APP下载

污泥厌氧消化中新型污染物去除的研究进展*

2016-03-13杨安琪张光明王洪臣王园园

环境污染与防治 2016年3期
关键词:壬基活性剂消化

杨安琪 杨 光 张光明 王洪臣 王园园

(中国人民大学环境学院,北京 100872)

随着社会经济和工业技术的快速发展,多种有毒性、难降解的新型物质得到广泛应用,在给人们日常生活带来诸多便利的同时,对生态环境及人体健康产生潜在威胁。近年来,城市污水中检出多种新型污染物[1-2],主要包括药物、个人护理品(PCPs)、雌激素、表面活性剂、工业添加剂和阻燃剂等[3]。

城市污水经活性污泥法处理后,近65%(质量分数)的新型污染物通过吸附、降解等作用转移到污泥中[4-5]。截至2014年,我国污泥年总产量近3 359万t[6],含有新型污染物的污泥在脱水农用、焚烧或直接填埋过程中均会对环境带来严重破坏。厌氧消化因能有效实现污泥的减量化和资源化被越来越多地运用到污泥处理中[7]。厌氧消化对污泥中新型污染物的去除效果是目前的研究热点,而新型污染物种类繁多复杂,浓度差异大,且具有一定区域特性,鉴于此,本研究归纳总结了污泥中新型污染物的种类、来源及检出现状,并分析其在厌氧消化过程中的去除情况,以期为我国在此方面的后续研究提供理论依据。

1 污泥中的新型污染物

目前,新型污染物的定义尚不明确,通常指能在环境中检测出但未列入常规监测的一类对生态环境及人体健康存在威胁的污染物[8-9]。不同种类的新型污染物在危害、主要来源以及在污泥中的浓度范围上存在很大差别。

1.1 新型污染物的种类

对2000—2015年有关污泥中各类新型污染物的文献进行整理分析,将污泥中检测出的新型污染物分为8类(见表1),经核算得出药物、工业添加剂、表面活性剂及其代谢产物是目前研究最多的3种新型污染物。

表1 污泥中新型污染物种类

污泥中的药物主要包括抗生素类药物(如土霉素、氧氟沙星、磺胺甲恶唑等)及精神性药物(如卡马西平等)。目前,已有研究发现,在长期的低剂量药物条件下,污泥中的微生物会被诱导产生耐药性基因,污泥经填埋或农用后,带有耐药性基因的微生物将参与到物质能量循环中并最终进入人体,经不断积累使人类产生抗药性[10-11]。污泥中的工业添加剂主要有多氯联苯、邻苯二甲酸酯等,此类物质多具有亲脂性、不易降解等特点,可通过食物链的放大作用在生物体内蓄积,从而对生态平衡及人类健康造成巨大影响[12-13]。

表面活性剂是指具有一定亲水、亲油基团结构,能显著降低溶剂表面张力和液液界面张力的物质[14]。目前,污泥中已检测出的表面活性剂主要包括阴离子表面活性剂直链烷基苯磺酸、非离子表面活性剂壬基酚聚氧乙烯醚及其他阳离子表面活性剂等,而壬基苯酚作为表面活性剂的代谢中间体也大量存在于污泥中。

1.2 新型污染物的来源

由于各类新型物质在生产、生活中的广泛应用,污泥中新型污染物的来源有很多,污泥中的药物主要通过医院废水、制药废水和养殖场废水等进入城市污水处理系统[15-16],而多氯联苯、双酚A等工业添加剂及有机锡化合物、全氟化合物大多是在化工厂的生产、加工过程中通过残留在工厂废水中进入污水管网,并最终进入污泥。表面活性剂由于具有增溶、洗涤、抗静电等一系列物理化学作用,是洗涤剂的主要成分,主要通过生活污水进入城市污水处理系统。由于三氯生、三氯卡班等物质具有较强的疏水性,因此污水中超过80%(质量分数)的个人护理品均被吸附到污泥中[17-18]。溴系阻燃剂和部分工业添加剂主要来源于电子产品和塑料制品,通过生活污水和垃圾渗滤液进入城市污水处理系统,从而吸附到污泥中。有机锡化合物、雌激素类物质是农用杀虫剂的主要成分,因此水果、蔬菜上残留的农药多经过生活污水进入城市污水处理系统,且多数雌激素类物质具有较强的疏水性,不易降解,容易富集在污泥中[19-20]。

