心外膜脂肪组织与心房颤动
2016-02-21郑涛综述凌智瑜审校
郑涛 综述 凌智瑜 审校
(1.重庆医科大学研究生院,重庆400010;2.重庆医科大学附属第二医院心血管内科,重庆 400010)
心外膜脂肪组织与心房颤动
郑涛1综述凌智瑜1,2审校
(1.重庆医科大学研究生院,重庆400010;2.重庆医科大学附属第二医院心血管内科,重庆 400010)
心房颤动是临床上常见的心律失常,其发生机制尚未完全阐明。近年的研究发现,心外膜脂肪组织与心房颤动的发生发展密切相关。心外膜脂肪组织导致心房颤动的机制可能为:(1)心外膜脂肪组织中存在大量的自主神经节,心外膜脂肪组织增加可导致自主神经活动紊乱,神经节内的交感神经元兴奋,释放更多的去甲肾上腺素,引起神经节附近的肺静脉及心房内的心肌细胞钙负荷增加,诱发早期后除极,从而形成肺静脉及心房内的异常放电,并可导致心房有效不应期缩短,使心房组织产生电重构。(2)心外膜脂肪组织是心房组织局部炎性介质的源泉,心外膜脂肪组织的增加可导致炎性介质过度表达促使心房肌纤维化的进展,并导致心房产生结构重构,为心房颤动的发生及维持提供了基质。
心外膜脂肪组织;心房颤动;神经节;炎性介质
炎性因子是心房颤动发生的危险因素。其中肥胖导致心房颤动发生的增加可能与心外膜脂肪组织(epicardial adipose tissue,EAT)容积增加有关。EAT是心脏周围的一个脂肪库,主要存在于心室周围,而心房组织周围的脂肪垫同样含有丰富的迷走神经节,EAT的增加可导致炎症介质的释放增加,与心房颤动的发生密切相关[1-2]。现就目前EAT与心房颤动的相关性和机制方面做一综述。
1 EAT与心房颤动的关系
1.1EAT是心房颤动发生的独立危险因素
近年来的研究表明,EAT是心房颤动发生的独立危险因素。其中,近期发表的Framingham Heart Study研究[3]纳入了3 217例患者,采用多层螺旋CT检查并测定EAT体积。发现经校正年龄、性别、身体质量指数(BMI)、收缩压、血压控制情况、PR间期、瓣膜性心脏病危险因素后,EAT体积的增大与心房颤动的发生仍存在密切关系,是预测心房颤动发生的独立危险因素。Greif等[4]通过分析1 288例患者的冠状动脉CT,并计算EAT的体积、左房内径,将患者分为阵发性心房颤动组、持续性心房颤动组和非心房颤动组,结果发现EAT体积与心房颤动的发生有关,尤其是与持续性心房颤动及增大的左房直径密切相关,提示EAT的体积增大是心房颤动发生及左房重构的独立危险因素。近期的多项研究[5-8]也均显示,EAT体积的增大不仅与新发的非瓣膜性心房颤动相关,还与慢性心房颤动及导管消融的预后相关。除了采用CT测量EAT体积外,亦有采用核磁共振(MRI)测量心房颤动和非心房颤动患者的EAT体积的相关研究,其结果也支持增大的EAT体积与心房颤动的发生密切相关[9-10]。
除EAT容积外,研究者发现EAT厚度也与心房颤动存在相关性。Batal等[11]分析了169例冠心病或心房颤动患者的血管CT成像结果,测量左房中部短轴截面的EAT厚度,发现左房-食管之间EAT厚度与心房颤动发生密切相关。Acet等[12]使用超声测量了61例阵发性心房颤动、63例非阵发性心房颤动和63例窦性心律患者胸骨旁长轴切面EAT厚度,发现右室游离壁心外膜脂肪厚度与阵发性心房颤动和非阵发性心房颤动均密切相关(阵发性心房颤动:OR4.672,95% CI 2.329~9.371,P<0.001;非阵发性心房颤动:OR 24.276, 95% CI 9.285~63.474,P<0.001)。结果表明采用超声所测右室游离壁EAT厚度是心房颤动发生的独立预测因素。
上述研究结果均表明,采用不同方法检测所测定的EAT体积与EAT的厚度与心房颤动均存在密切联系,是心房颤动发生的独立预测危险因素。
1.2EAT与心房颤动负荷/严重程度相关
