APP下载

西南天山乌什县晚三叠世镁铁-超镁铁质层状杂岩体年代学及地球化学研究

2016-03-07胡朝斌李培庆辜平阳陈锐明查显锋庄玉军

地质力学学报 2016年4期
关键词:辉石铁质源区

胡朝斌,李培庆,辜平阳,陈锐明,查显锋,庄玉军

(1.中国地质调查局西安地质矿产研究所,西安 710054;2.中国地质大学地球科学与资源学院,北京 100083)

西南天山乌什县晚三叠世镁铁-超镁铁质层状杂岩体年代学及地球化学研究

胡朝斌1,李培庆2,辜平阳1,陈锐明1,查显锋1,庄玉军1

(1.中国地质调查局西安地质矿产研究所,西安 710054;2.中国地质大学地球科学与资源学院,北京 100083)

镁铁-超镁铁质层状杂岩体被认为是岩石圈伸展的重要标志之一,携带有丰富的地幔信息,是研究地幔物质组成、深部地质作用的绝佳对象。西南天山乌什县北巴勒的尔喀克沟地区新发现的镁铁-超镁铁质岩体具有层状杂岩特征,获得辉长岩锆石U-Pb年龄为224±4 Ma,属于晚三叠世。岩石地球化学分析显示富水、富碱、轻稀土富集、重稀土亏损以及明显富集Th、U、Nb、Ta、La、Ce不相容元素等特征,指示其源自于含水的富集型地幔源区,是石榴石二辉橄榄岩较低程度部分熔融的产物。其原生岩浆可能为富铁、钛的高镁玄武质岩浆,岩石系列主要受分离结晶作用控制,同化混染作用影响小。该期岩浆活动于南天山洋盆闭合、板块的碰撞造山活动之后的陆内造山阶段,代表了板块拉伸背景下幔源岩浆演化的产物,指示西南天山地区在三叠纪末可能存在一期岩石圈伸展事件。

西南天山;镁铁-超镁铁质;层状杂岩

0 引言

镁铁-超镁铁质岩携带有丰富的地幔信息,是研究地幔物质组成、深部地质作用的绝佳对象[1~2]。层状岩体还具有独特的层状韵律旋回特征,被认为是研究岩浆分异、混合以及地壳混染的“最佳天然实验室”[3]。研究表明,镁铁-超镁铁质层状杂岩体主要与岩石圈的伸展有关,具体可以形成于不同的构造环境,如大陆裂谷[4~5]、地幔柱活动有关的环境[1,6~7]以及造山后的伸展环境[8]。其地幔源区以及岩浆性质也是多样的,可以利用岩石地球化学区分和识别[9~10]。因此,通过对镁铁-超镁铁层状杂岩体的岩石成因、岩浆作用过程的研究,可以了解地幔源区的特征、深部地质作用的过程,并能为判断区域构造环境提供重要约束。

天山造山带是中亚巨型复合造山系的组成部分,是古亚洲洋在形成、演化和消亡过程中伴随着的陆壳增生、俯冲-消减-碰撞造山和拼合的产物[11~13]。多数学者认为古亚洲洋在天山地区复杂的增生造山作用晚古生代就已经结束[14~18],而天山地区中生代以来地幔特征、岩浆活动(印支期)、构造演化过程及深部动力学机制一直模糊不清。一些学者通过花岗质岩浆研究,认为区域上印支期岩浆事件依然受控于南天山洋消减闭合后的伸展体制[19~21];刘畅等[22]则认为印支期的岩浆作用是早二叠世开始的陆内裂谷的延续;还有学者认为印支期岩浆是特提斯洋于海西晚期—印支早期向北俯冲远程效应引起的陆内岩浆活动[23~24]。与此同时,有学者通过对区域上三叠纪碱性岩、煌斑岩的研究,认为中生代以来的天山地区存在有富集型的地幔源区[21~22]。研究区所在的西南天山处于中亚造山带和塔里木克拉通接壤部位,晚古生代以来主要以被动陆缘沉积为主[25~27],岩浆岩零星出露,难以有效约束区域上该时期的地幔属性及深部动力学机制。本研究团队在西南天山乌什县北新发现了晚三叠世碱性镁铁-超镁铁质层状杂岩体,针对这些岩石开展详细研究,可以为制约地幔源区特征、构造属性、深部动力学机制等问题提供一些关键的证据。

1 地质特征

本研究团队在西南天山乌什县北巴勒的尔喀克沟地区发现镁铁-超镁铁质层状杂岩体,其大地构造位置属于前人厘定的西南天山晚古生代构造岩浆岩带(见图1a)。该层状杂岩体整体呈北东—南西向侵位于下石炭统甘草湖组钙质粉砂岩、泥质板岩中。目前已厘定出数十条枝状(脉状)产出的镁铁-超镁铁质岩体(见图1b),并伴随有镁铁质细脉,产状主要受层间裂隙控制。岩体厚度变化于100~200 m之间,延伸约1 km。岩体与围岩接触带上可见明显的冷凝边(图2a),而其内部则有明显的层状分异特征,可见橄榄辉石岩-辉石岩-辉长岩-辉石闪长岩(闪长岩)层状韵律(图2c—2e),不同的岩性层厚度变化大,主体以辉石岩层、辉长岩层为主,厚5~10 m,橄榄辉石岩层厚度一般1~2 m,闪长岩层或者辉石闪长岩层厚度通常小于1 m。不同岩性层之间界线渐变过渡,表现为矿物种类(主要为橄榄石和辉石)、含量以及结晶程度的连续变化(见图2d)。此外,相伴产出的基性岩脉(见图2b)与层状岩体产状一致,厚度1~3 m,延伸小于300 m。

图1 研究区区域地质示意图(a,底图修改自杨树锋等[28])及研究区地质简图(b)Fig.1 Regional geological map and geological sketch map of study area

岩石镜下特征见图3。橄辉岩、辉石岩具有正堆晶结构、似斑状结构、嵌晶结构,主要堆晶相为橄榄石、单斜辉石,其次为斜方辉石,基质富含角闪石(见图3a—3c)。橄榄石多蛇纹石化,少量保存完好,辉石多透闪石(纤闪石)化;辉长岩(辉石闪长岩)为辉长-辉绿结构,斜长石自型—半自型,辉石以普通辉石为主,半自型,局部透闪石化。角闪石为自型、长柱状,长轴略定向。此外,可见少量的钛铁矿(图3d、3e);闪长岩中角闪石呈自型、短柱状,表面黏土化,但仍保留有六边形轮廓。长石呈它型充填,此外可见较多的长柱状、针状磷灰石(图3f)。

