APP下载

用于肿瘤联合治疗的基因和化疗药物纳米共载体系的研究进展

2016-03-12魏向娟秦靖雯张刘源陈贵梅南文滨陈红丽

国际生物医学工程杂志 2016年5期
关键词:脂质体阳离子载体

魏向娟 秦靖雯 张刘源 陈贵梅 南文滨 陈红丽

453003新乡医学院生命科学技术学院,新乡医学院纳米生物医用材料研究所

用于肿瘤联合治疗的基因和化疗药物纳米共载体系的研究进展

魏向娟 秦靖雯 张刘源 陈贵梅 南文滨 陈红丽

453003新乡医学院生命科学技术学院,新乡医学院纳米生物医用材料研究所

化学药物治疗(化疗)或基因治疗单独使用治疗肿瘤均具有较多缺陷,而将两者联合应用能协同治疗肿瘤,克服单一疗法的不足。纳米载体既能包载化疗药物又能递送基因,其用于肿瘤的联合治疗,可减少化疗药物的剂量,增加药物在靶器官的分布量,减轻毒副作用,从而提高抗肿瘤效果;同时保护携带基因的稳定性和完整性,一定程度上提高基因的转染效率,以达到减轻毒副作用及提高疗效的协同目的。基因和化疗药物纳米共载体系用于肿瘤的联合治疗是近年来肿瘤治疗的研究热点。就基因和化疗药物纳米共载体系的类型及负载基因类型,特别是纳米共载体系用于肿瘤联合治疗的研究进行总结和展望。

纳米载体; 基因; 化疗药物; 肿瘤治疗

Fund program:National Natural Science Foundation of China(U1304819,81401519);National Training Programs of Innovation and Entrepreneurship for Undergraduates(201410472030)

0 引 言

化学药物治疗(化疗)是常用和有效的肿瘤治疗方法之一[1],但长期化疗易导致肿瘤细胞产生多药耐药性(multiple drug resistance,MDR);此外化疗具有较强的组织器官毒副作用,且安全剂量的化疗药物不能达到有效治疗肿瘤的目的,这些缺陷均限制了化疗的应用[2-3]。随着对参与肿瘤发生和发展过程中相关分子、细胞和生理机制的进一步认识,肿瘤的治疗趋于多元化,治疗方式也更具有针对性[4]。近年来,人们认识到肿瘤的发生与多种基因的突变密切相关,因此期待通过基因治疗即将外源基因导入靶细胞,抑制肿瘤生长甚至杀伤肿瘤细胞,达到治疗肿瘤的目的,并在一定程度上取得了显著进展[5-6];但基因易降解、细胞转染效率低、病毒载体的不安全性以及人体的免疫反应等均极大限制了肿瘤基因治疗的广泛应用[7]。因此,需借助合适的递送载体提高疗效。

化疗或基因治疗单独使用均具有较多缺陷,而将两者联合应用能发挥协同作用,克服单一治疗手段的缺陷,提高抗肿瘤效果[8-9]。纳米输送体系是一种属于纳米级微观范畴的药物载体输送系统。其既能携带化疗药物又可负载基因片段,可减少化疗药物的使用剂量,增加药物在靶器官的分布量,显著降低机体的不良反应,减轻毒副作用,从而提高抗肿瘤效果;同时保护携带基因的稳定性和完整性,一定程度上提高基因的转染效率,以达到减轻毒副作用及提高疗效的协同目的。相对于传统单一载体,基因和化疗药物纳米共载体系具有广阔的应用前景。本文就基因和化疗药物纳米共载体系的类型、负载基因类型及其近年来用于肿瘤联合治疗的研究进行总结。

1 基因和化疗药物纳米共载体类型

1.1 纳米脂质体

脂质体是由磷脂和胆固醇有序排列形成的类生物膜的双分子脂质囊泡。脂质体具有低毒、无免疫原性、药物缓释性和降低药物毒副作用等优点[10]。目前,常用于基因和化疗药物共载的脂质体主要是阳离子脂质体[11]。阳离子脂质体通常由阳离子脂质和中性脂质组成,能包封化疗药物并与DNA形成复合物。