1.3 检出情况

新型污染物来源广泛,不易降解,物理化学性质各异,其在污泥中的含量由于污水处理系统运行参数及地区差异等因素存在很大差异。

表2 污泥中各类新型污染物的质量浓度

注:1)指在干污泥中的质量浓度。

目前,污泥中检测出的药物质量浓度为0.1~58 100.0 μg/kg(以干污泥中的质量浓度计,下同)。CHEN等[21]从我国13个省份采集了45个污泥样品进行分析,从中检出30余种药物,其中氧氟沙星含量最高,质量浓度可达24 760 μg/kg。对于工业添加剂,由于多氯联苯、双酚A、邻苯二甲酸酯等物质在常规的污水处理系统中基本得不到降解,大多通过吸附作用转移到污泥中,因此其在污泥中浓度范围较广。表面活性剂及其代谢产物是污泥中含量最高的新型污染物[22-24]。污泥中各种新型污染物的质量浓度范围汇总见表2。

2 厌氧消化对污泥中新型污染物的去除

由于检测难度较大,目前我国还未将新型污染物列入污泥常规检测项目,但其对生态环境及人类健康的危害已日益凸现,因此新型污染物在污泥处理处置过程中的去除情况受到越来越广泛的关注。

在污泥厌氧消化过程中,生物降解和吸附是新型污染物的主要去除途径[52]。其中,大多数新型污染物通过生物降解去除[53],而具有疏水性的新型污染物主要通过吸附到悬浮颗粒物或胶体上得以去除[54]。厌氧消化运行参数对不同新型污染物的去除可产生不同的影响。如污泥停留时间(SRT)和温度对药物、阴离子表面活性剂、合成麝香和双酚A的去除没有明显的影响,而对于雌三醇,中温厌氧消化较高温厌氧消化的去除效果好,但高温厌氧消化却能显著提高雌酮、壬基苯酚等的去除效果[55]。厌氧消化条件下污泥中新型污染物去除率汇总见表3。

2.1 药 物

药物具有来源多、浓度范围广、毒性强等特点,已成为污泥中研究最多的一类新型污染物。药物中不同物质在厌氧消化过程中的去除效果存在很大差异。CARBALLA等[56]研究了相同消化条件下不同药物的去除情况,结果表明,厌氧消化对污泥中磺胺甲恶唑的去除率可达99%以上,而对卡马西平几乎不降解去除。NARUMIYA等[57]也发现类似的结果,其研究还发现,磺胺甲恶唑的去除率总体大于90%,而氧氟沙星的去除率在30%~50%。

2.2 雌激素

表3 厌氧消化条件下污泥中不同新型污染物的去除率

注:1)指在混合污泥中的质量浓度;2)指在初沉污泥中的质量浓度。

目前,有关雌激素在污泥厌氧消化中的去除效果研究存在着争议。ANDERSEN等[63]认为,雌酮、雌二醇在厌氧条件下几乎不降解。但有研究发现,雌激素在厌氧消化条件下不仅可以降解,且去除率随着温度的上升得到提高[64]。此外,PATERAKIS等[58]在比较初沉污泥和混合污泥厌氧消化去除雌激素的实验中发现,雌酮与雌三醇在初沉污泥厌氧消化中的去除率明显高于在混合污泥中的去除率,其原因可能与初沉污泥中松散的有机污泥絮体更容易被微生物充分利用有关。