2 锆石同位素年龄

2.1 样品采集与测试分析方法

测试样品采自于层状杂岩体中的辉长岩,去除风化面,选取蚀变程度低、结晶较好的岩石样品(5004-3)进行分析测试工作。样品碎样和锆石挑选工作在河北省廊坊区域地质矿产调查研究所实验室完成,锆石的制靶和阴极发光(CL)显微照相在西北大学大陆动力学教育部重点实验室完成,锆石U-Pb年代学分析测试在国土资源部岩浆作用成矿与找矿重点实验室利用LA-ICP-MS完成。应用Glitter(Ver 4)程序对获得的锆石U-Pb年龄数据进行计算分析,利用208Pb矫正法对普通Pb进行校正,利用NIST610作为外标、Si29作为内标校正锆石微量元素,采用Isoplot(ver 3)绘制锆石U-Pb年龄谐和图、计算MSWD值,具体步骤参考相关文献[29~30]。

2.2 锆石U-Pb测试分析结果

在辉长岩样品中挑选了约400粒锆石,用LA-ICP-MS方法对具有典型岩浆锆石特征(阴极发光图像具典型震荡生长环带,锆石粒径50~150 μm,为柱状自形晶体,长宽比1.5~3之间)的锆石(见图4)进行分析测试,获得了17个有效年龄数据(见表1)。17个测点Th、U含量高,Th/U比值为0.29~1.63,平均值0.64(>0.4),与岩浆锆石特征[31]一致。所测得的206Pb/238U年龄值十分集中,在 (216±3)~(231±6) Ma之间,206Pb/238U的加权平均年龄为224±4 Ma(见图4,MSWD=1.25,N=17)。根据2015年国际地质年代表,该年龄属于晚三叠世诺利期。

a—岩体侵入边界;b—岩脉;c—橄辉岩;d—辉石岩与辉长岩;e—层状韵律特征图2 巴勒的尔喀克沟岩体野外宏观特征Fig.2 Outcrop photos of the layered Mafic-ultramafic intrusions

a—橄辉岩(-);b—蛇纹石化、透闪石化橄辉岩(+);c—含橄榄辉石岩(+);d—辉长岩(+);e—辉石闪长岩(+);f—闪长岩(-);Ol—橄榄石;Opx—斜方辉石;Cpx—单斜辉石;Tr—透闪石;Ser—蛇纹石;Hb—角闪石;Pl—斜长石;Mt—磁铁矿;Ilm—钛铁矿;Ap—磷灰石图3 巴勒的尔喀克沟岩体岩石镜下特征Fig.3 Microscope characteristics of the Baladikagou pluton

图4 辉长岩锆石阴极发光图像、U-Pb年龄协和图Fig.4 CL images of zircons, U-Pb concordia diagram

分析号Pb/10-6Th/10-6U/10-6Th/U年龄/Ma比值207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ207Pb/206Pb1σ207Pb/235U1σ206Pb/238U1σ协和度5004/3/11051725950.29487.2122.49244.312.18219.73.690.05690.0030.27200.0150.034670.00060.115004/3/2361161980.59328.9157.34237.115.14227.84.340.05300.0040.26310.0190.035970.00070.045004/3/329911610.56325.5227.15234.322.01225.15.640.05290.0060.25960.0270.035540.00090.045004/3/4801944430.44221.7155.43229.814.21230.44.300.05060.0040.25400.0180.036390.000705004/3/517732810570.31575.780.48249.88.24216.32.980.05920.0020.27890.0100.034120.00050.155004/3/6512302700.85269.6173.93221.815.63217.14.460.05160.0040.24420.0190.034250.00070.025004/3/7472352510.94174.0188.49214.516.22218.04.620.04960.0040.23530.0200.034390.0007-0.025004/3/81122656320.42467.5120.60251.112.21228.13.810.05640.0030.28050.0150.036020.00060.15004/3/91506638110.82220.1142.26229.012.90229.64.050.05050.0030.25300.0160.036250.000705004/3/101086135461.12339.5114.16237.710.86227.23.590.05330.0030.26380.0140.035870.00060.055004/3/1153254332930.16468.577.53245.77.68222.93.150.05640.0020.27380.0100.035180.00050.15004/3/12631173540.33253.6323.41221.330.24218.27.910.05130.0080.24350.0370.034430.00130.015004/3/13796193791.63253.6368.79233.536.71231.66.550.05130.0090.25850.0460.036580.00150.015004/3/14502092640.79435.0178.48246.318.10227.25.100.05560.0050.27460.0230.035880.00080.085004/3/151123066530.47382.1115.05239.111.14225.13.770.05430.0030.26550.0140.035530.00060.065004/3/16842174650.47595.1137.03263.614.93228.14.410.05980.0040.29640.0190.036020.00070.165004/3/17702753970.69238.6165.99224.314.95223.34.530.05100.0040.24720.0180.035250.00070

3 地球化学特征

3.1 样品采集和分析方法

选取较为新鲜的样品,去除风化面后分装、标号。样品的主量、微量、稀土元素测试在国土资源部研究作用成矿与找矿重点实验室完成,主量元素氧化物测定采用X荧光光谱,微量元素、稀土元素测试通过电感耦合等离子质谱仪(ICP-MS)进行。测试结果见表2、表3。

表2 样品全岩主量(%)及微量元素(10-6)分析结果

Table 2 Major elements and trace elements analysis data

表3 样品全岩主量(%)及微量(10-6)元素分析结果

Table 3 Major elements and trace elements analysis data

3.2 主量元素特征

样品去除挥发分后的标准化值显示,橄辉岩、辉石岩SiO2含量较高(43.93%~47.21%),多数与基性岩相当,根据暗色矿物含量归为超镁铁质岩。MgO、FeOt、TiO2、Al2O3、CaO含量高,K2O、Na2O、P2O5含量低,其中橄辉岩MgO平均19.25%,FeOt平均11.92%,TiO2平均2.13%;辉石岩MgO平均15.33%,FeOt平均12.54%,TiO2平均3.08%。橄辉岩Mg#值平均为77.12,辉石岩Mg#值平均为74.29均高于地幔原始岩浆值,具有堆晶岩的特征。