EAT体积和厚度不仅与心房颤动的发生有着密切联系,也与心房颤动的负荷/严重程度密切相关。Batal等[11]的研究表明,持续性心房颤动患者的左房-食管心外膜脂肪厚度明显大于阵发性心房颤动和非心房颤动患者,经年龄、BMI、左房面积校正后,增加的左房EAT的厚度仍与心房颤动负荷密切相关(P=0.015)。Acet等[12-13]通过超声测量右室游离壁EAT厚度的结果也表明持续性心房颤动患者EAT厚度显著大于阵发性心房颤动和窦性心律患者。Wong等[9]采用CT测定EAT体积的研究也发现,EAT的体积在永久性心房颤动患者>持续性心房颤动患者>阵发性心房颤动患者>窦性心律患者。这些研究结果一致显示,EAT的体积,左房后壁EAT的厚度及超声所测右室游离壁EAT的厚度均与心房颤动的负荷相关。
1.3EAT与心房颤动消融术后复发相关
近期研究表明EAT与心房颤动导管消融术后复发密切相关,心房颤动消融术后复发的患者较未复发的拥有更大的心外膜脂肪体积[8-9]。Stojanovska等[5]在对169例心房颤动消融术后的患者随访中发现:在矫正年龄、性别、BMI后,EAT体积与心房颤动消融术后复发仍存在相关性(OR 1.009,P=0.02);心房颤动患者EAT体积较大(>117 cm3)的患者射频消融术后复发率较高(54 % vs 46 %,P=0.002),且心房颤动复发时间更早。随后Chao等[13-14]分别使用超声和CT测量心外膜脂肪厚度,结果也表明增加的EAT厚度与心房颤动射频消融术后复发成正相关,是预测术后心房颤动复发的危险因素。Tsao等[8]对68例心房颤动术后未复发(n=44)和复发(n=24)患者的术前EAT体积进行分析,结果表明心房颤动复发组术前EAT体积明显大于未复发组,认为ETA体积是心房颤动消融术后复发的独立危险因素。其潜在的机制可能是射频消融术后,EAT仍持续通过直接或间接的作用促进心房颤动的发生。
1.4消融EAT减少心房颤动复发
Higuchi等[15]对60例心房颤动患者在导管消融术后3个月进行了MRI检测,通过MRI重建获得EAT三维图像,并与MRI延迟成像检测的消融所致心房瘢痕图像融合,发现在无心房颤动复发的患者消融线覆盖EAT更为广泛,认为肺静脉隔离(PVI)联合消融线附近神经节消融可提高心房颤动导管消融的成功率。Nakahara等[16]将60例持续性心房颤动患者的CT三维EAT图像融合于NavX标测系统,进行PVI和EAT的消融,并与采用阶梯式消融的患者比较,通过16个月的随访,结果显示PVI联合EAT消融组患者无复发的比例明显高于对照组(78% vs 60%,P<0.05)。其机制可能为射频消融导致消融部位周围的心外膜脂肪损伤,使心外膜内细胞因子释放减少和副交感神经破坏,削弱了EAT所致心房颤动的发生、维持及复发机制。
2 EAT导致心房颤动的机制
目前EAT导致心房颤动的机制还不是很明确,主要集中在EAT导致心房电重构、自主神经活动紊乱、炎症介质等几个方面。
2.1EAT可导致心房电重构
心脏自主神经系统包含交感和副交感神经,心脏自主神经激活可导致乙酰胆碱和儿茶酚胺过度释放,进一步触发肺静脉及心房组织的快速电活动,并导致心房不应期缩短和复极离散度增加,从而诱发心房颤动[17]。研究表明,心房颤动患者心房高主频电位区域与EAT覆盖部位一致[18-19],并认为心房有效不应期(AERP)缩短是EAT引起心房颤动的重要电生理机制。缩短的AERP使心房颤动易于诱发和维持。研究发现通过刺激EAT或快速心房起搏,可引起副交感活动增强和AERP缩短,切除EAT后可以减少刺激导致的AERP缩短和心房颤动的诱发率[18-19]。此外,心房电机械延迟(AEMD)心房肌电活动紊乱的标志,是心房颤动发生的重要预测因子[20-21]。EAT的厚度与AEMD密切相关,是AEMD的独立预测因素,并认为AEMD可能是EAT导致心房颤动的重要电生理基础[22]。
2.2自主神经活动紊乱机制
