自身免疫性糖尿病相关抗体检测的研究进展
2016-01-15刘艺文李玉秀
刘艺文,李玉秀
自身免疫性糖尿病相关抗体检测的研究进展
刘艺文,李玉秀*
(中国医学科学院,北京协和医学院,北京协和医院内分泌科,原卫生部内分泌重点实验室,北京 100730)
自身免疫性糖尿病以T细胞介导的胰岛β细胞特异性损伤及循环中出现胰岛自身抗体为特征,自身免疫是其发病的中心环节,自身抗体是目前最可靠的1型糖尿病(T1DM)生物标志物,临床应用广泛,其中最值得关注的则是其在T1DM的诊断及预测方面的价值。胰岛素自身抗体种类繁多,各有特点,目前临床应用的主要抗体包括谷氨酸脱羧酶抗体(GADA)、胰岛素自身抗体(IAA)、胰岛素瘤相关蛋白2抗体(IA-2A)和锌离子转运蛋白8抗体(ZnT8A)。联合检测对T1DM的诊断及预测有重要意义。
自身免疫性糖尿病;胰岛自身抗体;诊断;预测;联合检测
自身免疫性糖尿病是以T细胞介导的胰岛β细胞特异性损伤及循环中出现胰岛自身抗体为特征的慢性进展性疾病[1],包括1型糖尿病(type 1 diabetes mellitus,T1DM)及成人迟发性自身免疫性糖尿病(latent autoimmune diabetes in adults,LADA)。其确切的病因及发病机制仍不明确,但目前普遍认为:外界环境因素作用于具有遗传易感性的个体是其发病的始动因素[2],自身免疫则是其中心环节[3]。自身抗体虽不直接导致β细胞损伤,但它仍是目前最可靠的T1DM生物标志物,广泛应用于临床及科研[4]。现对自身免疫性糖尿病相关抗体检测的研究进展综述如下。
胰岛自身抗体检测对T1DM的价值不容忽视,可用于T1DM的诊断;此外,抗体常在T1DM起病前数年甚至数十年已出现,因此抗体检测是目前T1DM的最佳预测手段[5],结合抗体数量、滴度、亚型、抗原表位则有助于进一步对T1DM进行风险分层,及时对高危人群进行一级预防,因而可能延缓病情进展[6];再者,抗体可提供T1DM患者预后信息,提示免疫治疗的潜在靶点,有助于选择治疗方案及作为评价其疗效的指标[7],在研究中还可作为筛选受试者进入二级预防临床试验的纳入指标[5]。
胰岛自身抗体种类繁多,各有特点,目前临床应用的主要抗体为谷氨酸脱羧酶抗体(glutamic acid decarboxylase antibodies,GADA)、胰岛素自身抗体(insulin autoantibodies,IAA)、胰岛素瘤相关蛋白2抗体(insulinoma-associated protein 2 antibodies,IA-2A)和锌离子转运蛋白8抗体(zinc transporter-8 antibodies,ZnT8A),以下为各抗体的相关进展。
1 经典的胰岛自身抗体
1.1 胰岛细胞抗体
胰岛细胞抗体(islet-cell antibodies,ICA)是首次发现于1974年,是第一个被发现的胰岛自身抗体[8],在发现其他抗体前,T1DM诊断及预测基本依赖于ICA测定。此外,ICA有助于诊断LADA[9],但通过免疫组化方法检测ICA对技术要求较高,难以统一标准,敏感度、特异度差异大,重复性低,不适用于大规模筛查,因此限制了ICA的广泛应用,目前已被GADA、IAA及IA-2A替代[10]。
1.2 GADA
谷氨酸脱羧酶(glutamic acid decarboxylase,GAD)是催化抑制性神经递质γ氨基丁酸合成的限速酶,根据其相对分子质量分为GAD65和GAD67两种亚型,人类胰岛只表达GAD65[11]。GADA常在<2岁出现,2岁时滴度达高峰,随后其阳性率及滴度随病程进展而下降,但在成年期仍可长时间持续存在,因此可保持良好的敏感度(60%~80%),诊断后15年内仍能提供有用信息。此外,GADA已成为LADA公认的诊断指标之一[9]。