辉长岩(层状)SiO2含量46.62%~50.81%,MgO(平均10.75%)、FeOt(平均12.26%)、TiO2(平均3.23%), Mg#值平均为64.69,富Al2O3(平均12.68%)、CaO(平均7.77%)。基性岩脉具有与辉长岩一致的SiO2含量,MgO相对较高,平均为13.29%,Mg#值平均为67.7,接近地幔原始岩浆值。闪长岩与辉石闪长岩SiO2含量46.94%~54.36%,富Al2O3(平均12.68%)、CaO(平均7.77%),TiO2(平均3.48%),FeOt(平均10.99%),全碱含量高(K2O+Na2O平均为6.11%),MgO含量较低(辉石闪长岩平均6.11%,闪长岩平均4.70%),Mg#值分别平均为52.7、48.6,明显低于原始岩浆值,具有分异残留岩浆特征。在Zr/TiO2*0.0001-Nb/Y分类图解(见图5)中,所有岩石样品均位于碱性系列区域内。

3.3 稀土、微量元素特征

从超镁铁质岩到镁铁质岩岩石稀土元素总量(∑REE)逐渐增加(橄辉岩159.03×10-6,辉石岩251.48×10-6,辉长岩(基性岩脉)251.73×10-6,辉石闪长岩351.38×10-6,闪长岩399.67×10-6)。所有岩石样品稀土元素粒陨石标准化后配分模式图中均表现为轻稀土富集、重稀土亏损的配分模式(见图6)。轻重稀土分异明显,LREE/HREE(轻重稀土元素比值)为3.95~6.06,LaN/YbN值为12.00~20.76,Eu平坦或弱负异常(δEu=0.74~1.05),与OIB特征一致。在原始地幔标准化的微量元素蛛网图(图6)中,不同岩性特征总体相似,指示其为同源岩浆演化的产物。Th、U、Nb、Ta、La、Ce等不相容元素明显富集,具有OIB特征。Rb、Ba、Sr等活泼大离子亲石元素丰度具有不同程度的亏损或富集,其中Sr的贫化与δEu值的变化无明显相关性,因而不应该由斜长石分离结晶作用所致,可能与这些元素抗蚀变能力较弱有关。

标准化值、OIB值据Sun[33]图6 稀土元素球粒陨石标准化配分模式图(左)、微量元素原始地幔标准化蛛网图(右)Fig.6 Chondrite-normalized REE patterns (left) and Spider plot of trace element of samples (right)

4 讨论

4.1 岩浆源区及原生岩浆

镁铁-超镁铁质层状杂岩体的地幔源区也是多样的。活动大陆边缘和造山后伸展环境的镁铁质岩浆主要起源于交代地幔的部分熔融[34-35],裂谷或者地幔柱活动环境的岩浆活动则与软流圈地幔上涌有关,主要源自于富集型的地幔源区[36-37],同时也可能有岩石圈地幔的参与[38]。本研究所获得岩石样品地球化学特征均亏损重稀土,明显富集LREE以及Th、U、Nb、Ta等不相容元素,接近OIB。利用Zr、La、Ba、Nb等具有相近分配系数的元素的比值可以指示源区[39]。本研究样品Zr/Nb值平均为5.78,明显低于原始地幔(~14.8)与亏损地幔(~30)。在Nb-Zr和Y-Zr判别图(见图7a、7b)上,样品也远离亏损地幔与过渡地幔区,全部落在了靠近富集地幔的区域[40]。

该岩石轻、重稀土分馏明显,指示源区可能存在残留的石榴石;而在 (Tb/Yb)N-(La/Sm)N图解(见图8a)中,岩石均落在了石榴石稳定区,说明该岩浆部分熔融主要发生于石榴石区,深度>80 km[41]。Ce/Y-Zr/Nb图解投图结果表明该岩浆可能源自亏损-原始石榴石二辉橄榄岩较低程度(0.5%~3%)的部分熔融(见图8b)[42]。此外,样品中的H2O+含量高(2.18%~5.12%),一般认为水在橄榄石、辉石以及斜长石中为不相容组分,且所有的样品(包括早期结晶相)均可见到岩浆成因的角闪石,部分还可见黑云母,指示其岩浆源区富水,水的加入会降低液相线,这可能是导致地幔发生部分熔融的因素之一。

图7 Zr-Nb和Zr-Y图解[40](图例同图6)Fig.7 Diagrams of Zr-Nb and Zr-Y

图8 球粒陨石标准化(Tb/Yb)N-(La/Sm)N[41]和Ce/Y-Zr/Nb[42]图解(图例同图6)Fig.8 The chondrite-normalized (Tb/Yb)N-(La/Sm)N and Ce/Y-Zr/Nb diagrams

对层状岩体原生岩浆成分的确认是分析其岩石成因、源区性质、部分熔融物理化学条件的关键。但目前对层状岩体原生岩浆的确认并没有很好的手段与方法,主要基于矿物与岩浆之间的平衡,通过堆晶的成分以及堆晶矿物的出现顺序来估算。该方法只能最大程度地接近原生岩浆,并不能直接代表原生岩浆成分。而层状杂岩体的外接触带细粒冷凝边或者同时期形成的小岩体、岩脉或岩墙,在岩浆形成之后受分异作用影响小,在没有岩浆混合的情况下其成分可能直接代表了原生岩浆[43]。同时还可以利用Mg#加以鉴别(与地幔橄榄岩平衡的原生岩浆的 Mg#=0.65~0.75)[44~46]。巴勒的尔喀克沟岩体伴随发育有若干基性岩脉,其出露产状、主微量元素、稀土元素特征均与层状岩体保持一致,表明具有同源性。Mg#值平均为67.7,与地幔橄榄岩平衡的原生岩浆一致,因而这些岩脉岩石成分大体可以代表原始岩浆,其SiO2含量平均为48.1%(去除挥发分,下同),MgO含量平均为13.29%,TiO2含量平均为3.08%,FeOt含量平均为13.30%,为富铁、钛的高镁玄武质岩浆。

