施硅量对甬优系列籼粳交超级稻产量及相关形态生理性状的影响
2016-03-03韦还和孟天瑶张洪程史天宇马荣荣王晓燕杨筠文戴其根霍中洋魏海燕郭保卫扬州大学农业部长江流域稻作技术创新中心江苏省作物遗传生理重点实验室江苏扬州5009浙江省宁波市农业科学院作物研究所浙江宁波50浙江省宁波市种子公司浙江宁波50浙江省宁波市鄞州区农业技术服务站浙江宁波500
韦还和 孟天瑶 李 超 张洪程,* 史天宇 马荣荣 王晓燕杨筠文 戴其根,* 霍中洋 许 轲 魏海燕 郭保卫扬州大学农业部长江流域稻作技术创新中心 / 江苏省作物遗传生理重点实验室, 江苏扬州 5009;浙江省宁波市农业科学院作物研究所, 浙江宁波 50;浙江省宁波市种子公司, 浙江宁波50;浙江省宁波市鄞州区农业技术服务站, 浙江宁波 500
施硅量对甬优系列籼粳交超级稻产量及相关形态生理性状的影响
韦还和1孟天瑶1李超1张洪程1,*史天宇1马荣荣2王晓燕3杨筠文4戴其根1,*霍中洋1许轲1魏海燕1郭保卫11扬州大学农业部长江流域稻作技术创新中心 / 江苏省作物遗传生理重点实验室, 江苏扬州 225009;2浙江省宁波市农业科学院作物研究所, 浙江宁波 315101;3浙江省宁波市种子公司, 浙江宁波315101;4浙江省宁波市鄞州区农业技术服务站, 浙江宁波 315100
摘要:以籼粳交超级稻甬优12和甬优15为试材, 比较研究了不同硅肥施用量(0、75、150、225、300 kg hm–2)对甬优籼粳交超级稻产量及其形态生理特征的影响。结果表明: (1)甬优12和甬优15产量均随硅肥施用量的增加呈先增加后降低的趋势, 且均以硅肥用量225 kg hm–2处理的产量最高。产量构成因素穗数随硅肥施用量增加而递增, 结实率和千粒重则随之递减。(2)甬优12和甬优15在拔节、抽穗和成熟期的茎蘖数均随硅肥施用量的增加而增加, 茎蘖成穗率则呈先增加后降低的趋势, 以225 kg hm–2处理最高。(3)与对照(0 kg hm–2)相比, 施硅处理显著增加了拔节、抽穗和成熟期的干物重和叶面积指数, 拔节至抽穗期、抽穗至成熟期的干物质积累量和光合势也随硅肥施用量增加而递增。(4)随硅肥施用量的增加, 倒一、倒二、倒三叶的叶长和叶宽随之递增, 倒一、倒二、倒三叶的叶基角和披垂度随之递减。此外, 与对照(0 kg hm–2)相比, 施硅处理显著提高了茎、鞘干重及单位节间干重。文章还讨论了甬优籼粳交超级稻硅肥高效施用技术。
关键词:硅; 甬优籼粳交超级稻; 产量; 产量形成特征
本研究由农业部超级稻专项(02318802013231), 国家公益性行业(农业)科研专项(201303102), 宁波市重大科技项目(2013C11001), 江苏省重点研发项目(BE2015340)和江苏省普通高校研究生科研创新计划项目(KYLX15_1371)资助。
This research was supported by the Special Program of Super Rice of the Ministry of Agricultural (02318802013231), China Special Fund for Agro-scientific Research in the Public Interest (201303102), the Great Technology Project of Ningbo City (2013C11001), the Key Projects of Jiangsu Province (BE2015340) and Innovative Training Program for Jiangsu University (KYLX15_1371).