1.3 IAA
1983年首次在未使用外源性胰岛素治疗的T1DM患者血清中发现IAA[12],其抗原为胰岛素,与β细胞损伤密切相关,是T1DM最主要的胰岛自身抗原[13]。IAA通常是最早出现的抗体,常在<2岁出现,2岁时滴度达高峰,随后滴度和阳性率随年龄增长而下降,成人的滴度及阳性率很低[7],故对年龄较大的T1DM的诊断价值有限。诊断T1DM时的年龄与IAA滴度密切相关[14],越早出现高滴度IAA提示疾病进展越迅速[15]。然而,IAA在预测T1DM方面的价值低于其他抗体,且不适用于评价胰岛素治疗的效果,因为外源性胰岛素本身可诱导IAA的产生,从而对结果的判断造成干扰[7]。
1.4 IA-2A/IA-2βA
胰岛素瘤相关蛋白2(insulinoma-associated protein 2,IA-2)及其同源物IA-2β均为神经内分泌分子,是蛋白酪氨酸磷酸酶家族的成员,参与调节胰岛素分泌。与GADA及IAA不同,诊断T1DM前IA-2A滴度逐渐升高,而前两者滴度逐渐下降。新诊断T1DM的患者IA-2A阳性率为60%~80%,可见IA-2A诊断T1DM具有较好的敏感度[16]。
2 其他胰岛自身抗体
2.1 ZnT8A
锌离子转运蛋白8(zinc transporter-8,ZnT8)是胰岛β细胞特异性Zn2+转运体,仅在胰岛β细胞表达,为胰岛素成熟储存过程提供Zn2+的主要成分[17]。ZnT8A出现通常晚于IAA和GADA,<2岁阳性率很低,>2岁阳性率则随年龄增长而增加,且稳定性高,诊断各年龄段的T1DM的特异性基本相似,因此ZnT8A对诊断年龄较大的T1DM更有价值。T1DM患者中ZnT8A的阳性率为60%~80%,这种敏感度并不亚于目前诊断T1DM的3种标准生化抗体GADA、IA-2A和IAA[18],但当前它只作为除GADA、IA-2A和IAA以外的第4种备选抗体。ZnT8A是独立于经典抗体、年龄、人类白细胞抗原(human leukocyte antigen,HLA)以外的T1DM标志物,经典抗体阴性患者中仍有26%患者ZnT8A呈阳性[19]。可见,ZnT8A对GADA、IA2A、IAA有重要的补充作用。
2.2 羧基肽酶H抗体
羧基肽酶H(carboxypeptidase-H,CPH)抗体是胰岛素分泌颗粒的成分,其抗体诊断经典T1DM的敏感度和特异度均不理想,但对LADA的诊断有一定价值,可提高GADA诊断LADA的敏感度。然而其出现较晚,起病时阳性率低,多见于病程晚期,因此对LADA的诊断价值仍较有限[20]。
2.3 性别决定区Y相关蛋白抗体
性别决定区Y相关蛋白抗体(sex-determining region Y-related protein antibodies,SOX13-Ab)出现较晚,多见于病程长的患者,T1DM患者中该抗体阳性率仅18%,远低于常规抗体[21],多项研究表明,SOX13-Ab特异度低,对T1DM的诊断及预测价值不大[22]。
2.4 其他
目前已发现更多胰岛自身抗体,CD38抗体出现也较晚,多见于病程长的患者,在2型糖尿病(type 2 diabetes mellitus,T2DM)患者和病程长的T1DM患者中阳性率9%~15%,而对于新起病的T1DM诊断价值甚微[23];Glima 38抗体在T1DM前期和起病时阳性率分别为14%和19%,可见其预测及诊断T1DM的敏感度均不理想,且特异度远低于经典抗体[24],对T1DM的诊断及预测的价值也不大;此外,还有趋化因子3抗体(CC chemokine 3 