Kato等[12]研制了新型阳离子脂质体(LipoTrust EX Oligo)用于共载O6-甲基鸟嘌呤-DNA甲基转移酶(MGMT)基因的小干扰RNA(smallinterferingRNA, siRNA)和化疗药物替莫唑胺,进行神经胶质瘤体内动物实验治疗发现,经MGMT siRNA诱导后的胶质瘤干细胞对替莫唑胺敏感性有所增加。由于脂质体在体内实验中表现出较差的特异性,研究人员发现通过多肽等对其修饰能增强阳离子脂质体递送基因和化疗药物的效果[13]。Jiang等[14]用精氨酸-甘氨酸-天冬氨酸(RGD)多肽来修饰阳离子脂质体,共载抑制P-糖蛋白(P-glycoprotein,P-gp)的siRNA和阿霉素(doxorubicin,DOX)用于耐阿霉素乳腺癌(MCF7/ADR)治疗发现,经修饰后的脂质体不仅能显著抑制P-gp的表达,提高化疗效果,还具有良好的肿瘤靶向作用。

1.2 纳米粒

纳米粒是一类由天然或合成高分子材料制成的固体微粒,粒径约为10~1 000 nm。纳米粒的粒径小、稳定性高,可改变药物在体内的分布,增加药物在靶器官的生物分布,延长药物在体内的循环时间,提高疗效的同时还能降低药物的毒副作用[15]。目前,常用作基因和化疗药物共载体的纳米粒有聚合物纳米粒和无机纳米粒。

聚合物纳米粒多由生物可降解材料制备,包括高聚物如聚乙烯亚胺(polyethyleneimine,PEI)[16-17]、聚赖氨酸(PLL)[18-20]、树枝状高分子类(dendrimers)(如聚酰胺-胺(polyamidoamine,PAMAM)[21-23])等人工合成聚合物和壳聚糖(chitosan,CS)[24-25]等天然阳离子大分子。Liu等[26]通过聚乙烯亚胺-聚乙二醇(PEI-PEG)共聚物制备了多功能纳米粒共载DNA和化疗药物DOX,发现该体系具有较高的转染效率和良好的抗肿瘤活性。

在无机纳米粒中,介孔二氧化硅纳米颗粒(mesoporoussilicananoparticles,MSNPs)尤为常用。MSNPs是一种多孔纳米粒,多孔内可负载化疗药物,延长药物作用时间;经阳离子多聚物修饰后又可负载基因,用于联合治疗肿瘤。Chen等[27]用二代聚酰胺-胺(G2-PAMAM)修饰MSNPs来呈递Bcl-2 siRNA和DOX。Pakunlu等[28-29]研究发现,与脂质体呈递siRNA逆转耐药性相比,经修饰后的MSNPs能靶向定位在细胞核周区域,诱导细胞凋亡,降低泵耐药性,提高DOX的肿瘤杀伤作用,其杀伤效果远高于DOX游离药物,并具有较低的毒副作用。Meng等[30-31]制备了PEI MSNPs和PEI-PEG MSNPs共递送P-gp siRNA和DOX,用于人口腔表皮样癌细胞系KB-V1肿瘤治疗发现,与只负载DOX的纳米粒相比,共载体系能明显降低耐药性,显著减少用药剂量,提高抗肿瘤效果。

此外,量子点(QDs)也是一种有效的基因和化疗药物的纳米载体。Li等[32]制备了由β-环糊精(βcyclodextrin,β-CD)和L-精氨酸或L-组氨酸修饰的硒化镉/硒化锌量子点,通过疏水性β-CD腔包埋DOX,P-gp siRNA则络合于阳离子氨基酸上;该体系不仅能明显逆转肿瘤细胞的耐药性,还能提高化疗药物的抗肿瘤效果。