4.2 岩浆分异和演化过程

从野外特征而言,岩浆多顺围岩层系界面侵入,接触界线较为平直,发育明显的冷凝边、烘烤边,但岩体内未发现围岩捕掳体,岩浆与围岩物质交换特征不显著。岩石地球化学研究证明,镁铁质岩浆同化地壳物质会导致SiO2、K2O以及Zr、Hf、Rb、Ba等大离子亲石元素富集,并升高La/Nb、Zr/Nb比值,降低Ti/Yb、Ce/Yb比值[46]。分离结晶作用不会影响岩浆中Ce、Pb以及Zr、La、Nb、U等具有相近分配系数的元素的比值[47],因此可以用Nb/U和Ce/Pb等比值识别大陆地壳的混染作用。大陆地壳的Nb/U和Ce/Pb比值较低(Ce/Pb值小于15,Nb/U值9~12),而具有较高的Zr/Nb、La/Nb、Rb/Nb、Th/La比值(Zr/Nb约16.2,La/Nb约2.2,Rb/Nb约4.7,Th/La约0.2)[47~48]。本研究样品的Nb/U值约35.12,Ce/Pb约23.98,Zr/Nb约5.78,La/Nb约1.07,Rb/Nb约0.83,Th/La约0.11,均未体现大陆地壳的特征,在图9a—9c中,Th/Nb、Nb/La、K2O/TiO2比值与SiO2之间也没有表现出协同变化关系,这些特征显示同化混染作用影响小。

图9 Th/Nb-SiO2、Nb/La-SiO2、K2O/TiO2-SiO2、La/Sm-La图解(图例同图6)Fig.9 Diagrams of Th/Nb-SiO2, Nb/La-SiO2, K2O/TiO2-SiO2 and La/Sm-La

研究表明,用固液相分配系数低的微量元素(超岩浆元素,如Th、Ta、La、Ce等)与固液相分配系数中等的微量元素(亲岩浆元素,如Zr、Hf、HREE等)的浓度比值对固液相分配系数低的微量元素(超岩浆元素)浓度作图时,平衡部分熔融的轨迹是倾斜的直线,而分离结晶作用则构成水平线[49]。图解La/Sm-La(见图9d)中样品主要显示了分离结晶作用趋势,部分熔融作用影响小,指示该岩石系列主要受分离结晶作用控制。

相对于Cu,Ni更相容于橄榄石,随着橄榄石的分异结晶,残余岩浆会亏损Ni而具有较高的Cu/Ni比值[50]。本研究样品具有较高的Cu/Ni比值(0.13~6.65),而原生地幔的Cu/Ni比值为0.01,暗示其母岩浆可能经历了橄榄石的分异结晶。

在哈克图解(见图10)中,各主要氧化物以及微量元素(Cr、Co、Ni)与MgO变化具有较好的相关性。当MgO大于~14%,随着MgO含量的降低,Cr、Co、Ni含量迅速降低,Al2O3、TiO2含量迅速增加,而SiO2、CaO、FeOt含量无明显变化,指示富Mg、相对贫Fe、Ca矿物(镁橄榄石、顽火辉石)的分离结晶。随着MgO含量进一步降低至~7.5%,Cr、Co、Ni含量进一步降低,但斜率略有减缓,同时CaO、FeOt 亦有明显的降低,指示单斜辉石的分离结晶作用。MgO含量在~7.5%时,TiO2含量达到峰值(>4%),当岩浆中TiO2含量高于4%时,钛铁矿会与赤铁矿、单斜辉石同时结晶[51],导致TiO2、FeOt含量迅速降低。P2O5含量迅速增加,说明MgO<7.5%时存在明显的磷灰石的结晶作用,这与辉石闪长岩(闪长岩)显微镜下特征一致。此外,Sc含量随MgO含量减少而减小,而Sm含量变化不大,指示角闪石分离结晶作用不明显(Sc的分配系数在辉石和角闪石中较高,Sm的分配系数在角闪石中较高)。相对较小的Sr、Eu变化特征,表明斜长石的分离结晶作用也不显著。

图10 哈克图解(图例同图6)Fig.10 Harker variation diagram

4.3 形成机制

根据巴勒的尔喀克沟层状杂岩体与下石炭统甘草湖组钙质粉砂岩、泥质板岩的侵入接触关系(可见到烘烤、冷凝边),判断其形成时代应晚于早石炭世。对层状岩体中的辉长岩进行锆石U-Pb测年,获得其年龄为224±4 Ma(见图4),认为该层状杂岩体形成于晚三叠世。目前,西南天山造山带内并没有同期的镁铁-超镁铁质岩的报道,研究区相邻的塔里木中西缘地区已发现的镁铁-超镁铁杂岩体(皮羌、瓦吉里塔格、麻扎尔塔格岩体等,见图1a)形成时代集中于距今274~277 Ma[52~54],多数学者认为其与塔里木内部规模巨大的玄武岩(面积可达25 km2,厚度可达数百米)、辉长岩、辉绿岩、花岗岩等共同构成了塔里木早二叠世大火成岩省,可能与地幔柱活动有关[55~56]。而巴勒的尔喀克沟层状杂岩体形成于晚三叠世(224±4 Ma),这与塔里木大火成岩省时代差别较大,因此该岩体不属于早二叠世大火成岩省的组成部分,但其是否与塔里木地幔柱活动有关,有待进一步研究。

对层状岩体部分镁铁质岩以及伴生岩脉的岩石化学分析结果显示,层状岩体中各岩类岩石的SiO2含量37.2%~51.7%,Mg#值47.9~78.8;脉岩SiO2含量46.2%~50.1%,Mg#值61.7~68.7。主微量元素特征指示它们均属于碱性岩系列(见图5),还具有一致的微量元素变化特征,相对亏损HFSE而富集LILE、LREE(见图6),说明其来自同源岩浆演化,并指示了富集型地幔源区。层状杂岩体总体均与伸展背景有关,脉状(墙状)的产出形态也指示了岩石圈的伸展作用[57~58],而碱性岩浆亦主要形成于岩石圈的伸展环境[59]。

考虑到对天山造山带构造演化历史的不同认识[61~63],该期岩浆活动可能是二叠纪岩浆岩的延续,与南天山洋盆的俯冲、碰撞或者后碰撞伸展有关。但俯冲板片脱水作用导致地幔楔部分熔融形成的岩浆具有富LILE和LREE,贫Nb、Ta和其他HFSE(Ti、P、Zr、Hf)的特征,且该岩浆部分熔融一般都发生在尖晶石稳定区[64],显然与本研究岩体特征(富集Nb、Ta,无Zr、Ti、Hf等亏损,且部分熔融主要发生于石榴石稳定区)不符。后碰撞阶段,随着岩石圈根部因转变为榴辉岩相重力失稳而拆成,软流圈地幔物质填补向上运移而发生减压熔融,但这种熔融作用也主要发生在尖晶石稳定区[41]。