2.3 表面活性剂及其代谢产物

有研究表明,由于部分阴离子表面活性剂可作为碳源被厌氧消化细菌利用,因此在无共基质存在的条件下,阴离子表面活性剂更容易被微生物利用从而达到较高的降解效率[65]。与阴离子表面活性剂相比,阳离子表面活性剂的降解相对困难。TEZEL等[66-67]研究发现,阳离子表面活性剂在污泥厌氧消化过程中几乎不能被生物降解。但ISMAIL等[68]研究发现,阳离子表面活性剂中烷基链的增长有助于提高其吸附去除效果。LU等[69]发现,与中温厌氧条件相比,壬基酚聚氧乙烯醚在高温厌氧条件下更容易被降解。PATUREAU等[70]的实验结果表明,壬基酚聚氧乙烯醚在污泥高温厌氧消化中的最终去除率可达30%。CHANG等[71]发现,当易生物降解的碳源与表面活性剂的代谢产物壬基苯酚共存时能提高其生物降解速率,主要原因是易降解碳源对整体代谢的刺激促进了壬基苯酚的生物降解进程。

2.4 个人护理品

个人护理品在污泥中的检测已受到广泛关注,但有关其在污泥厌氧消化中去除情况的研究却不多见。目前,有关三氯生和三氯卡班去除效果的研究仍存在争议。HEIDLER等[72]认为,污泥厌氧消化不能对此类物质进行有效降解。而VEETIL等[73]研究发现,当有醋酸盐作为共基质存在时,三氯生可在污泥厌氧消化过程中得到有效的生物降解,其主要降解产物为苯酚、邻苯酚和2,4-二氯苯酚。此外,佳乐麝香和吐纳麝香在厌氧消化中的去除率分别可达到69%±9%、63%±14%[74],且均以吸附在悬浮颗粒物上为主要的去除方式。

2.5 溴系阻燃剂

多溴联苯醚是溴系阻燃剂中最主要的一类[75-76]。研究发现,多溴联苯醚在厌氧消化中的去除率为22%~40%,推测微生物的还原脱溴作用是其降解的主要原因。此外,有研究指出,由于多溴联苯醚的生物活性较低,限制了其在污泥厌氧消化的生物降解效率,因此多溴联苯醚在厌氧消化池中存在一个阈值浓度,低于该阈值浓度时脱卤过程将无法进行[77]。

2.6 工业添加剂

邻苯二甲酸酯在污泥厌氧消化过程中的去除与其烷基链的长度密切相关,烷基链越长,越难降解[78]。有研究发现,邻苯二甲酸酯的去除路径以侧链酯的连续水解开始,此后邻苯二甲酸和烷基醇被逐渐降解为甲烷和二氧化碳,其中90%(质量分数)的甲烷产生于邻苯二甲酸二异辛酯(DEHP)[79]。因此,以往研究中多数学者主要关注DEHP在污泥厌氧消化过程中的去除效果。MARTTINEN等[80]发现,DEHP在污泥厌氧消化中的去除率为32%。有学者认为,DEHP在厌氧消化中的降解效率由接种污泥的性质决定,当接种污泥中的微生物能有效抵抗DEHP造成的毒性环境时,其降解效率将大幅提高[81]。对于另一种工业添加剂——双酚A,STASINAKIS等[82]研究发现,其在的污泥厌氧消化过程中的去除效果不受SRT影响。

2.7 有机锡化合物

目前,有关有机锡化合物在厌氧消化中去除情况的研究鲜有报道,主要是由于有机锡化合物在厌氧消化条件下的去除率很低,一般低于30%。VOULVOULIS等[83]认为,有机锡化合物降解效率低的原因可能与其对发酵细菌的抑制作用有关。

2.8 全氟化合物

全氟化合物具有极高的稳定性,一般的水解、光解和生物降解对其影响甚小。LIOU等[84]研究发现,全氟化合物在长期厌氧消化中并未发生降解。此外,SCHULTZ等[85]利用质量平衡法研究污泥厌氧消化过程中全氟化合物的降解情况,发现全氟癸磺酸钠、全氟癸酸甲酯的含量没有变化,而全氟辛烷磺酸、全氟壬酸的含量却有所增加,说明在污泥厌氧消化过程中可能存在前体物质的转化。