层层自组装纳米粒(layer-by-layer self-assembly nanoparticles,LbL NPs)是近年来研究的新型基因和化疗药物的纳米载体。Deng等[33]通过交替沉积的方法制备了LbL NPs,该体系表面的一个双分子层能有效负载3 500个siRNA分子;LbL NPs的半衰期延长至28 h,能使靶蛋白P-gp的表达降低80%,从而显著逆转肿瘤细胞的耐药性,增强化疗药物DOX的抑瘤效果。动物实验结果表明,其能使肿瘤体积减少87.5%且无明显毒副作用。

1.3 纳米胶束

聚合物胶束是由两亲性聚合物自组装形成的超分子聚集体或具有核-壳结构的纳米载药体系[34]。两亲性嵌段聚合物胶束由亲水性片段(如PEG)和疏水性片段(如聚己内酯(polycaprolactone,PCL)、聚乳酸-羟基乙酸共聚物(poly(lactic-co-glycolic acid), PLGA)等)组成,聚阳离子PEI则用于负载基因,以实现共递送化疗药物和基因,提高治疗效果。

Zou等[35]制备了叶酸(FA)-PEG-PEI-PCL聚合物胶束,用其共载抗凋亡基因Bcl-2 siRNA和化疗药物DOX用于卵巢癌的治疗发现,当DOX的质量浓度为10 μg/ml时,该共载体系能抑制85%的人卵巢癌细胞SKOV-3的生长,与包载等剂量DOX的单一纳米载体相比,细胞凋亡率约增加35%,抑瘤效果显著。Cheng等[36]用叶酸修饰的聚乙二醇-聚谷酰胺(FA-PEG-PGA)聚合物胶束共载Bcl-2siRNA和DOX进行C6神经胶质瘤治疗发现,与单独给予化疗药物相比,共载纳米体系能显著下调Bcl-2的表达,使其表达水平下降80%,同时诱导肿瘤细胞凋亡比例高达92%,具有显著的抗肿瘤效果。

2 纳米共载体负载的基因类型

由于肿瘤的异质性和控制肿瘤生长增殖、迁移信号通路的复杂性,使得实现基因和化疗药物联合治疗肿瘤最佳效果的关键之一在于选择合适的外源基因类型,以达到与化疗药物协同并增强化疗效果的目的。

2.1 逆转耐药基因

长期化疗会使患者对化疗药物产生耐药性,耐药性是治疗肿瘤的一个主要障碍。随着对肿瘤耐药相关基因和分子机制的深入研究,发现耐药性与P-gp高度相关,P-gp在各种恶性肿瘤组织中过度表达,将化疗药物泵出细胞,进而使肿瘤细胞对化疗药物产生耐药性。因此,逆转肿瘤耐药基因靶向沉默耐药相关蛋白的表达能显著逆转耐药性,其与化疗药物联合使用,可增强化疗效果[37]。

Xiong和Lavasanifar[38]用聚合物胶束纳米粒共递送P-gp siRNA和DOX进行人乳腺癌的靶向治疗发现,与MDA-MB-435细胞共孵育4 h后,该体系能100%地截留在细胞质内,显著提高了化疗药物在肿瘤细胞内的累积,肿瘤细胞凋亡率达80%;动物实验中注射24 h时通过活体成像发现,与其他组相比,该体系具有良好的肿瘤靶向性。

2.2 促凋亡基因

肿瘤细胞的一大特点是其能逃脱程序性细胞死亡或细胞凋亡。机体细胞的凋亡是一个复杂的动态过程,由促凋亡基因和抗凋亡基因共同调节。而多种基因突变导致肿瘤细胞的无限增殖会使这种平衡发生紊乱。诱导肿瘤细胞凋亡基因和促凋亡药物的联合使用有望成为新型的肿瘤疗法[39]。

