对基于Wnt/β-catenin信号通路的骨质疏松靶向治疗的研究已取得了一定的进展。尽管有研究认为激活Wnt/β-catenin信号通路有可能导致肿瘤等其它疾病,但在成骨作用和致癌影响之间找到最佳平衡点,靶向此通路仍然是治疗OP的行之有效的策略。总之,OP是一种多因素相关的骨代谢疾病,如何综合多方面因素研制出高效、低毒、耐受、特异性强的抗OP药物仍是该类药物研究开发需要关注的重点。

[1]KANIS J A,MELTON L J,CHRISTIANSEN C,et al.The diagnosis of osteoporosis[J].Journal of Bone and Mineral Research,1994,9(8):1137-1141.

[2]SCHWARZ P,JØRGENSEN N R,ABRAHAMSEN B.Status of drug development for the prevention and treatment of osteoporosis[J].Expert Opinion on Drug Discovery,2014,9(3):245-253.

[3]LIE D,COLAMARINO S A,SONG H,et al.Wnt signalling regulates adult hippocampal neurogenesis[J].Nature,2005,437(7063):1370-1375.

[4]MACDONAL B T,TAMAI K,HE X.Wnt/β-catenin signaling:components,mechanism,and diseases[J].Dev Cell,2009,17(1):9-26.

[5]HERENCIA C,MARTINEZ-MORENO J M,HERRERA C,et al.Nuclear translocation ofβ-catenin during mesenchymal stem cells differentiation into hepatocytes is associated with a tumoral phenotype[J].PLoS ONE,2012,7(4):e34656.

[6]YU W,ZHANG Y,XU L,et al.Microarray-based bioinformatics analysis of osteoblasts on TiO2nanotube layers[J].Colloids and Surfaces B:Biointerfaces,2012,93:135-142.

[7]ZHANG R,OYAJOBI B O,HARRIS S E,et al.Wnt/β-catenin signaling activates bone morphogenetic protein 2 expression in osteoblasts[J].Bone,2013,52(1):145-156.

[8]BARON R,RAWADI G.Targeting the Wnt/β-catenin pathway to regulate bone formation in the adult skeleton[J].Endocrinology,2007,148(6):2635-2643.

[9]RAO T P,KUHL M.An updated overview on Wnt signaling pathways a prelude for more[J].Circulation Research,2010,106(12):1798-1806.

[10]CLEVERS H,NUSSE R.Wnt/β-catenin signaling and disease[J].Cell,2012,149(6):1192-1205.

[11]ROSSINI M,GATTI D,ADAMI S.Involvement of WNT/β-catenin signaling in the treatment of osteoporosis[J].Calcif Tissue Int,2013,93(2):121-132.

[12]MARCELLINI S,HENRIQUEZ J P,BERTIN A.Control of osteogenesis by the canonical Wnt and BMP pathwaysinvivo:cooperation and antagonism between the canonical Wnt and BMP pathways as cells differentiate from osteochondroprogenitors to osteoblasts and osteocytes[J].Bioessays,2012,34(11):953-962.

[13]SONG L,LIU M,ONO N,et al.Loss of wnt/β-catenin signaling causes cell fate shift of preosteoblasts from osteoblasts to adipocytes[J].J Bone Miner Res,2012,27(11):2344-2358.

[14]O′SHEA P J,KIM D W,LOGAN J G,et al.Advanced bone formation in mice with a dominant-negative mutation in the thyroid hormone receptorβgene due to activation of Wnt/β-catenin protein signaling[J].J Biol Chem,2012,287(21):17812-17822.

[15]MONROE D G,McGEE-LAWRENCE M E,OURSLER M J,et al.Update on Wnt signaling in bone cell biology and bone disease[J].Gene,2012,492(1):1-18.

[16]ALBERS J,KELLER J,BARANOWSKY A,et al.Canonical Wnt signaling inhibits osteoclastogenesis independent of osteoprotegerin[J].J Cell Biol,2013,200(4):537-549.

[17]RACHNER T D,KHOSLA S,HOFBAUER L C.Osteoporosis:now and the future[J].Lancet,2011,377(9773):1276-1287.

[18]KE H Z,RICHARDS W G,LI X,et al.Sclerostin and Dickkopf-1 as therapeutic targets in bone diseases[J].Endocrine Reviews,2012,33(5):747-783.