3 结 语

本研究总结了污泥中各类新型污染物的来源、浓度范围及其在厌氧消化过程中的去除情况。可以看出,表面活性剂及其代谢产物是污泥中浓度最高的新型污染物,目前有关药物在厌氧消化过程中去除及降解路径的研究最多。不同新型污染物在污泥厌氧消化进程中的去除率和去除路径受污染物的生物降解特性、SRT、温度、污泥性质等条件影响。其中,卡马西平、壬基苯酚、三氯卡班、有机锡化合物和全氟化合物等物质在污泥厌氧消化中的去除效果不好。

随着各类新型物质在不同领域中的应用不断增加,必然导致更多的新型污染物进入污水和污泥中,其对环境和人类健康的危害也会相应加大,为了实现厌氧消化对污泥中新型污染物更好地去除,今后研究需关注如下几点:(1)由于新型污染物种类繁多,目前的研究仅涉及极小部分新型污染物,因此应加强厌氧消化对污泥中更多种新型污染物去除的研究;(2)已有研究表明,部分预处理方式(如臭氧、超声波)能显著提高新型污染物在污泥厌氧消化进程中的去除率,因此未来研究应尝试采用更多的预处理方法以及联合预处理方式提高污泥厌氧消化中新型污染物的去除效率;(3)在关注各种新型污染物去除效率的同时,应加强不同新型污染物在污泥厌氧消化中去除路径和降解机制的探究;(4)由于污泥中的新型污染物主要来自城市生活污水和工业污水,因此应加强新型污染物在污水中迁移、转化、去除的研究,这对于研究新型污染物在污泥厌氧消化过程的去除路径具有重要的指导意义;(5)目前污泥的主要处置方式为土地利用,因此污泥中新型污染物对土壤环境的影响及其影响机制有待进一步探索。

[1] YANG Guang,FAN Maohong,ZHANG Guangming.Emerging contaminants in surface waters in China:a short review[J].Environmental Research Letters,2014,9(7):1195-1206.

[2] PETRIE B,BARDEN R,KASPRZYK HORDERN B.A review on emerging contaminants in wastewaters and the environment: current knowledge,understudied areas and recommendations for future monitoring[J].Water Research,2015,72:3-27.

[3] DIAZ CRUZ M S,GARCIA GALAN M J,GUERRA P,et al.Analysis of selected emerging contaminants in sewage sludge[J].Trac Trends in Analytical Chemistry,2009,28(11):1263-1275.

[4] GADD G M.Biosorption:critical review of scientific rationale,environmental importance and significance for pollution treatment[J].Journal of Chemical Technology and Biotechnology,2009,84(1):13-28.

[5] AVILA C,BAYONA J M,MARTIN I,et al.Emerging organic contaminant removal in a full-scale hybrid constructed wetland system for wastewater treatment and reuse[J].Ecological Engineering,2015,80:108-116.

[6] YANG Guang,ZHANG Guangming,WANG Hongchen.Current state of sludge production,management,treatment and disposal in China[J].Water Research,2015,78:60-73.

[7] 陈英文,刘明庆,赵冰怡,等.臭氧预处理—厌氧消化工艺促进剩余污泥减量化的研究[J].环境污染与防治,2012,34(1):33-36.

[8] MARCOUX M A,MATIAS M,OLIVIER F,et al.Review and prospect of emerging contaminants in waste - key issues and challenges linked to their presence in waste treatment schemes: general aspects and focus on nanoparticles[J].Waste Management,2013,33(11):2147-2156.

[9] JASINSKA E J,GOSS G G,GILLIS P L,et al.Assessment of biomarkers for contaminants of emerging concern on aquatic organisms downstream of a municipal wastewater discharge[J].Science of the Total Environment,2015,530/531:140-153.

[10] 苏小欢.水环境中抗生素的迁移转化及其危害[J].广州化工,2015(5):156-158.

[11] YIN Fubin,WANG Dongling,LI Zifu,et al.Study on anaerobic digestion treatment of hazardous colistin sulphate contained pharmaceutical sludge[J].Bioresource Technology,2015,177:188-193.

[12] 胡晓芳,王欣泽,鲁佳铭,等.活性污泥中典型内分泌干扰物的分析方法[J].环境科学与技术,2010,33(2):126-130.