诱导细胞凋亡依赖于抑癌基因的表达,如抑癌基因p53;促凋亡则需要某些凋亡因子的表达,如肿瘤坏死因子α(tumor necrosis factor-α,TNF-α)基因或肿瘤坏死因子相关凋亡诱导配体(TRAIL)基因,以及一些抗凋亡基因survivin、Bcl-2或BAX的沉默。Xu等[40]用双层纳米粒呈递p53和DOX,发现其明显提高了DOX对肿瘤细胞的抑制率。给荷瘤小鼠联合使用DOX和TRAIL质粒的纳米复合物,结果表明,与单独使用DOX或TRAIL质粒相比,其能明显延长荷瘤小鼠的生存时间[41-43]。Su等[44]用阳离子脂质体复合物共载TNF-α和DOX用于人神经细胞瘤、肝癌和结肠癌的治疗,研究结果发现,TNF-α mRNA在肿瘤细胞中的表达水平明显上升,肿瘤体积与单独使用DOX脂质体相比亦明显减少,表明联合给药能显著增强肿瘤抑制作用。Hu等[37]用β-CD和PEI制备的聚合物胶束共载survivin siRNA和紫杉醇(paclitaxel,PTX)治疗卵巢癌,结果表明,该纳米共载体系对人卵巢癌细胞SKOV-3促凋亡与抑制肿瘤细胞生长效果显著优于基因或化疗药物单独使用时的效果。

2.3 抗肿瘤血管内皮基因

肿瘤的生长和增殖需要血管为其提供充足的氧和营养物质。抑制血管生成也是目前有望治疗肿瘤的方法。血管内皮生长因子(vascular endothelial growth factor,VEGF)是公认的促进血管生成的调节因子。将VEGF siRNA或抗VEGF抗体药物与化疗联合使用已被证明能有效抑制肿瘤生长和延长生存时间[45]。Zhu等[46]使用生物可降解阳离子胶束共递送VEGF siRNA和PTX用于前列腺癌的治疗发现,其能较高地被细胞内吞,既能抑制肿瘤血管的生成,切断肿瘤营养供应,又能抑制肿瘤细胞的生长,提高化疗效果。许多研究亦证明下调VEGF基因与化疗药物联合使用能抑制血管生成,增强抗肿瘤效果[47-49]。

2.4 其他基因类型

化疗与免疫疗法相结合是近几年用于肿瘤治疗的新兴联合疗法,即将化疗药物与表达相应细胞因子(如Bcl-2、白细胞介素(IL)等)的质粒通过共递送体系作用于肿瘤,达到治疗目的。Kim领导的课题组研究发现,与单一疗法相比,共载IL-12基因和PTX的水溶性脂质体能明显抑制肺部肿瘤的生长[50]。

3 展望

基因和化疗药物纳米共载体可克服肿瘤的MDR等障碍,提高肿瘤治疗效果。近年的研究表明,基因和化疗药物纳米共载体系用于肿瘤的联合治疗已取得了巨大进步,但仍存在完善和发展的空间。同时也存在着诸多问题,如纳米载体构建的安全性,基因和药物的靶向及其释放的先后顺序问题,基因转染效率低下及溶酶体逃脱,负载基因和药物的剂量及其最适比例等。目前,基因和化疗药物纳米共载体系的研究仍处于临床前的研究阶段,尚未应用于临床。因此,更为安全、有效、多功能的基因和化疗药物纳米共载体仍需深入研究和探索。

利益冲突 无

[1]Siegel R,Ma J,Zou ZH,et al.Cancer statistics,2014[J].CA Cancer J Clin,2014,64(1):9-29.DOI:10.3322/caac.21208.

[2]Agrawal SK,Sanabria-Delong N,Coburn JM,et al.Novel drug release profiles from micellar solutions of PLA-PEO-PLA triblock copolymers[J].J Control Release,2006,112(1):64-71.DOI:10.1016/j. jconrel.2005.12.024.

[3]Aleku M,Schulz P,Keil O,et al.Atu027,a liposomal small interfering RNA formulation targeting protein kinase N3,inhibits cancer progression[J].Cancer Res,2008,68(23):9788-9798.DOI: 10.1158/0008-5472.CAN-08-2428.