EAT里含有丰富的神经丛,该神经丛中自主神经的激活在心房颤动的发生和维持中扮演重要角色[23-24]。EAT中的心脏神经节可对调节心脏电活动的交感和副交感神经系统产生影响[25]。EAT体积增大的患者可能会导致外周肾上腺素能和胆碱能神经元增加,肾上腺素能神经激活可导致钙内流增加,然而胆碱能神经激活可导致动作电位时限缩短,动作电位时程3相晚期大量的钙离子瞬时进入细胞内,导致3相晚期的早后除极,形成肺静脉与心房肌的触发激动,这使得心房颤动易于触发和发展[23]。在动物模型中,刺激EAT可使AERP缩短导致心房颤动发生率增加;切除EAT后可抑制心外膜刺激时导致的AERP缩短,减少心房颤动的发生率[26]。综上所述,体积增大的EAT可导致自主神经功能紊乱、肺静脉和心房电活动改变,使心房颤动易于发作和维持,是心房颤动发生和维持的一个重要机制。
2.3EAT可产生炎性介质
EAT可产生多种细胞因子,如炎症因子和脂肪细胞因子[27]。其中炎症细胞、生长因子(活性素A)、基质金属蛋白酶是心房颤动发病机制中的一个重要因素[28-29]。研究发现在心房颤动患者中超敏C反应蛋白是非心房颤动患者的两倍,且慢性心房颤动高于阵发性心房颤动患者[28]。此外白介素-6, 白介素-8, 白介素-1b, 肿瘤坏死因子-α也是心房颤动发生的独立预测因子,这些炎症因子均来自于EAT,其分泌量与EAT的厚度或者体积大小正相关[7, 30]。
活性素A是转化生长因子-β超家族的一员,具有促进肝纤维化的作用。在人群中研究发现与外周脂肪组织相比,活性素A在EAT中高表达,并促进心房纤维化,而使用中和抗体可拮抗活性素A的促纤维化作用[31]。培养基中注入外源性EAT分泌组蛋白重组人活性素A可复制出心房肌纤维化,而活性素A抗体可阻断EAT分泌蛋白组的这种纤维化作用[28]。
基质金属蛋白酶是细胞外基质稳态重要的调节点,包括对各种胶原纤维和基底膜成分的调节。心房颤动发生时部分基质金属蛋白酶的活性会显著上调,导致心肌间质纤维化的积累[28]。在心力衰竭患者中活性素A和基质金属蛋白酶8的表达水平升高。在2型糖尿病患者中,活性素A在EAT中表达水平明显高于非糖尿病患者[32]。心力衰竭和糖尿病均是预测心房颤动较好的危险因素,在这些流行病学关系中,EAT的生物活性可能对心房颤动的发生产生了显著的作用[28]。研究表明EAT体积越大与之相关的炎症性细胞因子生物活性越高[33],而使用具有抗炎作用的瑞舒伐他汀治疗可以降低心房颤动的发生率[34]。综上所述,炎症介质与心房颤动的发生和维持密切相关,其机制可能是EAT中过表达的炎症介质改变左房细胞基质结构,导致心房颤动发作。
3 结语
EAT与心房颤动的发生和维持密切相关,EAT的体积和厚度与心房颤动的负荷/严重程度相关,且与心房颤动射频消融术后的复发率呈正相关。EAT体积增大或者厚度增加导致心房颤动发生增加的机制可能为:(1)EAT中自主神经功能紊乱导致心房重构,使心房颤动易于发作和维持。(2)EAT中过表达的炎症介质促进心房肌纤维化,导致心房结构改变,为心房颤动的发生提供了基质。随着对EAT及心房颤动研究的深入,将不断阐明EAT在心房颤动的发生及发展中所起的重要作用,为心房颤动的治疗提供新的治疗靶点和干预手段。
[1]Dey D, Nakazato R, Li D, et al. Epicardial and thoracic fat—noninvasive measurement and clinical implications[J]. Cardiovasc Diagn Ther, 2012, 2(2): 85-93.
[2]Selthofer-Relatic K, Bosnjak I. Myocardial fat as a part of cardiac visceral adipose tissue: physiological and pathophysiological view[J]. J Endocrinol Invest,2015,38(9):933-939.
[3]Thanassoulis G, Massaro JM, O’Donnell CJ, et al. Pericardial fat is associated with prevalent atrial fibrillation: the Framingham Heart Study[J]. Circ Arrhythm Electrophysiol,2010,3(4):345-350.