[13] SONG Mengke,LUO Chunling,LI Fangbai,et al.Anaerobic degradation of polychlorinated biphenyls (PCBs) and polychlorinated biphenyls ethers (PBDEs),and microbial community dynamics of electronic waste-contaminated soil[J].Science of the Total Environment,2015,502:426-433.

[14] 陈庆华.表面活性剂对土壤中氮磷迁移的影响[D].重庆:西南大学,2014.

[15] MALMBORG J,MAGNÉR J.Pharmaceutical residues in sewage sludge: effect of sanitization and anaerobic digestion[J].Journal of Environmental Management,2015,153:1-10.

[17] ZHOU Haidong,HUANG Xia,GAO Mijun,et al.Distribution and elimination of polycyclic musks in three sewage treatment plants of Beijing,China[J].Journal of Environmental Sciences,2009,21(5):561-567.

[18] CHEN Feng,YING Guangguo,MA Yibing,et al.Field dissipation and risk assessment of typical personal care products TCC,TCS,AHTN and HHCB in biosolid-amended soils[J].Science of the Total Environment,2014,470/471:1078-1086.

[19] 赵昕,张占恩,张磊,等.基质固相分散萃取/高效液相色谱—串联质谱法测定污泥中的6种雌激素[J].分析测试学报,2015,34(1):56-61.

[20] CHAWLA C,SARKAR S,ALI S,et al.Anaerobic digestibility of estrogens in wastewater sludge: effect of ultrasonic pretreatment[J].Journal of Environmental Management,2014,145(12):307-313.

[21] CHEN Yongshan,YU Gang,CAO Qiming,et al.Occurrence and environmental implications of pharmaceuticals in Chinese municipal sewage sludge[J].Chemosphere,2013,93(9):1765-1772.

[22] STASINAKIS A S.Review on the fate of emerging contaminants during sludge anaerobic digestion[J].Bioresource Technology,2012,121:432-440.

[23] ELSAMADONY M,TAWFIK A,SUZUKI M.Surfactant-enhanced biohydrogen production from organic fraction of municipal solid waste (OFMSW) via dry anaerobic digestion[J].Applied Energy,2015,149:272-282.

[24] GALLIPOLI A,GIANICO A,GAGLIANO M C,et al.Potential of high-frequency ultrasounds to improve sludge anaerobic conversion and surfactants removal at different food/inoculum ratio[J].Bioresource Technology,2014,159:207-214.

[26] GAO Lihong,SHI Yali,LI Wenhui,et al.Occurrence of antibiotics in eight sewage treatment plants in Beijing,China[J].Chemosphere,2012,86(6):665-671.

[27] ROSAL R,RODRGUEZ A,PERDIGN MELN J A,et al.Occurrence of emerging pollutants in urban wastewater and their removal through biological treatment followed by ozonation[J].Water Research,2010,44(2):578-588.

[28] LINDBERG R H,WENNBERG P,JOHANSSON M I,et al.Screening of human antibiotic substances and determination of weekly mass flows in five sewage treatment plants in Sweden[J].Environmental Science & Technology,2005,39(10):3421-3429.

[29] GÖBEL A A,THOMSEN A,MCARDELL C S,et al.Extraction and determination of sulfonamides,macrolides,and trimethoprim in sewage sludge[J].Journal of Chromatography A,2005,1085(2):179-189.

[30] MULLER M,RABENOELINA F,BALAGUER P,et al.Chemical and biological analysis of endocrine-disrupting hormones and estrogenic activity in an advanced sewage treatment plant[J].Environmental Toxicology and Chemistry,2008,27(8):1649-1658.

[31] NIETO A,BORRULL F,POCURULL E,et al.Determination of natural and synthetic estrogens and their conjugates in sewage sludge by pressurized liquid extraction and liquid chromatography-tandem mass spectrometry[J].Journal of Chromatography A,2008,1213(2):224-230.

[32] JENSEN J,JEPSEN S E.The production,use and quality of sewage sludge in Denmark[J].Waste Management,2005,25(3):239-247.

[34] GIBSON R,WANG Minjian,PADGETT E,et al.Analysis of 4-nonylphenols,phthalates,and polychlorinated biphenyls in soils and biosolids[J].Chemosphere,2005,61(9):1336-1344.