多数学者认为古亚洲洋在天山地区复杂的增生造山作用晚古生代就已经结束[14~18],该期岩浆活动更可能形成于陆内造山阶段,与洋盆闭合、板块的碰撞造山活动无关,代表了板块拉伸背景下幔源岩浆演化的产物。但其深部的动力学机制仍有待进一步研究。值得注意的是,罗金海等[65]在塔里木盆地西缘发现有形成于晚三叠世—早侏罗世(距今235.6~203.7 Ma)的辉绿岩脉,并认为其具有地幔柱的成因特征。因此该期岩浆活动可能是塔里木地区二叠纪(也可能是一个更新的,三叠纪)地幔柱或者局部热点活动的产物。

5 结论

巴勒的尔喀克沟层状杂岩体中辉长岩锆石U-Pb测年为224±4 Ma,认为该层状杂岩体形成于晚三叠世。巴勒的尔喀克沟层状杂岩体源自于含水的富集型地幔源区,是石榴石二辉橄榄岩较低程度部分熔融的产物。其原生岩浆为富铁、钛的高镁玄武质岩浆,同化混染作用影响小,岩石系列主要受分离结晶作用控制。该岩浆活动于南天山洋盆闭合、板块碰撞造山活动之后的陆内造山阶段,代表了板块拉伸背景下幔源岩浆演化的产物,指示西南天山地区在三叠纪末可能存在一期岩石圈伸展事件。

[1] Day J M D, Pearson D G, Hulbert L J. Rhenium-Osmium isotope and platinum-group element constrains on the origin and evolution of the 1.27Ga Muskox layered intrusion[J]. Journal of Petrology, 2008, 49(7): 1255~1295.

[2] Niu Y L, Wilson M, Humphreys E R, et al. The origin of intra-plate ocean island basalts (OIB): The lid effect and its geodynamic implications[J]. Journal of Petrology, 2011, 52(7/8): 1443~1468.

[3] Spandler C, Mavrogenes J, Arculus R. Orign of chromitiel in layered instrusions: Evidence from hromite-hosted meit inclusion from the still water complex[J]. Geology, 2005, 33: 893~896.

[4] Maier W D, Barnes S J, Bandyayera D, et al. Early Kibaran rift-related mafic-ultramafic magmatism in western Tanzania and Burundi: Petrogenesis and ore potential of the Kapalagulu and Musongati layered intrusions[J]. Lithos, 2008, 101(1/2): 24~53.

[5] White R S, Smith L K, Roberts A W. Lower-crustal intrusion on the North Atlantic continental margin [J]. Nature, 2008, 452:460~464.

[6] 宋谢炎,张成江,胡瑞忠,等.峨眉火成岩省岩浆矿床成矿作用与地幔柱动力学过程的耦合关系[J].矿物岩石,2005,25(4):35~44.

SONG Xie-yan, ZHANG Cheng-jiang,HU Rui-zhong, et al. Genetic links of magmatic deposits in the Emeishan Large Igneous Province with dynamics of mantle plume[J]. Journal of Mineralogy and Petrology, 2005, 25(4): 35~44.

[7] 徐义刚,何斌,罗震宇,等.我国大火成岩省和地幔柱研究进展与展望[J].矿物岩石地球化学通报,2013,32(1):25~39.

XU Yi-gang, HE Bin, LUO Zhen-yu, et al. Study on mantle plume and large igneous provinces in chine: An overview and perspectives[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2013,32(1):25~39.

[8] Mao J W, Pirajno F, Zhang Z H, et al. A review of the Cu-Ni sulphide deposits in the Chinese Tianshan and Altay orogens (Xinjiang Autonomous Region, NW China): Principal characteristics and ore-forming processes[J]. Journal of Asian Earth Sciences, 2008, 32(2/4): 184~203.

[9] Schilling J G. Upper mantle heterogeneiries and dynamics[J]. Nature, 1985,314: 62~67.

[10] Hofmann A W. Mantle geochemistry: The message from oceanic volcanism[J]. Nature, 1997, 385: 219~229.

[11] 汤耀庆,肖序常,赵民.古中亚复合巨型缝合带南缘构造演化[M].北京:科学技术出版社,1991:109~124.

TANG Yao-qing, XIAO Xu-chang, ZHAO Min. The tectonic evolution of southern margin of the paleo Asia giant composite suture[M]. Beijing: Science and Technology Press,1991:109~124.

[12] 肖序常,汤耀庆,李锦轶,等.新疆北部及邻区大地构造[M].北京:地质出版社,1992:1~169.

XIAO Xu-chang, TANG Yao-qing, LI Jin-yi, et al, Tectonics of northern Xinjiang and its adjacent area[M]. Beijing: Geological Publishing House, 1992: 1~169.

[13] 夏林圻,夏祖春,徐学义,等.天山及邻区石炭纪-早二叠世裂谷火山岩岩石成因[J].西北地质,2008,04:1~68.

XIA Lin-qi, XIA Zu-chun, XU Xue-yi, et al. Petrogenesis of Caboniferous-Early Permian rift-related volcanic rocks in the Tianshan and its neighboring areas, Northwestern China[J]. Northwestern Geology, 2008, 4:1~68.

[14] 肖序常,汤耀庆,王军,等.中国南天山造山带蓝片岩及其构造意义[J].地球学报,1994,Z2:54~64.

XIAO Xu-chang, TANG Yao-qing, WANG Jun, et al. Blue schist belts and their tectonic implications of the South Tianshan Mts., NW China[J]. Acta Geologica Sinica,1994,Z2:54~64.

[15] 蔡东升,卢华复,贾东,等.南天山古生代板块构造演化[J].地质论评, 1995, 05:432~443.

CAI Dong-sheng, LU Hua-fu, JIA Dong, et al. Paleozoic plate tectonic evolution of southern Tianshan[J]. Geological Review, 1995, 05: 432~443.

[16] 夏林圻,张国伟,夏祖春.天山古生代洋盆开启、闭合时限的岩石学约束—来自震旦纪、石炭纪火山岩的证据[J].地质通报, 2002, 21 (2): 55~62.

XIA Lin-qi, ZHANG Guo-wei, XIA Zi-chun. Constrain on the timing of opening and closing of the Tianshan Paleozoic basin: Evidence from Sinian and Carbonifercous volcanic rocks[J]. Geological Bulletin of China, 2002, 21 (2): 55~62.