[4]Greif M, von Ziegler F, Wakili R, et al. Increased pericardial adipose tissue is correlated with atrial fibrillation and left atrial dilatation[J]. Clin Res Cardiol,2013,102(8):555-562.
[5]Stojanovska J, Kazerooni EA, Sinno M, et al. Increased epicardial fat is independently associated with the presence and chronicity of atrial fibrillation and radiofrequency ablation outcome[J]. Eur Radiol,2015,25(8):2298-2309.
[6]Nakanishi K, Fukuda S, Tanaka A, et al. Peri-atrial epicardial adipose tissue is associated with new-onset nonvalvular atrial fibrillation[J]. Circ J,2012,76(12):2748-2754.
[7]Nagashima K, Okumura Y, Watanabe I, et al. Association between epicardial adipose tissue volumes on 3-dimensional reconstructed CT images and recurrence of atrial fibrillation after catheter ablation[J]. Circ Journal,2011,75(11):2559-2565.
[8]Tsao HM, Hu WC, Wu MH, et al. Quantitative analysis of quantity and distribution of epicardial adipose tissue surrounding the left atrium in patients with atrial fibrillation and effect of recurrence after ablation[J]. Am J Cardiol,2011,107(10): 1498-1503.
[9]Wong CX, Abed HS, Molaee P, et al. Pericardial fat is associated with atrial fibrillation severity and ablation outcome[J]. J Am Coll Cardiol,2011,57(17):1745-1751.
[10]Muhib S, Fujino T, Sato N, et al. Epicardial adipose tissue is associated with prevalent atrial fibrillation in patients with hypertrophic cardiomyopathy[J]. Int Heart J,2013,54(5):297-303.
[11]Batal O, Schoenhagen P, Shao M, et al. Left atrial epicardial adiposity and atrial fibrillation[J]. Circ Arrhythm Electrophysiol,2010,3(3):230-236.
[12]Acet H, Ertas F, Akil MA, et al. New inflammatory predictors for non-valvular atrial fibrillation: echocardiographic epicardial fat thickness and neutrophil to lymphocyte ratio[J]. Int J Cardiovasc Imaging,2014,30(1):81-89.
[13]Chao TF, Hung CL, Tsao HM, et al. Epicardial adipose tissue thickness and ablation outcome of atrial fibrillation[J]. PloS One,2013,8(9):e74926.
[14]Kocyigit D, Gurses KM, Yalcin MU, et al. Periatrial epicardial adipose tissue thickness is an independent predictor of atrial fibrillation recurrence after cryoballoon-based pulmonary vein isolation[J]. J Cardiovasc Comput Tomogr,2015, 9(4):295-302.
[15]Higuchi K, Akkaya M, Koopmann M, et al. The effect of fat pad modification during ablation of atrial fibrillation:late gadolinium enhancement MRI analysis[J]. Pacing Clin Electrophysiol,2013,36(4):467-476.
[16]Nakahara S, Hori Y, Kobayashi S, et al. Epicardial adipose tissue-based defragmentation approach to persistent atrial fibrillation:its impact on complex fractionated electrograms and ablation outcome[J]. Heart Rhythm,2014,11(8):1343-1351.
[17]Male S, Scherlag BJ. Role of neural modulation in the pathophysiology of atrial fibrillation[J]. Indian J Med Res,2014,139(4):512-522.
[18]Chang D, Zhang S, Yang D, et al. Effect of epicardial fat pad ablation on acute atrial electrical remodeling and inducibility of atrial fibrillation[J]. Circ J,2010,74(5):885-894.
[19]Zhou QN, Zhang XQ, Zhang L, et al. Efficacy of sequential ablation of sinus atrial node fat pad and atrial ventricular node fat pad on inducibility of atrial fibrillation evoked by vagus trunk stimulation[J]. Zhonghua Xin Xue Guan Bing Za Zhi,2011,39(12):1088-1093.
[20]Nar G, Inci S, Aksan G, et al. The relationships between atrial electromechanical delay and CHA2DS2-VASc score in patients diagnosed with paroxysmal AF[J]. Echocardiography,2015,32(9):1359-1366.
[21]Ari H, Ari S, Akkaya M, et al. Predictive value of atrial electromechanical delay for atrial fibrillation recurrence[J]. Cardiol J,2013,20(6): 639-647.
[22]Akyel A, Yayla KG, Erat M, et al. Relationship between epicardial adipose tissue thickness and atrial electromechanical delay in hypertensive patients[J]. Echocardiography,2015,32(10):1498-1503.