antibodies,CCL3-Ab)[25]、GM2-1神经节苷脂抗体、胰岛细胞自身抗体(islet cell autoantibodies,ICA69)[26]、热休克蛋白10(heat shock protein 10,HSP10)抗体、HSP65抗体、淀粉酶α-2A自身抗体(amylase α-2A autoantibodies)[27]、GDIb抗体、氨基酰tRNA合成酶(aminoacyl-tRNA synthetase,aaRS)抗体[28]、膜联蛋白Ⅴ(Annexin Ⅴ,AnxⅤ)抗体[29]、抗真核细胞翻译延伸因子1α1自身抗体(anti-eukaryote translation elongation factor 1α1 autoantibodies,EEF1A1-Aab)和抗泛素偶联酶2L3自身抗体(anti-ubiquitin-conjugating enzyme 2L3 autoantibodies,UBE2L3-Aab)[30]等,关于上述抗体的研究少,临床价值尚不明确。
3 联合检测胰岛自身抗体
联合检测可提高T1DM诊断及预测的敏感度及特异度。联合检测GADA、IA-2A、IAA可将敏感度提高至94%,而联合检测GADA、IA-2A、IAA及ZnT8A等4种抗体,敏感度>96%[31]。就诊断的特异度而言,两种抗体阳性(100%)高于单一抗体阳性(92%~98%)。如出现GADA、IA-2A、IAA中一种抗体阳性则5年内发生T1DM的风险15%,而两种抗体阳性风险则增至70%,3种抗体阳性风险则为100%,可见出现的抗体种类越多,患T1DM风险越高[32]。再者,联合检测抗体对于在普通人群的T1DM筛查也有一定价值[33]。
4 胰岛自身抗体的检测方法
随着科学技术的发展,胰岛自身抗体的检测技术日新月异。目前,已有可靠的抗体检测方法用于IAA、GADA、IA-2A和ZnT8A的测定,均已通过糖尿病自身抗体标准化项目验证。GADA、IA-2A、ZnT8A常用检测方法为放射性配体结合试验,敏感度和特异度均较理想,而目前IAA测定常用微阵列芯片。此外,还有更多检测新技术,包括酶联免疫吸附测定(enzyme-linked immunosorbent assay,ELISA)、免疫印迹法、2D凝胶电泳结合质谱分析法、蛋白质组学等。然而,各方法的敏感度、特异度、可重复性参差不齐,缺乏可比性,难以统一,给目前的临床和研究工作带来一定困难。好的检测方法应同时具备高灵敏度及多抗体联合检测的特点,现国家纳米科学中心和北京协和医院正合作研发一种基于纳米金结构的自身免疫糖尿病超灵敏蛋白芯片,运用纳米金结构荧光增强技术能极大提高检测灵敏度,运用点阵芯片技术实现多指标检测(包括经典抗体及新增抗体ZnT8A、CPH-Ab、SOX13-Ab),从而提高抗体检测的效率,优化自身免疫性糖尿病的分型确诊,对选择合适的治疗方案有重要意义。
5 展 望
胰岛自身抗体是目前T1DM最可靠的生物标志物。越来越多的胰岛自身抗体被发掘出来,然而,目前仍有2%~5%的T1DM患者未发现任何已知的胰岛自身抗体,可见胰岛自身抗体谱仍有待完善。虽然有较多研究显示胰岛自身抗体对于T1DM的诊断与预测起关键作用,但目前相关抗体检测在临床工作中的实际应用价值仍非常有限。此外,T1DM的免疫治疗的发展对胰岛自身抗体的研究提出更高的要求,成为促进相关抗体检测发展的动力。随着相关研究的深入、检测技术的成熟及有效干预措施的诞生和完善,胰岛自身抗体将能发挥更优的临床价值。
[1] Atkinson MA, Eisenbarth GS, Michels AW. Type 1 diabetes[J]. Lancet, 2014, 383(9911): 69−82.