[4]Adams ML,Lavasanifar A,Kwon GS.Amphiphilic block copolymers for drug delivery[J].J Pharm Sci,2003,92(7):1343-1355.DOI: 10.1002/jps.10397.

[5]ZhengMY,LiuY,SamsonovaO,etal.Amphiphilicand biodegradable hy-PEI-g-PCL-b-PEG copolymers efficiently mediate transgene expression depending on their graft density[J].Int J Pharm,2012,427(1):80-87.DOI:10.1016/j.ijpharm.2011.05.017.

[6]Zhao XL,Li ZY,Liu WG,et al.Octaarginine-modified chitosan as a nonviral gene delivery vector:properties and in vitro transfection efficiency[J].J Nanopart Res,2011,13(2):693-702.DOI:10.1007/ s11051-010-0067-3.

[7]Cotten M,Wagner E,Zatloukal K,et al.High-efficiency receptormediated delivery of small and large (48 kilobase gene constructs using the endosome-disruption activity of defective or chemically inactivated adenovirus particles[J].Proc Natl Acad Sci U S A,1992, 89(13):6094-6098.

[8]Greco F,Vicent MJ.Combination therapy:opportunities and challenges for polymer-drug conjugates as anticancer nanomedicines[J]. Adv Drug Deliv Rev,2009,61(13):1203-1213.DOI:10.1016/j.addr. 2009.05.006.

[9]Broxterman HJ,Georgopapadakou NH.Anticancer therapeutics:" Addictive"targets,multi-targeted drugs,new drug combinations[J]. Drug Resist Updat,2005,8(4):183-197.DOI:10.1016/j.drup.2005. 07.002.

[10]Tsuruta W,Tsurushima H,Yamamoto T,et al.Application of liposomes incorporating doxorubicin with sialyl Lewis X to prevent stenosis after rat carotid artery injury[J].Biomaterials,2009,30(1): 118-125.DOI:10.1016/j.biomaterials.2008.09.009.

[11]王明芳,张娜.共递送抗癌药多柔比星和基因的纳米载药系统研究进展[J].中国新药与临床杂志,2014,33(10):713-718. Wang MF,Zhang N.Advances of doxorubicin and gene in nano-drug delivery systems for co-delivery[J].Chin J New Drugs Clin Rem, 2014,33(10):713-718.

[12]Kato T,Natsume A,Toda H,et al.Efficient delivery of liposomemediated MGMT-siRNA reinforces the cytotoxity of temozolomide in GBM-initiating cells[J].Gene Ther,2010,17(11):1363-1371.DOI: 10.1038/gt.2010.88.

[13]Tsouris V,Joo MK,Kim SH,et al.Nano carriers that enable codelivery of chemotherapy and RNAi agents for treatment of drugresistant cancers[J].Biotechnol Adv,2014,32(5):1037-1050.DOI: 10.1016/j.biotechadv.2014.05.006.

[14]Jiang J,Yang SJ,Wang JC,et al.Sequential treatment of drugresistant tumors with RGD-modified liposomes containing siRNA or doxorubicin[J].Eur J Pharm Biopharm,2010,76(2):170-178.DOI: 10.1016/j.ejpb.2010.06.011.

[15]Hu CM,Zhang LF.Nanoparticle-based combination therapy toward overcoming drug resistance in cancer[J].Biochem Pharmacol,2012, 83(8):1104-1111.DOI:10.1016/j.bcp.2012.01.008.

[16]Zhang LY,Wang TT,Li L,et al.Multifunctional fluorescentmagnetic polyethyleneimine functionalized Fe3O4-mesoporous silica yolk-shell nanocapsules for siRNA delivery[J].Chem Commun (Camb),2012,48(69):8706-8708.DOI:10.1039/c2cc33472k.