[17] Xiao W J, Zhang L C, Qin K Z, et al. Paleozoic accretionary and collisional tectonics of the eastern Tianshan (China): Implications for the continental growth of Central Asia[J]. American Journal of Science, 2004, 304:370~395.

[18] 李永军,李注苍,佟丽莉, 等. 论天山古洋盆关闭的地质时限——来自伊宁地块石炭系的新证据[J]. 岩石学报, 2010, 10: 2905~2912.

LI Yong-jun, LI Zhu-cang, TONG Li-li, et al. Revisit the constraints on the closure of the Tianshan ancient oceanic basin: New evidence from Yining block of the Carboniferous[J]. Acta Petrologica Sinica, 2010, 10: 2905~2912.

[19] 李文明,任秉琛,杨兴科, 等.东天山中酸性侵入岩浆作用及其地球动力学意义[J].西北地质,2002,04:41~64.

LI Wen-ming, REN Bing-chen, YANG Xing-ke, et al. The intermediate-acid intrusive magmatism and its geodynamic significance in Eastern Tianshan region[J]. Northwestern Geology, 2002, 04:41~64.

[20] 江思宏,聂凤军.北山地区花岗岩类的40Ar/39Ar同位素年代学研究[J].岩石学报, 2006, 11: 2719~2732.

JIANG Si-hong, NIE Feng-jun,40Ar/39Ar geochronology of the granitoids in Beishan Moutain, NW China[J]. Acta Petrologica Sinica, 2006, 11: 2719~2732.

[21] 郭瑞清,秦切,张晓帆, 等.新疆库鲁克塔格阔克塔格西碱性岩年代学、岩石地球化学特征及其地质意义[J].吉林大学学报:地球科学版,2013,02:457~468.

GUO Rui-qing, QIN Qie, ZHANG Xiao-fan, et al. Geochronology, petrogeochemistry of western Kuoktagh alkaline rocks in Quruqtagh area in Xinjiang and its geolohical implications[J]. Journal of Jilin University: Earth Science Edition,2013,02:457~468.

[22] 刘畅,赵泽辉,郭召杰.甘肃北山地区煌斑岩的年代学和地球化学及其壳幔作用过程讨论[J].岩石学报,2006,05:1294~1306.

LIU Chang, ZHAO Ze-hui, GUO Zhao-jie. Chronology and geochemistry of lamprophyre dykes from Beishan area, Gansu province and implications for the crust-mantle interaction[J]. Acta Petrologica Sinica,2006,05:1294~1306.

[23] 张遵忠,顾连兴,吴昌志, 等.东天山印支早期尾亚石英正长岩:成岩作用及成岩意义[J].岩石学报,2006,05:1135~1149.

ZHANG Zun-zhong, GU Lian-xing, WU Chang-zhi, et al. Weiya quartz syenite in early Indosinina from eastern Tianshan Moutains: Petrogenesis and tectonic implications[J]. Acta Petrologica Sinica, 2006,05:1135~1149.

[24] 张遵忠,顾连兴,吴昌志, 等.中天山东段尾亚印支早—中期石英闪长岩-陆内俯冲与原生下陆壳部分熔融[J].地质学报,2011,09:1420~1434.

ZHANG Zun-zhong, GU Lian-xing, WU Chang-zhi, et al. Early-Middle Indosinian Weiya quartz diorite, eastern segment of the Middle Tianshan Mountains, NW China: Implications for intra-continent subduction and partial melting of juvenile lower crust[J]. Acta Geologica Sinica, 2011,09:1420~1434.

[25] 朱志新,董连慧,王克卓, 等. 西天山造山带构造单元划分与构造演化[J]. 地质通报,2013,Z1:297~306.

ZHU Zhi-xin, DONG Lian-hui, WANG Ke-zhuo, et al. Tectonic division and regional tectonic evolution of West Tianshan organic belt[J]. Geological Bulletin of China, 2013,Z1:297~306.

[26] 邹亚锐,塔吉古丽,邢作云, 等. 塔里木新元古代-古生代沉积盆地演化[J]. 地球科学:中国地质大学学报,2014,08:1200~1216.

ZOU Ya-rui, TAJI Gu-li, XING Zuo-yun, et al. Evolution of sedimentary basins in Tarim during Neoprpterpzoic-Paleozoic[J]. Earth Science: Journal of China University of Geosciences,2014,08:1200~1216.

[27] 高小芬,林晓,徐亚东, 等. 南天山古生代-中生代沉积盆地演化[J]. 地球科学:中国地质大学学报,2014,08:1119~1128.

GAO Xiao-fen, LIN Xiao, XU Ya-dong, et al. Evolution of sedimentary basins in South Tianshan during Paleozoic-Mesozoic[J]. Earth Science: Journal of China University of Geosciences,2014,08:1119~1128.

[28] 杨树锋,陈汉林,厉子龙, 等. 塔里木早二叠世大火成岩省[J]. 中国科学:地球科学,2014,02:187~199.

YANG Shu-feng, CHEN Han-lin, LI Zi-long, et al. Early Permian Tarim Large Igneous Province in northwest China[J]. Science in China: Earth Sciences, 2014,02:187~199.

[29] Andersen T. Correction of common lead in U-Pb analyses that do not report204Pb[J]. Chemical Geology,2002,192:59~79.

[30] Luddwig KR. Isoplot: A plotting and regression program for radiogenic-isotope data[R]. US Geological Survey Open-File Report, 1991: 91~445.

[31] Rubatto D. Zircon trace element geochemistry: Partitioning with garnet and the link between U-Pb ages and metamorphism[J]. Chemical Geology, 2002,184:123~138.

[32] Winchester J A, Floyd P A. Geochemical discrimination of different magma series and their differentiation products using immobile elements[J]. Chemical Geology, 1977, 20: 325~343.

[33] Sun S, Mcdonough W F. Chemical and isotopic systematics of oceanic Sun S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313~345.

[34] 邓宇峰,宋谢炎,陈列锰, 等. 东天山黄山西含铜镍矿镁铁-超镁铁岩体岩浆地幔源区特征研究[J]. 岩石学报, 2011, 27(12): 3640~3652.

DENG Yu-feng,SONG Xie-yan,CHEN Lie-meng,et al. Features of the mantle source of the Huangshanxi Ni-Cu sulfide-bearing mafic-ultramafic intrusion, eastern Tianshan[J]. Acta Petrologica Sinica, 2011, 27(12):3640~3652.