第一作者联系方式: E-mail: 920964110@qq.com
硅是水稻生长的有益元素[1]。大量研究表明, 施用硅肥可促进光合作用[2]、提高抗倒伏能力[3]、协同提高产量与米质[4]等。对抗生物胁迫方面, 硅肥可提高水稻对纹枯病[5]、稻瘟病[6]、二化螟[7]等抗性。此外, 硅肥对于非生物胁迫如水分胁迫[8]、UV-B辐射胁迫[9]、铝胁迫[10]、镉胁迫[11]等也具有较好的调控作用。甬优系列籼粳杂交稻已在生产上表现出较高的产量潜力, 近几年在浙江、江苏、江西等地推广种植面积迅速增加[12-13], 如在浙江省, 仅2012年,甬优系列籼粳杂交稻的种植面积就达15.5万公顷(马荣荣, 个人通讯), 且在浙江省多地创造高产记录,如籼粳交超级稻甬优12在宁波市连续多年创造13.5 t hm–2以上高产记录[14]。近年来, 已有浙江省宁波市土壤中缺乏硅元素的报道[15]。此外, 该地区在水稻生长中后期易遭受台风引起倒伏, 且该地区高温高湿的气候条件, 也易导致纹枯病、稻瘟病、二化螟等病虫害的发生, 因此增施硅肥在该地区水稻生产上已引起足够重视[15], 但当前就甬优籼粳杂交稻适宜的硅肥用量及其对产量影响的报道较少, 且缺乏系统的比较研究。本文旨在研究该地区甬优籼粳杂交稻适宜的硅肥施用量及其对产量的影响, 以期充分发挥甬优籼粳杂交稻的产量潜力以及为其配套的高产栽培措施提供理论与实践依据。
1 材料与方法
1.1试验材料与栽培管理概况
选用甬优系列籼粳交超级稻甬优12、甬优15为试材。2012—2013年供试品种的主要生育期见表1。
表1 主要生育期以及生育阶段天数Table 1 Development stage and period of the tested varieties
试验于2012—2013年在浙江省宁波市鄞州区洞桥镇百梁桥村进行。土壤类型为黄化青紫泥田, pH 5.51、含有机质38.37 g kg–1、全氮0.16%、碱解氮82.45 mg kg–1、速效磷20.14 mg kg–1、速效钾78.45 mg kg–1、水溶性盐总量0.13 g kg–1、有效硅88.64 mg kg–1。2年中水稻生长期间的平均温度、日照时数、降雨量见表2。
设硅肥0 (对照)、75、150、225、300 kg hm–2共5个处理, 每处理3次重复, 随机区组设计, 小区面积20 m2(5 m × 4 m)。小区间作埂隔离, 并用塑料薄膜覆盖埂体, 保证单独排灌。毯苗育秧, 2年中具体播种期见表1, 秧龄20 d, 栽插株行距为30.0 cm × 13.2 cm, 每穴2苗。施纯氮270 kg hm–2, 氮肥按基蘖肥∶穗粒肥=6∶4施用。各小区磷、钾肥施用量一致,即过磷酸钙(含12% P2O5) 1125 kg hm–2, 全部基施。钾肥(含60% K2O) 450 kg hm–2, 按基蘖肥∶穗粒肥= 4∶6施用。硅肥为俄罗斯进口矿物硅(必奥力, SiO2>70%), 分基施和倒四叶叶龄期2次等量施用。秧苗移栽后采用湿润灌溉为主, 建立浅水层; 群体达到目标穗数的80%时搁田, 控制无效分蘖发生;抽穗扬花期田间保持3 cm水层, 灌浆结实期间歇灌溉, 干湿交替, 收割前7 d断水搁田。按常规高产栽培要求防治病虫害。
1.2测定项目与方法
1.2.1茎蘖动态于每小区定3个观察点, 每点20穴, 拔节期前每隔5 d一次记录茎蘖数, 拔节后每
隔7 d依次记录茎蘖数。
表2 水稻生长期间的气象资料Table 2 Climate conditions during rice growing seasons
1.2.2叶面积和干物重于拔节期、抽穗期、成熟期, 按每小区茎蘖数的平均值取10穴测定叶面积和干物重。按长宽系数法测定叶面积。将样株按器官放在105℃杀青30 min, 80℃烘干至恒重, 测定干物重。
1.2.3光合势光合势(m2d hm–2) = 1/2×(L1+ L2)×(t2-t1)。式中, L1和L2为前后2次测定的叶面积(m2hm–2), t1和t2为前后2次测定的时间(d)。
1.2.4上三叶的长、宽及角度于乳熟期(抽穗后25 d), 从每小区取生长基本一致的植株10穴, 测量主茎上三叶的长、宽、叶基角(茎秆与叶片基部夹角)、披垂角(茎秆与叶枕至叶尖连线的夹角)。披垂度等于披垂角与叶基角之差。
1.2.5产量成熟期调查每小区100穴, 计算有效穗数, 取25穴调查每穗粒数、结实率和测定千粒重及理论产量; 每小区实产收割面积8 m2, 脱粒后晾晒, 并称重。
1.3数据处理
运用Microsoft Excel录入数据、计算, 用DPS软件统计分析。
2 结果与分析
2.1产量及其构成因素
由表3可知, 硅肥处理对甬优12的产量增幅为3.1%~9.3% (2年数据), 甬优15的产量增幅为5.1%~9.8% (2年数据)。2年中甬优12和甬优15的产量均以施硅量225 kg hm–2处理最高。穗数随硅肥施用量增加而递增, 结实率和千粒重则随硅肥施用量增加而递减。与不施硅处理相比, 施硅处理显著增加了每穗粒数, 但每穗粒数在各施硅处理间并未表现出明显的规律(表3)。由于2年产量趋势基本一致, 因此若无特殊说明, 下文以2013年数据为主。
2.2茎蘖动态及成穗率
甬优12和甬优15在拔节期、抽穗期和成熟期各处理的茎蘖数均随硅用量的增加而递增。茎蘖成穗率随硅用量的增加呈先增加后降低的趋势, 以硅用量225 kg hm–2为拐点(表4)。
2.3主要生育时期干物重及阶段积累量
由表5可知, 施硅处理显著增加了拔节期、抽穗期和成熟期的干物重, 如甬优12施硅处理225 kg hm–2在拔节期、抽穗期和成熟期的干物重分别较对照(0 kg hm–2)高6.9%、5.7%和7.9%。就阶段干物重积累量而言, 甬优12拔节至抽穗期以硅用量225 kg hm–2处理最高, 甬优15则以硅用量300 kg hm–2处理最高。甬优12和甬优15抽穗至成熟期的干物重积累量均以硅用量225 kg hm–2处理最高(表5)。