[17]Sun XY,Chen JL,Chen HL,et al.Polyethylenimine modified liposomes as potential carriers for antitumor drug delivery in vitro[J]. Pharmazie,2012,67(5):426-431.DOI:10.1691/ph.2012.1116.

[18]Liu PF,Yu H,Sun Y,et al.A mPEG-PLGA-b-PLL copolymer carrier for adriamycin and siRNA delivery[J].Biomaterials,2012,33(17): 4403-4412.DOI:10.1016/j.biomaterials.2012.02.041.

[19]Du J,Sun Y,Shi QS,et al.Biodegradable nanoparticles of mPEGPLGA-PLL triblock copolymers as novel non-viral vectors for improving siRNA delivery and gene silencing[J].Int J Mol Sci,2012, 13(1):516-533.DOI:10.3390/ijms13010516.

[20]Chang Kang H,Bae YH.Co-delivery of small interfering RNA and plasmid DNA using a polymeric vector incorporating endosomolytic oligomeric sulfonamide[J].Biomaterials,2011,32(21):4914-4924. DOI:10.1016/j.biomaterials.2011.03.042.

[21]Wang C,Pan SR,Wu HM,et al.PEGylation of polyamidoamine dendrimer and the properties for gene vectors[J].Acta pharm Sin, 2011,46(1):102-108.

[22]Qi R,Gao Y,Tang Y,et al.PEG-conjugated PAMAM dendrimers mediate efficient intramuscular gene expression[J].AAPS J,2009,l1 (3):395-405.DOI:10.1208/s12248-009-9116-1.

[23]Tang Y,Li YB,Wang B,et al.Efficient in vitro siRNA delivery and intramuscular gene silencing using PEG-modified PAMAM dendrimers[J].Mol Pharm,2012,9(6):1812-1821.DOI:10.1021/ mp3001364.

[24]Kim TH,Kim SI,Akaike T,et al.Synergistic effect of poly (ethylenimine)on the transfection efficiency of galactosylated chitosan/DNA complexes[J].J Control Release,2005,105(3):354-366.DOI:10.1016/j.jconrel.2005.03.024.

[25]Lyu PP,Ma YF,Yu R,et al.Targeted delivery of insoluble cargo (paclitaxel)by PEGylated chitosan nanoparticles grafted with Arg-Gly-Asp(RGD)[J].Mol Pharm,2012,9(6):1736-1747.DOI: 10.1021/mp300051h.

[26]Liu CX,Liu FX,Feng LX,et al.The targeted co-delivery of DNA and doxorubicin to tumor cells via multifunctional PEI-PEG based nanoparticles[J].Biomaterials,2013,34(10):2547-2564.DOI: 10.1016/j.biomaterials.2012.12.038.

[27]Chen AM,Zhang M,Wei DG,et al.Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells[J].Small,2009,5(23):2673-2677.DOI:10.1002/smll.200900621.

[28]Pakunlu RI,Cook TJ,Minko T.Simultaneous modulation of multidrug resistance and antiapoptotic cellular defense by MDR1 and BCL-2 targeted antisense oligonucleotidesenhancesthe anticancer efficacy of doxorubicin[J].Pharm Res,2003,20(3):351-359.DOI:10.1023/A:1022687617318.

[29]Pakunlu RI,Wang Y,Tsao W,et al.Enhancement of the efficacy of chemotherapy for lung cancer by simultaneous suppression of multidrug resistance and antiapoptotic cellular defense:novel multicomponent delivery system[J].Cancer Res,2004,64(17):6214-6224.DOI:10.1158/0008-5472.CAN-04-0001.

[30]Meng H,Liong M,Xia T,et al.Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line[J].ACS Nano, 2010,4(8):4539-4550.DOI:10.1021/nn100690m.

[31]Meng H,Mai WX,Zhang HY,et al.Co-delivery of an optimal drug/ siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo[J]. ACS Nano,2013,7(2):994-1005.DOI:10.1021/nn3044066.