[23]Chen PS, Turker I. Epicardial adipose tissue and neural mechanisms of atrial fibrillation[J]. Circ Arrhyth Electrophysiol,2012,5(4):618-620.
[24]Cherniavskii AM, Rakhmonov SS, Pak IA, et al. The role of autonomous nervous system in the development of atrial fibrillation[J]. Klin Med(Mosk),2013,91(1):16-20.
[25]Ardell JL. The cardiac neuronal hierarchy and susceptibility to arrhythmias[J]. Heart Rhythm,2011,8(4):590-591.
[26]White CM, Sander S, Coleman CI, et al. Impact of epicardial anterior fat pad retention on postcardiothoracic surgery atrial fibrillation incidence:the AFIST-Ⅲ Study[J]. J Am Coll Cardiol,2007,49(3):298-303.
[27]Park HW, Shen MJ, Lin SF,et al. Neural mechanisms of atrial fibrillation[J]. Curr Opin Cardiol,2012,27(1):24-28.
[28]Hatem SN, Sanders P. Epicardial adipose tissue and atrial fibrillation[J]. Cardiovasc Res,2014,102(2):205-213.
[29]Mazurek T, Kiliszek M, Kobylecka M, et al. Relation of proinflammatory activity of epicardial adipose tissue to the occurrence of atrial fibrillation[J]. Am J Cardiol,2014,113(9):1505-1508.
[30]Iacobellis G, Barbaro G.The double role of epicardial adipose tissue as pro- and anti-inflammatory organ[J]. Horm Metab Res,2008,40(7):442-445.
[31]Venteclef N, Guglielmi V, Balse E, et al. Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipo-fibrokines[J]. Eur Heart J,2015,36(13):795-805a.
[32]Greulich S, Maxhera B, Vandenplas G, et al. Secretory products from epicardial adipose tissue of patients with type 2 diabetes mellitus induce cardiomyocyte dysfunction[J]. Circulation,2012,126(19):2324-2334.
[33]Kremen J, Dolinkova M, Krajickova J, et al. Increased subcutaneous and epicardial adipose tissue production of proinflammatory cytokines in cardiac surgery patients: possible role in postoperative insulin resistance[J]. J Clin Endocrinol Metab,2006,91(11):4620-4627.
[34]Pena JM, MacFadyen J, Glynn RJ, et al. High-sensitivity C-reactive protein, statin therapy, and risks of atrial fibrillation:an exploratory analysis of the JUPITER trial[J]. Eur Heart J,2012,33(4):531-537.
Epicardial Adipose Tissue and Atrial Fibrillation
ZHENG Tao1, LING Zhiyu1,2
(1.ChongqingMedicalUniversityGraduateSchool,Chongqing400010,China; 2.DepartmentofCardiology,TheSecondAffiliatedHospitalofChongqingMedicalUniversity,Chongqing400010,China)
Atrial fibrillation is one of the most common arrhythmias encountered in clinical practice, however its mechanism is not yet fully understood. Recent studies have shown that epicardial adipose tissue(EAT) plays an important role in the occurrence and development of atrial fibrillation. There are two potential mechanisms explaining for how EAT impacts the atria: (1) EAT contains abundant ganglionated plexi, and an increase in EAT may provoke abnormal autonomic nervous activity and increase the secretion of noradrenaline. This may cause calcium overload nearby pulmonary veins of the left atria, leading to the development of early after depolarizations, and resulting in abnormal electric activities in the pulmonary vein and atria. Additionally it can shorten the effective refractory period and lead to the electrical remodeling of atria. (2) Mechanism is that EAT is also the source of inflammatory medium, and an increase of EAT may cause the overexpression of inflammatory biomarkers and prompt the progress of the atrial fibrosis, which can result in structural remodeling of the atria, and provide the substrate for initiation and maintenance of atrial fibrillation.
Epicardial adipose tissue;Atrial fibrillation;Ganglionated plex; Inflammatory mediator
2016-01-13修回日期:2016-02-25
重庆市卫生局重点课题(2011-1-045)
郑涛(1990—),在读硕士,主要从事心律失常、心力衰竭的治疗研究。Email:cardiologzhengtao@163.com
凌智瑜(1977—),副教授,硕士生导师,博士,主要从事心律失常、心力衰竭、冠心病等的哈治疗研究。Email:13512362075@163.com
R541.7+5
A【DOI】10.16806/j.cnki.issn.1004-3934.2016.04.012