2.4主要生育时期叶面积指数和光合势
与对照(0 kg hm–2)相比, 施硅处理显著增加了拔节期、抽穗期和成熟期的叶面积指数, 甬优12施硅处理225 kg hm–2在拔节期、抽穗期和成熟期的叶面积指数分别较对照高15.1%、7.5%和9.5%。与对照(0 kg hm–2)相比, 施硅处理也增加了拔节至抽穗期、抽穗至成熟期的光合势, 差异显著(表6)。
2.5上三叶的形态特征及茎秆特征
与对照(0 kg hm–2)相比, 施硅处理显著增加了倒一、倒二、倒三叶的叶长和叶宽, 且随硅肥施用量增加而递增; 与之相反, 施硅处理显著降低了倒一、倒二、倒三叶的叶基角和披垂度(表7); 而施硅处理显著提高了茎、鞘干重及单位节间干重(表8)。
表3 产量及其构成因素Table 3 Grain yield and its components of the tested variety
表4 关键生育时期的茎蘖数和成穗率Table 4 Number of tillers at the main growth stages and the panicle rate
表5 关键生育时期的干物重及阶段干物重积累量Table 5 Dry matter weight and dry matter accumulation at the main growth stages
表6 关键生育时期的叶面积指数和阶段光合势Table 6 Leaf area index and leaf area duration at the main stages
3 讨论
3.1施硅量对甬优籼粳交超级稻产量及其构成因素的影响
因各地气候条件、土壤类型、种植制度等的差异, 至今我国尚未有统一的土壤有效硅含量的丰缺指标[16]。秦方锦等[15]依据宁波市9个县的747个土样的有效硅含量数据, 将土壤有效硅含量划分为4个等级, 即土壤有效硅含量丰富(130 mg kg–1)、中等(100~130 mg kg–1)、缺乏(50~100 mg kg–1)和极缺(<50 mg kg–1)。本研究试验田的土壤有效硅含量为88.64 mg kg–1, 属缺硅土壤。
较多的研究已表明, 施用硅肥可增加水稻产量,但增产幅度因生态条件、供试品种、硅肥类型、土壤质地等的差异而不同[4,17-18]。张国良等[17]研究表明,在大田基施硅肥(有效硅含量≥20%) 0~450 kg hm–2范围内, 随硅肥施用量的增加, 武育粳3号的产量呈先增加后降低的趋势, 施硅量225 kg hm–2处理的产量最高。商全玉等[4]提出施硅量(有效硅含量为67%) 180~240 kg hm–2是北方粳稻适宜的硅肥用量。龚金龙等[18]研究表明, 施硅可显著提高江苏里下河地区粳型超级稻武运粳24和淮稻9号的产量, 增幅达4.59%~19.54%, 以硅肥(可溶硅含量>50%)用量90 kg hm–2且在有效分蘖临界叶龄期追施的处理产量最高。本研究结果表明, 硅肥施用显著提高甬优12和甬优15的产量, 增幅达5%~10%。随硅肥用量的增加, 甬优12和甬优15的产量均呈先增加后下降的趋势, 且均以施硅量225 kg hm–2处理的产量最高。
表7 上三叶的叶片大小及叶姿Table 7 Size and leaf posture of the top three leaves
表8 茎、鞘干重及单位节间干重Table 8 Dry weight per culm, per sheath, and per unit internode
商全玉等[4]、张国良等[17]研究表明施硅通过提高穗数、每穗粒数和千粒重提高水稻产量。陈健晓等[19]研究表明, 施硅可提高超级早稻的穗数和每穗粒数, 但降低了结实率。陆福勇等[20]研究表明施硅增加有效穗数提高水稻产量, 而对每穗粒数、千粒重和结实率影响不大。本研究表明, 施硅处理显著增加有效穗数和每穗粒数, 而千粒重和结实率则呈下降趋势。本试验中, 硅肥分基施和倒四叶叶龄期施用, 硅肥基施促进了分蘖的发生和生长, 提高了分蘖成穗, 从而增加了有效穗数; 倒四叶叶龄期施用硅肥可促进籼粳交杂种F1代的花粉萌发和颖花分化[21], 增加每穗粒数。此外, 本试验中2012年的穗数总体上低于2013年, 这可能与2012年试验田二化螟发生(7月中旬左右)较为严重有关。我们观察到,与不施硅处理相比, 各施硅处理下的二化螟发生数量以及受害程度明显减轻, 这也从大田试验角度验证了硅肥可提高水稻对二化螟的抗性[7]。
3.2施硅量对甬优籼粳交超级稻相关形态与生理特征的影响
王显等[22]研究表明, 施用硅肥可提高光合作用、改善植株营养状况、提高地上部干物质积累。陈健晓等[19]研究表明, 施硅提高叶面积指数、干物质积累量及物质转运率, 协调了库源关系。张国良等[23]研究表明, 施硅显著提高了成穗率、花后干物质积累能力, 明显改善了作物群体质量。本研究结果表明, 各施硅处理拔节、抽穗和成熟期的茎蘖数显著增加, 成穗率也显著提高, 改善了作物群体质量。此外, 施硅处理提高了拔节、抽穗和成熟期的干物重和叶面积指数, 拔节至抽穗、抽穗至成熟阶段的干物质积累量和光合势也显著提高。
施用硅肥可改善叶片姿态、植株冠层结构、提高茎秆抗倒伏能力[24]。陈健晓等[3]研究表明, 施用硅肥提高了单茎叶面积、减小剑叶夹角、增粗茎秆。邓文等[25]研究表明, 施硅明显提高了超级杂交稻倒四节间抗折断能力。韦还和等[26]研究表明, 茎、鞘中较高的K、Si含量提高了甬优12超高产群体的抗倒伏能力。本研究表明, 随硅肥施用量的增加, 单茎上三叶的叶长和叶宽随之增加, 上三叶的叶基角和披垂度随之降低。施硅提高了上部高效叶叶面积以及叶片直挺度, 有利于提高光能利用率。此外, 与对照(0 kg hm–2)相比, 施硅处理也显著增加了单茎茎重、单茎鞘重和单位节间干重, 提高了茎秆充实度,有利于增强茎秆的抗折力。