[35] CLARKE B O,SMITH S R.Review of ‘emerging’ organic contaminants in biosolids and assessment of international research priorities for the agricultural use of biosolids[J].Environment International,2011,37(1):226-247.

[36] ANDRADE N A,MCCONNELL L L,TORRENTS A,et al.Persistence of polybrominated diphenyl ethers in agricultural soils after biosolids applications[J].Journal of Agricultural and Food Chemistry,2010,58(5):3077-3084.

[37] WANG Yawei,ZHANG Qinghua,LYU Jianxia,et al.Polybrominated diphenyl ethers and organochlorine pesticides in sewage sludge of wastewater treatment plants in China[J].Chemosphere,2007,68(9):1683-1691.

[38] DE BOER J,WESTER P G,VAN DER HORST A,et al.Polybrominated diphenyl ethers in influents,suspended particulate matter,sediments,sewage treatment plant and effluents and biota from the Netherlands[J].Environmental Pollution,2003,122(1):63-74.

[39] GEVAO B,MUZAINI S,HELALEH M.Occurrence and concentrations of polybrominated diphenyl ethers in sewage sludge from three wastewater treatment plants in Kuwait[J].Chemosphere,2008,71(2):242-247.

[40] MORRIS S,ALLCHIN C R,ZEGERS B N,et al.Distribution and fate of HBCD and TBBPA brominated flame retardants in North Sea estuaries and aquatic food webs[J].Environmental Science & Technology,2004,38(21):5497-5504.

[41] NIE Yafeng,QIANG Zhimin,ZHANG Heqing,et al.Determination of endocrine-disrupting chemicals in the liquid and solid phases of activated sludge by solid phase extraction and gas chromatography-mass spectrometry[J].Journal of Chromatography A,2009,1216(42):7071-7080.

[42] TAN B L,HAWKER D W,MUELLER J F,et al.Comprehensive study of endocrine disrupting compounds using grab and passive sampling at selected wastewater treatment plants in South East Queensland,Australia[J].Environment International,2007,33(5):654-669.

[43] STASINAKIS A S,GATIDOU G,MAMAIS D,et al.Occurrence and fate of endocrine disrupters in Greek sewage treatment plants[J].Water Research,2008,42(6/7):1796-1804.

[44] NG Q Y C,CHAN A H M,MA S W Y.A study of polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs) and polychlorinated biphenyls (PCBs) in the livestock waste compost of Hong Kong,PR China[J].Marine Pollution Bulletin,2008,57(6/7/8/9/10/11/12):381-391.

[45] STEVENS J L,NORTHCOTT G L,STERN G A,et al.PAHs,PCBs,PCNs,organochlorine pesticides,synthetic musks,and polychlorinated n-alkanes in U.K. sewage sludge: survey results and implications[J].Environmental Science & Technology,2003,37(3):462-467.

[46] BLANCHARD M,TEIL M J,OLLIVON D,et al.Polycyclic aromatic hydrocarbons and polychlorobiphenyls in wastewaters and sewage sludges from the Paris area (France)[J].Environmental Research,2004,95(2):184-197.

[47] BRIGHT D A,HEALEY N.Contaminant risks from biosolids land application: contemporary organic contaminant levels in digested sewage sludge from five treatment plants in Greater Vancouver,British Columbia[J].Environmental Pollution,2003,126(1):39-49.

[48] ROSLEV P,VORKAMP K,AARUP J,et al.Degradation of phthalate esters in an activated sludge wastewater treatment plant[J].Water Research,2007,41(5):969-976.

[49] VOULVOULIS N,SCRIMSHAW M D,LESTER J N.Removal of organotins during sewage treatment: a case study[J].Environmental Technology,2004,25(6):733-740.

[50] PLAGELLAT C,KUPPER T,DE ALENCASTRO L F,et al.Biocides in sewage sludge: quantitative determination in some Swiss wastewater treatment plants[J].Bulletin of Environmental Contamination and Toxicology,2004,73(5):794-801.