[35] Ao S J, Xiao W J, Han C M. Geochronology and geochemistry of early Permian mafic-ultramafic complexes in the Beishan area, Xinjiang, NW China: Implications for late Paleozoic tectonic evolution of the southern Altaids[J]. Gondwana Research, 2010, 1:004.

[36] 姜常义,贾承造,李良辰.新疆麻扎尔塔格地区铁富集型高镁岩浆的源区[J].地质学报,2004,78(6):770~780.

JIANG Chang-yi, JIA Cheng-zao, LI Liang-chen. Source of the Fe-riched-type high-Mg magma in Mazhartag Region, Xinjiang[J]. Acta Geologica Sinica,2004,78(6):770~780.

[37] 张传林,周刚,王洪燕, 等. 塔里木和中亚造山带西段二叠纪大火成岩省的两类地幔源区[J].地质通报,2010,29(6):779~794.

ZHANG Chuan-lin, ZHOU Gang, WANG Hong-yan, et al. A review on two types of mantle domains of the Permian large igneous province in Tarim and the western section of Central Asian orogenic belt[J]. Geological Bulletin of China, 2010, 29(6):779~794.

[38] 喻学惠,赵志丹,莫宣学, 等. 甘肃西秦岭新生代钾霞橄黄长岩和碳酸岩的微量、稀土和Sr,Nd,Pb同位素地球化学:地幔柱-岩石圈交换的证据[J].岩石报报,2004,3: 483~494.

YU Xue-hui, ZHAO Zhi-dan, MO Xuan-xue, et al. Trace elements, REE and Sr, Nd, Pb isotopic geochemistry of Cenozoic kamafugite and carbonatite from west Qinling, Gamsu province: Implication of plume-liyhosphere interaction[J]. Acta Petrologica Sinica, 2004,3: 483~494.

[39] Woodhead J D, Hergt J M, Davidson J P. Hafnium isotope evidence for conservative element mobility during subduction zone processes. Earth and Planetary Science Letters, 2001, 192(3): 331~346.

[40] Le Roex A O, Dick H J B. Geochemistry, mineralogy and petrogenensis of levaserupted along the southwest Indian Ridge between the Bouvet tripe junction and 11 degrees east[J]. Journal of Petrology,2003,24(3):267~318.

[41] Wang K, Plant T,Walker J D. A mantle melting profile across the basin and range,SW USA[J]. Journal of Geophysical Research, 2002, 107(10): 1029.

[42] Hardarson B S, Fitton J G. Increased mantle melting beneath Snaefellsjokull volcano during Late Pleistocene deglaciation[J]. Nature, 1991, 353:62~64.

[43] 钟宏,胡瑞忠,朱维光.层状岩体的成因及成矿作用[J].地学前缘,2007,14(2): 159~172.

ZHONG Hong, HU Rui-zhong, ZHU Wei-guang. Genesis and mineralization of layered intrusions[J]. Earth Science Frontiers, 2007, 14(2): 159~172.

[44] Green D H. Genesis of archean peridotitic magmas and constraints on archean geothermal gradients and tectonics [J]. Geology, 1975, 3:15~18.

[45] Hess P C. Phase equilibria constraints on the origin of ocean floor basalts [C]//Morgan J P, Blackman D K, Sinton J M. Mantle flow and melt generation at mid-ocean ridges.Geophysical Monograph, American Geophysical Union, 1992, 71: 67~102.

[46] Frey F A, Green D H, Roy S D. Integrated models of basalts petrogenesis: A study of quartz tholeiites to olivine melilitites from south eastern Australia utilizing geochemical and experimental petrological data[J]. Journal of Petrolog y, 1978, 19: 463~513.

[47] Macdonald R, Rogers N W, Fitton J G. Plume-lithosphere interactions in the generation of the basalts of the Kenya Rift, East Africa [J]. Journal of Petrology, 2001, 42: 877~900.

[48] Hofmann W. Chemical differentiation of the earth: The realationship between mantle, continental crust and oceanic crust[J]. Earth and Planetary Science Letters,1986,90:297~314.

[49] Sun S S, Mcdonough W F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes[J]. Geological Society, London, Special Publications, 1989, 42(1): 313~345.

[50] 韩吟文, 马振东, 张宏飞. 地球化学[M]. 第二版. 北京: 地质出版社, 2003: 227~228.

HAN Yin-wen, MA Zhen-dong, ZHANG Hong-fei. Geochemistry[M]. Beijing: Geological Publishing House, 2003: 227~228.

[51] Toplis M J, Carroll M R. An experimental study of the influence of oxygen fugacity on Fe-Ti oxide stability, phase relations, and mineral-melt equilibria in ferrobasaltic systems [J].Journal of Petrology, 1995, 36: 1137~1170.

[52] 杨树锋,余星,陈汉林, 等.塔里木盆地巴楚小海子二叠纪超基性脉岩的地球化学特征及其成因探讨[J].岩石学报, 2007, 23(5): 1087~1096.

YANG Shu-feng, YU Xing, CHEN Han-lin, et al. Geochemical characteristics and petrogenesis of Permian Xiaohaizi ultrabasic dyke in Bachu area, Tarim basin[J]. Acta Petrologica Sinica, 2007, 23(5):1087~1096.

[53] 励音骐,厉子龙,孙亚莉励音骐,厉子龙,孙亚莉,等.塔里木瓦吉里塔格超镁铁质隐爆角砾岩铂族元素和微量元素地球化学特征及其岩石成因探讨[J].岩石学报,2010,11: 3307~3318.

LI Yin-qi, LI Zi-long, SUN Ya-li, et al. PGE and geochemistry of Wajilitag ultramafic cryptoexplosive brecciated rocks from Tarim Basin: Implicatons for petrogenesis[J].Acta Petrologica Sinica, 2010,11: 3307~3318.

[54] 陈汉林,杨树锋,厉子龙, 等.塔里木盆地二叠纪大火成岩省发育的时空特点[J].新疆石油地质,2009,30(2):179~182.

CHEN Han-lin, YANG Shu-feng, LI Zi-long, et al. Spatial and temporal characteristics of Permian Large Igneous Province in Tarim Basin[J]. Xinjiang Petroleum Geology, 2009, 30(2): 179~182.