3.3甬优籼粳交超级稻硅肥高效施用技术的探讨
尽管硅肥的增产作用低于氮肥, 但水稻对硅的吸收量却很高, 超过氮、磷、钾的吸收总量[27]。近几年, 随着超级稻高产品种的推广种植, 水稻从耕地中吸收的硅素也逐年增加, 传统的栽培技术如稻草还田给土壤提供的有效硅有限, 因此, 要解决水稻缺硅问题, 应重视补施硅肥[15]。就甬优籼粳交超级稻硅肥高效施用技术, 我们提出以下两点: (1)硅
肥施用量应根据土壤有效硅含量而定, 在宁波当地可参考秦方锦等[15]提出的对土壤有效硅丰缺程度的划分, 即土壤有效硅含量丰富(130 mg kg–1)、中等(100~130 mg kg–1)、缺乏(50~100 mg kg–1)和极缺(<50 mg kg–1) 4个水平, 土壤中硅素缺乏的要多施硅肥,中等程度可少施, 丰富程度的当年可不施。本试验条件下, 土壤有效硅含量为88.64 mg kg–1, 属缺硅土壤, 硅肥(SiO2>70%)最适施用量为225 kg hm–2,较不施硅处理的增产9.5%左右。这可为该地区不同有效硅含量土壤的硅肥适宜施用量提供参考。(2)以往的文献中硅肥一般都是作基肥一次性施用, 但有报道称基施降低了硅肥利用率[18]。根据甬优12和甬优15在当地的高产栽培经验, 一般在搁田复水后即倒四叶叶龄期左右, 施尿素和氯化钾作壮秆促花肥。此外, 有报道称倒四叶叶龄期施用硅肥可促进籼粳交杂种F1代的花粉萌发和颖花分化, 提高结实率[22]。因此, 我们认为硅肥可分基施和倒四叶叶龄期2次等量施用, 可达到省工、促进颖花分化、充实茎秆, 从而实现硅肥的高效利用。
4 结论
施硅处理使甬优12增产3.1%~9.3%, 甬优15增产在5.1%~9.8%, 均以硅肥用量225 kg hm–2处理下的产量最高。施硅处理显著增加了主要生育时期的干物重和叶面积指数, 以及主要生育阶段的干物质积累量和光合势, 且改善了植株受光姿态, 提高了茎秆抗折力。
References
[1] Ysujimoto Y, Muranaka S, Saito K, Asai H. Limited Si-nutrient status of rice plants in relation to plant-available Si of soils, nitrogen fertilizer application, and rice-growing environments across Sub-Saharan Africa. Field Crops Res, 2014, 155: 1–9
[2] 陈伟, 蔡昆争, 陈基宁. 硅和干旱胁迫对水稻叶片光合特性和矿质养分吸收的影响. 生态学报, 2012, 32: 2620–2628
Chen W, Cai K Z, Chen J N. Effects of silicon application and drought stress on photosynthetic traits and mineral nutrient absorption of rice leaves. Acta Ecol Sin, 2012, 32: 2620–2628 (in Chinese with English abstract)
[3] 陈健晓, 屠乃美, 易镇邪, 朱红林. 硅肥对超级早稻茎叶形态与抗倒伏特性的影响. 作物研究, 2011, 25: 209–212
Chen J X, Tu N M, Yi Z X, Zhu H L. Effects of silicon fertilizer on morphology of stem and leaves and lodging resistance in early super hybrid rice. Crop Res, 2011, 25: 209–212 (in Chinese with English abstract)
[4] 商全玉, 张文忠, 韩亚东, 荣蓉, 徐海, 徐正进, 陈温福. 硅肥对北方粳稻产量和品质的影响. 中国水稻科学, 2009, 23: 661–664
Shang Q Y, Zhang W Z, Han Y D, Rong R, Xu H, Xu Z J, Chen W F. Effect of silicon fertilizer application on yield and quality of japonica rice from Northeast China. Chin J Rice Sci, 2009, 23: 661–664 (in Chinese with English abstract)
[5] 张国良, 丁原, 王清清, 戴其根, 黄慧宇, 霍中洋, 张洪程. 硅对水稻几丁质酶和β-1,3-葡聚糖酶活性的影响及其与抗纹枯病的关系. 植物营养与肥料学报, 2010, 16: 598–604
Zhang G L, Ding Y, Wang Q Q, Dai Q G, Huang H Y, Huo Z Y, Zhang H C. Effects of silicon on chitinase and β-1,3-glucananse activities of rice infected by Rhizoctonia solani and its relation to resistance. Plant Nutr Fert Sci, 2010, 16: 598–604 (in Chinese with English abstract)
[6] 葛少彬, 刘敏, 骆世明, 蔡昆争. 硅和稻瘟病菌接种对水稻植株有机酸含量的影响. 生态学杂志, 2014, 33: 3002–3009