[51] BOSSI R,STRAND J,SORTKJAER O,et al.Perfluoroalkyl compounds in Danish wastewater treatment plants and aquatic environments[J].Environment International,2008,34(4):443-450.

[52] BARRET M,DELGADILLO MIRQUEZ L,TRABLY E,et al.Anaerobic removal of trace organic contaminants in sewage sludge: 15 years of experience[J].Pedosphere,2012,22(4):508-517.

[53] MAILLER R,GASPERI J,CHEBBO G,et al.Priority and emerging pollutants in sewage sludge and fate during sludge treatment[J].Waste Management,2014,34(7):1217-1226.

[54] BARRET M,CARRRE H,LATRILLE E,et al.Micropollutant and sludge characterization for modeling sorption equilibria[J].Environmental Science & Technology,2010,44(3):1100-1106.

[55] TRAN N H,URASE T,NGO H H,et al.Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants[J].Bioresource Technology,2013,146:721-731.

[56] CARBALLA M,OMIL F,ALDER A C,et al.Comparison between the conventional anaerobic digestion of sewage sludge and its combination with a chemical or thermal pre-treatment concerning the removal of pharmaceuticals and personal care products[J].Water Science and Technology,2006,53(8):109-117.

[57] NARUMIYA M,NAKADA N,YAMASHITA N,et al.Phase distribution and removal of pharmaceuticals and personal care products during anaerobic sludge digestion[J].Journal of Hazardous Materials,2013,260(18):305-312.

[58] PATERAKIS N,CHIU T Y,KOH Y K,et al.The effectiveness of anaerobic digestion in removing estrogens and nonylphenol ethoxylates[J].Journal of Hazardous Materials,2012,199/200(2):88-95.

[59] CARBALLA M,MANTEROLA G,LARREA L,et al.Influence of ozone pre-treatment on sludge anaerobic digestion: removal of pharmaceutical and personal care products[J].Chemosphere,2007,67(7):1444-1452.

[60] SAMARAS V G,STASINAKIS A S,THOMAIDIS N S,et al.Fate of selected emerging micropollutants during mesophilic,thermophilic and temperature co-phased anaerobic digestion of sewage sludge[J].Bioresource Technology,2014,162(6):365-372.

[61] PARKER W J,MONTEITH H D,MELCER H.Estimation of anaerobic biodegradation rates for toxic organic compounds in municipal sludge digestion[J].Water Research,1994,28(8):1779-1789.

[62] FENT K.Organotin compounds in municipal wastewater and sewage sludge: contamination,fate in treatment process and ecotoxicological consequences[J].Science of the Total Environment,1996,185(1/2/3):151-159.

[63] ANDERSEN H,SIEGRIST H,HALLING SØRENSEN B,et al.Fate of estrogens in a municipal sewage treatment plant[J].Environmental Science & Technology,2003,37(18):4021-4026.

[64] DE MES T Z,KUJAWA ROELEVELD K,ZEEMAN G,et al.Anaerobic biodegradation of estrogens--hard to digest[J].Water Science and Technology,2008,57(8):1177-1182.

[65] SANZ J L,CULUBRET E,DE FERRER J,et al.Anaerobic biodegradation of linear alkylbenzene sulfonate (LAS) in upflow anaerobic sludge blanket (UASB) reactors[J].Biodegradation,2003,14(1):57-64.

[66] TEZEL U,PIERSON J A,PAVLOSTATHIS S G.Fate and effect of quaternary ammonium compounds on a mixed methanogenic culture[J].Water Research,2006,40(19):3660-3668.

[67] TEZEL U,PAVLOSTATHIS S G.Transformation of benzalkonium chloride under nitrate reducing conditions[J].Environmental Science & Technology,2009,43(5):1342-1348.

[68] ISMAIL Z Z,TEZEL U,PAVLOSTATHIS S G.Sorption of quaternary ammonium compounds to municipal sludge[J].Water Research,2010,44(7):2303-2313.

[69] LU Jian,JIN Qiang,HE Yiliang,et al.Anaerobic degradation behavior of nonylphenol polyethoxylates in sludge[J].Chemosphere,2008,71(2):345-351.