[32]Li JM,Wang YY,Zhao MX,et al.Multifunctional QD-based codelivery of siRNA and doxorubicin to HeLa cells for reversal of multidrug resistance and real-time tracking[J].Biomaterials,2012, 33(9):2780-2790.DOI:10.1016/j.biomaterials.2011.12.035.

[33]DengZJ,Morton SW,Ben-Akiva E,etal.Layer-by-layer nanoparticles for systemic codelivery of an anticancer drug and siRNA for potential triple-negative breast cancer treatment[J].ACS Nano,2013,7(11):9571-9584.DOI:10.1021/nn4047925.

[34]丁媛媛,田宝成,韩景田.聚合物胶束作为抗肿瘤药靶向给药体系的研究进展[J].中国医药工业杂志,2015,46(8):904-908.DOI: 10.16522/j.cnki.cjph.2015.08.025. Ding YY,Tian BC,Han JT.Progress of polymeric micelles for targeted delivery of antineoplastic drugs[J].Chin J Pharm,2015,46 (8):904-908.DOI:10.16522/j.cnki.cjph.2015.08.025.

[35]Zou SY,Cao N,Cheng D,et al.Enhanced apoptosis of ovarian cancer cells via nanocarrier-mediated codelivery of siRNA and doxorubicin[J].Int J Nanomedicine,2012,7(7):3823-3835.DOI: 10.2147/IJN.S29328.

[36]Cheng D,Cao N,Chen JF,et al.Multifunctional nanocarrier mediated co-delivery of doxorubicin and siRNA for synergistic enhancement of glioma apoptosis in rat[J].Biomaterials,2012,33(4): 1170-1179.DOI:10.1016/j.biomaterials.2011.10.057.

[37]Hu QL,Li W,Hu XR,et al.Synergistic treatment of ovarian cancer by co-delivery of survivin shRNA and paclitaxel via supramolecular micellar assembly[J].Biomaterials,2012,33(27):6580-6591.DOI: 10.1016/j.biomaterials.2012.05.060.

[38]Xiong XB,Lavasanifar A.Traceable multifunctional micellar nanocarriers for cancer-targeted co-delivery of MDR-1 siRNA and doxorubicin[J].ACS Nano,2011,5(6):5202-5213.DOI:10.1021/ nn2013707.

[39]Wendel HG,De Stanchina E,Fridman JS,et al.Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy[J].Nature, 2004,428(6980):332-337.DOI:10.1038/nature02369.

[40]Xu QX,Xia YJ,Wang CH,et al.Monodisperse double-walled microspheres loaded with chitosan-p53 nanoparticles and doxorubicin for combined gene therapy and chemotherapy[J].J Control Release, 2012,163(2):130-135.DOI:10.1016/j.jconrel.2012.08.032.

[41]Fan H,Hu QD,Xu FJ,et al.In vivo treatment of tumors using hostguest conjugated nanoparticles functionalized with doxorubicin and therapeutic gene pTRAIL[J].Biomaterials,2012,33(5):1428-1436. DOI:10.1016/j.biomaterials.2011.10.043.

[42]Han L,Huang RQ,Li JF,et al.Plasmid pORF-hTRAIL and doxorubicin co-delivery targeting to tumor using peptide-conjugated polyamidoamine dendrimer[J].Biomaterials,2011,32(4):1242-1252.DOI:10.1016/j.biomaterials.2010.09.070.

[43]Liu SH,Guo YB,Huang RQ,et al.Gene and doxorubicin co-delivery system for targeting therapy of glioma[J].Biomaterials,2012,33(19): 4907-4916.DOI:10.1016/j.biomaterials.2012.03.031.

[44]Su B,Cengizeroglu A,Farkasova K,et al.Systemic TNFα gene therapy synergizes with liposomal doxorubicine in the treatment of metastatic cancer[J].Mol Ther,2013,21(2):300-308.DOI:10.1038/ mt.2012.229.