[19]BALEMANS W,EBELING M,PATEL N,et al.Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST)[J].Human Molecular Genetics,2001,10(5):537-543.

[20]SEMЁNOV M,TAMAI K,HE X.SOST is a ligand for LRP5/LRP6 and a Wnt signaling inhibitor[J].Journal of Biological Chemistry,2005,280(29):26770-26775.

[21]LARSSON S.Anti-sclerostin—is there an indication?[J].Injury,2016,47:S31-S35.

[22]RECKER R R,BENSON C T,MATSUMOTO T,et al.A randomized,double-blind phase 2 clinical trial of blosozumab,a sclerostin antibody,in postmenopausal women with low bone mineral density[J].J Bone Miner Res,2015,30(2):216-224.

[23]GEUSENS P.New insights into treatment of osteoporosis in postmenopausal women[J].RMD Open,2015,1(S1):e51.

[24]SHAH A D,SHOBACK D,LEWIECKI E M.Sclerostin inhibition:a novel therapeutic approach in the treatment of osteoporosis[J].International Journal of Women′s Health,2015,7:565.

[25]LEWIECKI E M.Role of sclerostin in bone and cartilage and its potential as a therapeutic target in bone diseases[J].Therapeutic Advances in Musculoskeletal Disease,2014,6(2):48-57.

[26]GRAEFF C,CAMPBELL G M,PENA J,et al.Administration of romosozumab improves vertebral trabecular and cortical bone as assessed with quantitative computed tomography and finite element analysis[J].Bone,2015,81:364-369.

[27]GLINKA A,WU W,DELIUS H,et al.Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction[J].Nature,1998,391(6665):357-362.

[28]KORVALA J,LÖIJA M,MKITIE O,et al.Rare variations in WNT3A and DKK1 may predispose carriers to primary osteoporosis[J].European Journal of Medical Genetics,2012,55(10):515-519.

[29]BAFICO A,LIU G,YANIV A,et al.Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow[J].Nature Cell Biology,2001,3(7):683-686.

[30]MAO B,WU W,DAVIDSON G,et al.Kremen proteins are Dickkopf receptors that regulate Wnt/β-catenin signalling[J].Nature,2002,417(6889):664-667.

[31]GLANTSCHNIG H,HAMPTON R A,LU P,et al.Generation and selection of novel fully human monoclonal antibodies that neutralize Dickkopf-1 (DKK1) inhibitory function invitroand increase bone massinvivo[J].Journal of Biological Chemistry,2010,285(51):40135-40147.

[32]GLANTSCHNIG H,SCOTT K,HAMPTON R,et al.A rate-limiting role for Dickkopf-1 in bone formation and the remediation of bone loss in mouse and primate models of postmenopausal osteoporosis by an experimental therapeutic antibody[J].Journal of Pharmacology and Experimental Therapeutics,2011,338(2):568-578.

[33]BETTS A M,CLARK T H,YANG J,et al.The application of target information and preclinical pharmacokinetic/pharmacodynamic modeling in predicting clinical doses of a Dickkopf-1 antibody for osteoporosis[J].Journal of Pharmacology and Experimental Therapeutics,2010,333(1):2-13.

[34]IYER S P,BECK J T,STEWART A K,et al.A Phase IB multicentre dose-determination study of BHQ880 in combination with anti-myeloma therapy and zoledronic acid in patients with relapsed or refractory multiple myeloma and prior skeletal-related events[J].British Journal of Haematology,2014,167(3):366-375.

[35]BODINE P V,ZHAO W,KHARODE Y P,et al.The Wnt antagonist secreted frizzled-related protein-1 is a negative regulator of trabecular bone formation in adult mice[J].Mol Endocrinol,2004,18(5):1222-1237.

[36]BAFICO A,GAZIT A,PRAMILA T,et al.Interaction of frizzled related protein (FRP) with Wnt ligands and the frizzled receptor suggests alternative mechanisms for FRP inhibition of Wnt signaling[J].J Biol Chem,1999,274(23):16180-16187.

[37]GAUR T,RICH L,LENGNER C J,et al.Secreted frizzled related protein-1 regulates Wnt signaling for BMP2 induced chondrocyte differentiation[J].J Cell Physiol,2006,208(1):87-96.

[38]GAUR T,WIXTED J J,HUSSAIN S,et al.Secreted frizzled related protein-1 is a target to improve fracture healing[J].J Cell Physiol,2009,220(1):174-181.