Ge S B, Liu M, Luo S M, Cai K Z. Influence of silicon application and Magnaporthe oryzae infection on organic acids contents. Chin J Ecol, 2014, 33: 3002–3009 (in Chinese with English abstract)
[7] 韩永强, 刘川, 侯茂林. 硅介导的水稻对二化螟幼虫钻蛀行为的影响. 生态学报, 2010, 30: 5967–5974
Han Y Q, Liu C, Hou M L. Silicon-mediated effects of rice plants on boring behavior of Chilo suppressalis larvae. Acta Ecol Sin, 2010, 30: 5967–5974 (in Chinese with English abstract)
[8] 明东风, 袁红梅, 王玉海, 宫海军, 周伟军. 水稻胁迫下硅对水稻苗期根系生理生化性状的影响. 中国农业科学, 2012, 45: 2510–2519
Ming D F, Yuan H M, Wang Y H, Gong H J, Zhou W J. Effects of silicon on the physiological and biochemical characteristics of roots of rice seedlings under water stress. Sci Agric Sin, 2012, 45: 2510–2519 (in Chinese with English abstract)
[9] 吴蕾, 娄运生, 孟艳, 王卫清, 崔合洋. UV-B增强下施硅对水稻抽穗期生理特性日变化的影响. 应用生态学报, 2015, 26: 32–38
Wu L, Lou Y S, Meng Y, Wang W Q, Cui H Y. Effects of silicon supply on diurnal variations of physiological properties at rice heading stage. Chin J Appl Ecol, 2015, 26: 32–38 (in Chinese with English abstract)
[10] 顾明华, 黎晓峰. 硅对减轻水稻的铝胁迫效应及其机理研究.植物营养与肥料学报, 2002, 8: 360–366
Gu M H, Li X F. Effect of silicon on alleviation of aluminum toxicity and corresponded mechanisms in rice. Plant Nutr Fert Sci, 2002, 8: 360–366 (in Chinese with English abstract)
[11] 刘鸣达, 王丽丽, 李艳丽. 镉胁迫下硅对水稻生物量及生理特性的影响. 中国农学通报, 2010, 26(13): 187–190
Liu M D, Wang L L, Li Y L. Effect of silicon on biomass and physiological characteristics of rice under Cd stress. Chin Agric Sci Bull, 2010, 26(13): 187–190 (in Chinese with English abstract)
[12] 韦还和, 姜元华, 赵可, 许俊伟, 张洪程, 戴其根, 霍中洋,许轲, 魏海燕, 郑飞. 甬优系列杂交稻品种的超高产群体特征. 作物学报, 2013, 39: 2201–2210
Wei H H, Jiang Y H, Zhao K, Xu J W, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Zheng F. Characteristics of super-high yield population in Yongyou series of hybrid rice. Acta Agron Sin, 2013, 39: 2201–2210 (in Chinese with English abstract)
[13] 姜元华, 张洪程, 赵可, 许俊伟, 韦还和, 龙厚元, 王文婷, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 长江下游地区不同类型水稻品种产量及其构成因素特征的研究. 中国水稻科学, 2014, 28: 621–631
Jiang Y H, Zhang H C, Zhao K, Xu J W, Wei H H, Long H Y, Wang W T, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W. Difference in yield and its components characteristics of different type rice cultivars in the lower reaches of the Yangtze River. Chin J Rice Sci, 2014, 28: 621–631 (in Chinese with English abstract)
[14] 王晓燕, 韦还和, 张洪程, 孙健, 张建民, 李超, 陆惠斌, 杨筠文, 马荣荣, 许久夫, 王珏, 许跃进, 孙玉海. 水稻甬优12产量13.5 t hm–2以上超高产群体的生育特征. 作物学报, 2014, 40: 2149–2159