[45]Glade-Bender J,Kandel JJ,Yamashiro DJ.VEGF blocking therapy in the treatment of cancer[J].Expert Opin Biol Ther,2003,3(2): 263-276.DOI:10.1517/14712598.3.2.263.

[46]Zhu CH,Jung S,Luo SB,et al.Co-delivery of siRNA and paclitaxel into cancer cells by biodegradable cationic micelles based on PDMAEMA-PCL-PDMAEMA triblock copolymers[J].Biomaterials, 2010,31(8):2408-2416.DOI:10.1016/j.biomaterials.2009.11.077.

[47]Huang HY,Kuo WT,Chou MJ,et al.Co-delivery of anti-vascular endothelial growth factor siRNA and doxorubicin by multifunctional polymeric micelle for tumor growth suppression[J].J Biomed Mater Res A,2011,97(3):330-338.DOI:10.1002/jbm.a.33055.

[48]Sundaram S,Trivedi R,Durairaj C,et al.Targeted drug and gene delivery systems for lung cancer therapy[J].Clin Cancer Res,2009, 15(23):7299-7308.DOI:10.1158/1078-0432.CCR-09-1745.

[49]Janát-Amsbury MM,Yockman JW,Lee M,et al.Combination of local,nonviral IL12 gene therapy and systemic paclitaxel treatment in a metastatic breast cancer model[J].Mol Ther,2004,9(6):829-836.DOI:10.1016/j.ymthe.2004.03.015.

[50]Janát-Amsbury MM,Yockman JW,Lee M,et al.Local,non-viral IL-12 gene therapy using a water soluble lipopolymer as carrier system combined with systemic paclitaxel for cancer treatment[J].J Control Release,2005,101(1-3):273-285.DOI:10.1016/j.jconrel.2004.08. 015.

Research progress in co-delivery of gene and chemotherapy drugs with nanocarriers for combination cancer therapy

Wei Xiangjuan,Qin Jingwen,Zhang Liuyuan,Chen Guimei,Nan Wenbin,Chen Hongli

School of Life Science and Technology,Xinxiang Medical University;Institute of Nano Biomedical Material,Xinxiang Medical University,Xinxiang 453003,China

Chen Hongli,Email:chenhlhl@126.com

Chemotherapy or gene therapy has many defects when used alone in the treatment of cancers.Codelivery of chemotherapy drugs and gene therapy could achieve synergistic therapeutic effect and overcome the shortcomings of monotherapy.Nanocarrier can package chemotherapy drugs and deliver genes for combination cancer therapy,which will increase the amount of the drug distribution in target organ and reduce the toxic side effects,thus enhancing the treatment efficacy.Meanwhile,the nanocarrier can protect the stability and integrity of genes,and improve the efficiency of gene transfection to a certain extent,to achieve the purpose of reducing side effects and improving the synergetic effects of the therapy.Co-delivery of gene and chemotherapy drugs with nanocarriers for combination cancer therapy is currently the hotspot of tumor treatment.The types of co-delivery carriers for gene and chemotherapy drugs and loading genetic types are summarized as well.On the basis,future research prospect is discussed.

Nanocarier;Gene;Chemotherapy drug;Cancer therapy

陈红丽,Email:chenhlhl@126.com

10.3760/cma.j.issn.1673-4181.2016.05.011

国家自然科学基金(U1304819,81401519);国家级大学生创新训练计划项目(201410472030)

2016-06-18)

猜你喜欢

脂质体阳离子载体
什么是水的化学除盐处理?
创新举措强载体 为侨服务加速跑
PEG6000修饰的流感疫苗脂质体的制备和稳定性
坚持以活动为载体有效拓展港澳台海外统战工作
烷基胺插层蒙脱土的阳离子交换容量研究
超滤法测定甘草次酸脂质体包封率
黄芩总黄酮脂质体的制备及其体外抗肿瘤活性
TPGS修饰青蒿琥酯脂质体的制备及其体外抗肿瘤活性
阳离子Gemini表面活性剂的应用研究进展
创新德育教育载体