[39]BODINE P V,STAUFFER B,PONCE-de-LEON H,et al.A small molecule inhibitor of the Wnt antagonist secreted frizzled-related protein-1 stimulates bone formation[J].Bone,2009,44(6):1063-1068.

[40]GOPALSAMY A,SHI M,STAUFFER B,et al.Identification of diarylsulfone sulfonamides as secreted frizzled related protein-1 (sFRP-1) inhibitors[J].J Med Chem,2008,51(24):7670-7672.

[41]BAKER E K,TAYLOR S,GUPTE A,et al.Wnt inhibitory factor 1 (WIF1) is a marker of osteoblastic differentiation stage and is not silenced by DNA methylation in osteosarcoma[J].Bone,2015,73:223-232.

[42]CHO S W,YANG J Y,SUN H J,et al.Wnt inhibitory factor (WIF)-1 inhibits osteoblastic differentiation in mouse embryonic mesenchymal cells[J].Bone,2009,44(6):1069-1077.

[43]CLEMENT-LACROIX P,AI M,MORVAN F,et al.LRP5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice[J].Proc Natl Acad Sci USA,2005,102(48):17406-17411.

[44]MARSELL R,SISASK G,NILSSON Y,et al.GSK-3 inhibition by an orally active small molecule increases bone mass in rats[J].Bone,2012,50(3):619-627.

[45]SISASK G,MARSELL R,SUNDGREN-ANDERSSON A,et al.Rats treated with AZD2858,a GSK3 inhibitor,heal fractures rapidly without endochondral bone formation[J].Bone,2013,54(1):126-132.

[46]POLAKIS P.Wnt signaling in cancer[J].Cold Spring Harb Perspect Biol,2012,4(5):a008052.

[47]TAKEMARU K,YAMAGUCHI S,LEE Y S,et al.Chibby,a nuclearβ-catenin-associated antagonist of the Wnt/Wingless pathway[J].Nature,2003,422(6934):905-909.

[48]MOKHTARZADA S,YU C,BRICKENDEN A,et al.Structural characterization of partially disordered human Chibby:insights into its function in the Wnt-signaling pathway[J].Biochemistry,2011,50(5):715-726.

Advances of Targeted Therapy Based on Wnt/β-catenin Signaling Pathway in Osteoporosis

WU Ye,LIAO Hong-li

(SchoolofPharmacy,ChengduMedicalCollege,Chengdu610083,China)

Wnt/β-cateninsignalingpathwayplaysimportantrolesinembryogenesis,adulttissuehomeostasisandtissueregeneration.Italsoplaysanimportantroleinpromotingboneformation.WiththeclarificationofWnt/β-cateninsignalingpathwayinosteoporosis,targetedtherapiesthroughthispathwayhavebeensuccessfullyusedinclinicalapplications.ThetargetedtherapiesbasedonWnt/β-cateninsignalingpathwayinosteoporosisarereviewed,whichcanprovideatheoreticalbasisfordrugdesign.

Wnt/β-cateninsignalingpathway;osteoporosis;targetedtherapy;drug

四川省高校科研创新团队项目(13TD0028),四川省高校重点实验室建设项目

2016-04-07

吴也(1990-),男,四川达州人,硕士研究生,研究方向:小分子药物合成,E-mail:jjcwf@126.com;通讯作者:廖洪利,副教授,E-mail:liaohl213@126.com。

10.3969/j.issn.1672-5425.2016.09.001

R 681

A

1672-5425(2016)09-0001-04

吴也,廖洪利.基于Wnt/β-catenin信号通路的骨质疏松靶向治疗研究进展[J].化学与生物工程,2016,33(9):1-4.

猜你喜欢

复合物成骨细胞靶向
新型抗肿瘤药物:靶向药物
如何判断靶向治疗耐药
wnt经典信号通路在酸性pH抑制成骨细胞功能中的作用
毛必静:靶向治疗,你了解多少?
柚皮素磷脂复合物的制备和表征
黄芩苷-小檗碱复合物的形成规律
白杨素磷脂复合物的制备及其药动学行为
土家传统药刺老苞总皂苷对2O2诱导的MC3T3-E1成骨细胞损伤改善
靶向超声造影剂在冠心病中的应用
Bim在激素诱导成骨细胞凋亡中的表达及意义