Wang X Y, Wei H H, Zhang H C, Sun J, Zhang J M, Li C, Lu H B, Yang J W, Ma R R, Xu J F, Wang J, Xu Y J, Sun Y H. Population characteristics for super-high yielding hybrid rice Yongyou 12 (>13.5 t ha–1). Acta Agron Sin, 2014, 40: 2149–2159 (in Chinese with English abstract)
[15] 秦方锦, 王飞, 陆宏, 岑汤校, 王斌, 韩红煊, 庄亚其, 张欢.宁波市耕地有效硅含量及其影响因素. 浙江农业学报, 2012, 24: 263–267
Qin F J, Wang F, Lu H, Cen T X, Wang B, Han H X, Zhuang Y Q, Zhang H. Study on available silicon contents in cultivated land and its influencing factors in Ningbo City. Acta Agric Zhejiangensis, 2012, 24: 263–267 (in Chinese with English abstract)
[16] 文春波, 高红莉, 蔡德龙, 陈常友. 水稻施用硅肥研究综述.地域研究与开发, 2003, 22(3): 79–81
Wen C B, Gao H L, Cai D L, Chen C Y. Present study situation of the silicon fertilizer application to rice. Areal Res Develop, 2003, 22(3): 79–81 (in Chinese with English abstract)
[17] 张国良, 戴其根, 王建武, 张洪程, 霍中洋, 凌励, 王显, 张军.施硅量对粳稻品种武育粳3号产量和品质的影响. 中国水稻科学, 2007, 21: 299–303
Zhang G L, Dai Q G, Wang J W, Zhang H C, Huo Z Y, Ling L, Wang X, Zhang J. Effects of silicon fertilizer rate on yield and quality of japonica rice Wuyujing 3. Chin J Rice Sci, 2007, 21: 299–303 (in Chinese with English abstract)
[18] 龚金龙, 胡雅杰, 龙厚元, 常勇, 葛梦婕, 高辉, 刘艳阳, 张洪程, 戴其根, 霍中洋, 许轲, 魏海燕, 李德剑, 沙安勤, 周有炎,罗学超. 不同时期施硅对超级稻产量和硅素吸收、利用效率的影响. 中国农业科学, 2012, 45: 1475–1488
Gong J L, Hu Y J, Long H Y, Chang Y, Ge M J, Gao H, Liu Y Y, Zhang H C, Dai Q G, Huo Z Y, Xu K, Wei H Y, Li D J, Sha A Q, Zhou Y Y, Luo X C. Effect of application of silicon at different periods on grain yield and silicon absorption, use efficiency in super rice. Sci Agric Sin, 2012, 45: 1475–1488 (in Chinese with English abstract)
[19] 陈健晓, 屠乃美, 易镇邪, 朱红林. 硅肥对超级早稻产量形成和部分生理特性的影响. 作物研究, 2011, 25: 544–549
Chen X J, Tu N M, Yi Z X, Zhu H L. Effects of silicon fertilizer on yield formation and some physiological characteristics of super early rice. Crop Res, 2011, 25: 544–549 (in Chinese with English abstract)
[20] 陆福勇, 江立庚, 秦华东, 唐茂艳. 不同氮、硅用量对水稻产量和品质的影响. 植物营养与肥料学报, 2005, 11: 846–850
Lu F Y, Jiang L G, Qin H D, Tang M Y. Effects of nitrogen and silicon levels on grain yield and qualities of rice. Plant Nutr Fert Sci, 2005, 11: 846–850 (in Chinese with English abstract)
[21] 李万昌, 邵云, 王俊伟, 余娇娇, 杨梦铱. 硅对水稻籼粳杂种雌雄配子育性和结实率的影响. 西北植物学报, 2011, 31: 1147–1151
Li W C, Shao Y, Wang J W, Yu J J, Yang M Y. Effects of silicon on gametes and spikelets fertility of F1hybrid between indica and japonica rice. Acta Bot Boreali-Occident Sin, 2011, 31: 1147–1151 (in Chinese with English abstract)