[55] Wei X, Xu Y G, Luo Z Y, et al. Composition of the Tarim mantle plume: Constraints from clinopyroxene antecrysts in the early Permian Xiaohaizi dykes, NW China[J]. Lithos, 2015, 205: 69~81.

[56] Xu Y G, Wei X, Luo Z Y, et al. The Early Permian Tarim Large Igneous Province: Main characteristics and a plume incubation model[J]. Lithos, 2014, 204: 20~35.

[57] Agust Gudmundsson, Ingrid F Loetveit. Dyke emplacement in a layered and faulted rift zone[J]. Journal of Volcanology and Geothermal Research, 2005, 144(1/4): 311~327.

[58] Kiselev A I, Ernst R E, Yarmolyuk V V, et al. Radiating rifts and dyke swarms of the middle Paleozoic Yakutsk plume of eastern Siberian Craton[J]. Journal of Asian Earth Sciences, 2012,45:1~16.

[59] 曾广策,邱家骧. 碱性岩的概念及其分类命名综述[J]. 地质科技情报,1996,01:31~37.

ZENG Guang-ce, QIU Jia-xiang, Conception of alkaline rocks and their nomenclature[J]. Geological Science and Technology Information, 1996, 01:31~37.

[60] 李曰俊,孙龙德,吴浩若, 等.中国南天山西端乌帕塔尔坎群发现石炭纪一二叠纪放射虫化石[J].地质科学,2005,40(2):220~226.

LI Yue-jun, SUN Long-de, WU Hao-ruo, et al. Permo-Carboniferous radiolaria from the Wupatarkan Group, west terminal of Chinese south Tianshan[J]. Chinese Journal of Geology, 2005,40(2):220~226.

[61] 李曰俊,杨海军,赵岩, 等. 南天山区域大地构造与演化[J].大地构造与成矿学, 2009, 33(1): 94~104.

LI Yue-jun, YANG Hai-jun, ZHAO Yan, et al. Tectonic framework and evolution of south Tianshan, NW China[J]. Geotectonica et Metallogenia, 2009, 33(1): 94~104.

[62] 张立飞,杜瑾雪,吕增, 等. 新疆西南天山超高压变质带的空间分布、峰期变质时代和P-T轨迹特征[J]. 科学通报, 2013, 22: 2107~2112.

ZHANG Li-fei, DU Jin-xue, LÜ Zeng, et al. A huge oceanic-type UHP metamorphic belt in southwestern Tianshan, China: Peak metamorphic age and P-T path[J].Chinese Science Bulletin, 2013, 22: 2107~2112.

[63] 郑建平,罗照华,余淳梅, 等. 新疆托云麻粒岩捕虏体地球化学和锆石年代学:岩石成因及西南天山下地壳性质[J]. 科学通报,2005, 50(12), 1242~1251.

ZHENG Jian-ping, LUO Zhao-hua, YU Chun-mei, et al. Geochemistry and zircon U-Pb ages of granulite xenolith from Tuoyun basalts, Xinjiang: Implications for the petrogenesis and the lower crustal nature beneath the southwestern Tianshan[J].Chinese Science Bulletin, 2005,50(12), 1242~1251.

[64] Henderson P. Rare earth element geochemistry[M]. Netherlands: Elsevier Science Publishers B V, 1984: 23~28.

[65] 罗金海,车自成,周新源, 等.塔里木盆地西部中生代早期伸展作用的辉绿岩证据[J].中国地质,2006,33(3):566~571.

LUO Jin-hai, CHE Zi-cheng, ZHOU Xin-yuan, et al. Diabase evidence for the early Mesozoic extension in the western Tarim basin, NW China[J]. Geology In China, 2006,33(3):566~571.

GEOCHRONOOGICAL AND GEOCHEMICAL STUDY OF THE LATE TRIASSIC LAYERED MAFIC-ULTRAMFIC INTRUSIONS IN BEISHAN AREA OF WUSHI COUNTY, SOUTHWEST TIANSHAN

HU Chao-bin1, LI Pei-qing2, GU Ping-yang1, CHEN Rui-ming1,ZHA Xian-feng1, ZHUANG Yu-jun1

(1.Xi’anCenterofGeologicalSurvey,Xi’an710054,China;2.SchoolofEarthSciencesandResources,ChinaUniversityofGeosciences,Beijing100083,China)

Layered Mafic-ultramafic intrusions, which carry abundant information of mantle and provide an excellent approach to probe the mantle material composition, plate tectonic and deep geological process, are generally considered to be an important symbol of lithosphere extension, We discovered a suit of layered Mafic-ultramafic intrusions in Southwest Tianshan area, and obtained the zircon U-Pb age of gabbros of 224±4 Ma. These rocks are characterized by the enrichment of LREE, H2O, Na2O+K2O and incompatible elements such as Th, U, Nb, Ta, etc., and depleted in HREE. They might be derived from enriched mantle, which is formed by low degree partial melting of garnet lherzolite. The primary magma may be high Mg basaltic magma which was rich in iron and titanium and mainly controlled by the fractional crystallization. This magam in the continental orogenic stage was actived in the environment of intracontinent orogen after the closure of the South Tianshan ocean and post collisional orogeny, which derived from mantle in the envirnment of extensional environment. We can concluded that the Southwest Tianshan area was under an extensional tectonic seting during late Triassic.

Southwest Tianshan area; mafic-ultramafic; layered intrusions

1006-6616(2016)04-1015-17

2016-09-12

中国地质调查局地质调查项目“特殊地质地貌区填图试点”(DD20160060)、“新疆1∶5万喀伊车山口等3幅艰险区试点项目”(12120114042701)、“东昆仑成矿带木孜塔格铅锌铜金多金属矿调查评价区地质矿产调查”(DD20160002)

胡朝斌(1990-),男,助理工程师,岩石地球化学专业。E-mail:405825740@qq.com

P595;P597

A

猜你喜欢

辉石铁质源区
武夷山的岩茶上好品质竟与石材中的铁质有关
受焦化影响的下风向城区臭氧污染特征及潜在源区分析
安徽沿江地区早白垩世侵入岩成因及其找矿意义
冬小麦蒸散源区代表性分析
粉色蔷薇辉石的宝石学及矿物学特征
不同温度、压强、氧逸度条件下斜方辉石含水性的实验研究
甜甜的柿子
蔷薇辉石:既为宝,亦为玉
兴安落叶松林通量观测足迹与源区分布
铁太多与妊娠糖尿病有关