[70] PATUREAU D,DELGENES N,DELGENES J P.Impact of sewage sludge treatment processes on the removal of the endocrine disrupters nonylphenol ethoxylates[J].Chemosphere,2008,72(4):586-591.

[71] CHANG B V,CHIANG F,YUAN S Y.Anaerobic degradation of nonylphenol in sludge[J].Chemosphere,2005,59(10):1415-1420.

[72] HEIDLER J,HALDEN R U.Fate of organohalogens in US wastewater treatment plants and estimated chemical releases to soils nationwide from biosolids recycling[J].Journal of Environmental Monitoring,2009,11(12):2207-2215.

[73] VEETIL P G P,NADARAJA A V,BHASI A,et al. Degradation of triclosan under aerobic,anoxic,and anaerobic conditions[J].Applied Biochemistry and Biotechnology,2012,167(6):1603-1612.

[74] CARBALLA M,OMIL F,TERNES T,et al.Fate of pharmaceutical and personal care products (PPCPs) during anaerobic digestion of sewage sludge[J].Water Research,2007,41(10):2139-2150.

[75] HITES R A.Polybrominated diphenyl ethers in the environment and in people: a meta-analysis of concentrations[J].Environmental Science & Technology,2004,38(4):945-956.

[76] VENKATESAN A K,HALDEN R U.Brominated flame retardants in U.S. biosolids from the EPA national sewage sludge survey and chemical persistence in outdoor soil mesocosms[J].Water Research,2014,55:133-142.

[77] SHIN M,DUNCAN B,SETO P,et al.Dynamics of selected pre-existing polybrominated diphenylethers (PBDEs) in municipal wastewater sludge under anaerobic conditions[J].Chemosphere,2010,78(10):1220-1224.

[78] SHELTON D R,BOYD S A,TIEDJE J M.Anaerobic biodegradation of phthalic acid esters in sludge[J].Environmental Science & Technology,1984,18(2):93-97.

[79] EL HADJ T B,DOSTA J,MATA ALVAREZ J.Biodegradation of PAH and DEHP micro-pollutants in mesophilic and thermophilic anaerobic sewage sludge digestion[J].Water Science and Technology,2006,53(8):99-107.

[80] MARTTINEN S K,KETTUNEN R H,SORMUNEN K M,et al.Removal of bis(2-ethylhexyl) phthalate at a sewage treatment plant[J].Water Research,2003,37(6):1385-1393.

[81] ANGELIDAKI I,MOGENSEN A S,AHRING B K.Degradation of organic contaminants found in organic waste[J].Biodegradation,2000,11(6):377-383.

[82] STASINAKIS A S,KORDOUTIS C I,TSIOUMA V C,et al.Removal of selected endocrine disrupters in activated sludge systems: effect of sludge retention time on their sorption and biodegradation[J].Bioresource Technology,2010,101(7):2090-2095.

[83] VOULVOULIS N,LESTER J N.Fate of organotins in sewage sludge during anaerobic digestion[J].Science of the Total Environment,2006,371(1/2/3):373-382.

[84] LIOU J,SZOSTEK B,DERITO C M,et al.Investigating the biodegradability of perfluorooctanoic acid[J].Chemosphere,2010,80(2):176-183.

[85] SCHULTZ M M,HIGGINS C P,HUSET C A,et al.Fluorochemical mass flows in a municipal wastewater treatment facility[J].Environmental Science & Technology,2006,40(23):7350-7357.

猜你喜欢

壬基活性剂消化
“胃不舒服”未必都是消化问题
壬基酚对Lix984N溶剂萃取铜的影响试验研究
食物是怎么消化的
急诊消化内科上消化道出血治疗
AOS-AA表面活性剂的制备及在浮选法脱墨中的应用
壬基酚聚氧乙烯醚在反相液相色谱上的保留行为
欧盟将在可洗涤纺织品中限制使用壬基酚聚氧乙烯醚
化学降解表面活性剂的开发
来源于微生物的生物表面活性剂
欧盟启动REACH法规壬基酚限制要求的公共评议