[22] 王显, 张国良, 霍中洋, 肖跃成, 熊飞, 张洪程, 戴其根. 氮硅配施对水稻叶片光合作用和氮代谢酶活性的影响. 扬州大学学报(农业与生命科学版), 2010, 31(3): 44–49
Wang X, Zhang G L, Huo Z Y, Xiao Y C, Xiong F, Zhang H C, Dai Q G. Effects of application of nitrogen combined with silicon on the photosynthesis and activities of nitrogen metabolic enzyme of rice leaf. J Yangzhou Univ (Agric & Life Sci Edn), 2010, 31(3): 44–49 (in Chinese with English abstract)
[23] 张国良, 戴其根, 周青, 潘国庆, 凌励, 张洪程. 硅肥对水稻群体质量及产量影响研究. 中国农学通报, 2004, 20(3): 114–117
Zhang G L, Dai Q G, Zhou Q, Pan G Q, Ling L, Zhang H C. Influences of silicon fertilizer on population quality and yield in rice. Chin Agric Sci Bull, 2004, 20(3): 114–117 (in Chinese with English abstract)
[24] 龚金龙, 张洪程, 龙厚元, 胡雅杰, 戴其根, 霍中洋, 许轲, 魏海燕, 高辉. 水稻中硅的营养功能及生理机制的研究进展. 植物生理学报, 2012, 48: 1–10
Gong J L, Zhang H C, Long H Y, Hu Y J, Dai Q G, Huo Z Y, Xu K, Wei H Y, Gao H. Progress in research of nutrition functions and physiological mechanisms of silicon in rice. Plant Physiol J, 2012, 48: 1–10 (in Chinese with English abstract)
[25] 邓文, 青先国, 蒲熙, 王思哲, 龚浩如. 硅肥和钙肥对超级杂交稻茎秆抗折力学的影响. 湖南农业大学学报(自然科学版), 2008, 34: 586–590
Deng W, Qing X G, Pu X, Wang S Z, Gong H R. Effects of silicon and calcium application on the material characteristics of super hybrid rice. J Hunan Agric Univ (Nat Sci), 2008, 34: 586–590 (in Chinese with English abstract)
[26] 韦还和, 李超, 张洪程, 孙玉海, 马荣荣, 王晓燕, 杨筠文, 戴其根, 霍中洋, 许轲, 魏海燕, 郭保卫. 水稻甬优12不同产量群体的株型特征. 作物学报, 2014, 40: 2160–2168
Wei H H, Li C, Zhang H C, Sun Y H, Ma R R, Wang X Y, Yang J W, Dai Q G, Huo Z Y, Xu K, Wei H Y, Guo B W. Plant-type characteristics in populations with different yield of Yongyou 12. Acta Agron Sin, 2014, 40: 2160–2168 (in Chinese with English abstract)
[27] 丁能飞, 郭彬, 李建强, 林义成, 刘琛, 李华, 李凝玉, 傅庆林. 氮硅互作对水稻营养和产量的影响. 中国农学通报, 2013, 29(12): 127–130
Ding N F, Guo B, Li J Q, Lin Y C, Liu C, Li H, Li N Y, Fu Q L. Effects of nitrogen and silicon interaction on the nutrition and yield of rice. Chin Agric Sci Bull, 2013, 29(12): 127–130 (in Chinese with English abstract)
URL: http://www.cnki.net/kcms/detail/11.1809.S.20151008.1403.016.html
Effects of Silicon Fertilizer Rate on Grain Yield and Related morphological and Physiological Characteristics in Super Rice of Yongyou Japonica/indica Hybrids Series
WEI Huan-He1, MENG Tian-Yao1, LI Chao1, ZHANG Hong-Cheng1,*, SHI Tian-Yu1, MA Rong-Rong2, WANG Xiao-Yan3, YANG Jun-Wen4, DAI Qi-Gen1,*, HUO Zhong-Yang1, XU Ke1, WEI Hai-Yan1, and GUO Bao-Wei11Innovation Center of Rice Cultivation Technology in Yangtze River Valley, Ministry of Agriculture / Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China;2Crop Research Institute, Ningbo Academy of Agricultural Sciences of Zhejiang Province, Ningbo 315101, China;3Ningbo Seed Company of Zhejiang Province, Ningbo 315101, China;4Agricultural Technology Extension and Service, Yinzhou District, Ningbo City, Zhejiang Province, Ningbo 315100, China
Abstract:A field experiment was conducted using Yongyou 12 and Yongyou 15 with five treatments of 0, 75, 150, 225, and 300 kg ha–1silicon application. Results indicated that grain yield of Yongyou 12 and Yongyou 15 increased firstly and then decreased with increase of the silicon application rate. The highest grain yield of both Yongyou 12 and Yongyou 15 achieved at the silicon rate of 225 kg ha–1. Analysis on yield components showed that number of panicles of Yongyou 12 and Yongyou 15 increased with the increase of silicon application rate, while 1000-grain weight and seed-setting rate were both decreased with the increased silicon application rate. With the increase of silicon application rate, number of tillers and stems of Yongyou 12 and Yongyou 15 at jointing, heading, and maturity stages increased synchronously. Panicle rate of Yongyou 12 and Yongyou 15 increased firstly and
then decreased with the increase of silicon application rate, and the peak value was at the silicon rate of 225 kg ha–1. With the increase of silicon application rate, dry matter weight and leaf area index at jointing, heading, and maturity stages as well as dry matter accumulation and leaf area duration from jointing to heading and from heading to maturity increased. With the increase of silicon application rate, leaf length and leaf width of the 1st leaf, 2nd leaf, and 3rd leaf of Yongyou 12 and Yongyou 15 increased synchronously, while leaf basal angle and dropping angle of the 1st leaf, 2nd leaf, and 3rd leaf of Yongyou 12 and Yongyou 15 decreased synchronously. Moreover, compared with check (0 kg ha–1), silicon application significantly increased dry matter per stem, per sheath, and per length of stem. At last, the technology on the effective application of silicon was discussed.
Keywords:Silicon; Super rice of Yongyou japonica/indica hybrids series; Grain yield; Characteristics of yield formation
收稿日期Received(): 2015-06-26; Accepted(接受日期): 2015-09-06; Published online(网络出版日期): 2015-10-08.
通讯作者*(Corresponding authors): 张洪程, E-mail: hczhang@yzu.edu.cn; 戴其根, E-mail: qgdai@yzu.edu.cn
DOI:10.3724/SP.J.1006.2016.00437