[2] Bluestone JA, Herold K, Eisenbarth G. Genetics, pathogenesis and clinical interventions in type 1 diabetes[J]. Nature, 2010, 464(7293): 1293−1300.
[3] Ziegler AG, Nepom GT. Prediction and pathogenesis in type 1 diabetes[J]. Immunity, 2010, 32(4): 468−478.
[4] Silva DG, Daley SR, Hogan J,. Anti-islet autoantibodies trigger autoimmune diabetes in the presence of an increased frequency of islet-reactive CD4 T cells[J]. Diabetes, 2011, 60(8): 2102−2111.
[5] Vehik K, Haller MJ, Beam CA,. Islet autoantibody seroconversion in the DPT-1 study: justification for repeat screening throughout childhood[J]. Diabetes Care, 2011, 34(2): 358−362.
[6] Ziegler AG, Bonifacio E, BABYDIAB-BABYDIET Study Group. Age-related islet autoantibody incidence in offspring of patients with type 1 diabetes[J]. Diabetologia, 2012, 55(7): 1937−1943.
[7] Wenzlau JM, Juhl K, Yu L,. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes[J]. Proc Natl Acad Sci USA, 2007, 104(43): 17040−17045.
[8] Bottazzo GF, Florin-Christensen A, Doniach D. Islet-cell antibodies in diabetes mellitus with autoimmune polyendocrine deficiencies[J]. Lancet, 1974, 2(7892): 1279−1283.
[9] Turner R, Stratton I, Horton V,. UKPDS 25: autoantibodies to islet-cell cytoplasm and glutamic acid decarboxylase for prediction of insulin requirement in type 2 diabetes. UK Prospective Diabetes Study Group[J]. Lancet, 1997, 350(9087): 1288−1293.
[10] Atkinson MA, Eisenbarth GS. Type 1 diabetes: new perspectives on disease pathogenesis and treatment[J]. Lancet, 2001, 358(9277): 221−229.
[11] Kass I, Hoke DE, Costa MG,. Cofactor-dependent conformational heterogeneity of GAD65 and its role in autoimmunity and neurotransmitter homeostasis[J]. Proc Natl Acad Sci USA, 2014, 111(25): E2524−E2529.
[12] Palmer JP, Asplin CM, Clemons P,. Insulin antibodies in insulin-dependent diabetics before insulin treatment[J]. Science, 1983, 222(4630): 1337−1339.
[13] Moriyama H, Abiru N, Paronen J,. Evidence for a primary islet autoantigen (preproinsulin 1) for insulitis and diabetes in the nonobese diabetic mouse[J]. Proc Natl Acad Sci USA, 2003, 100(18): 10376−10381.
[14] Steck AK, Johnson K, Barriga KJ,. Age of islet autoantibody appearance and mean levels of insulin, but not GAD or IA-2 autoantibodies, predict age of diagnosis of type 1 diabetes: diabetes autoimmunity study in the young[J]. Diabetes Care, 2011, 34(6): 1397−1399.
[15] Morran MP, Vonberg A, Khadra A,. Immunogenetics of type 1 diabetes mellitus[J]. Mol Aspects Med, 2015 Apr; 42: 42-60. doi: 10.1016/j.mam.2014.12.004. (Epub ahead of print)
[16] Sosenko JM, Skyler JS, Palmer JP,. A longitudinal study of GAD65 and ICA512 autoantibodies during the progression to type 1 diabetes in diabetes prevention trial-type 1 (DPT-1) participants[J]. Diabetes Care, 2011, 34(11): 2435−2437.
[17] Chimienti F, Devergnas S, Favier A,. Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules[J]. Diabetes, 2004, 53(9): 2330−2337.
[18] Vermeulen I, Weets I, Asanghanwa M,. Contribution of antibodies against IA-2β and zinc transporter 8 to classification of diabetes diagnosed under 40 years of age[J]. Diabetes Care, 2011, 34(8): 1760−1765.
[19] Yu L, Boulware DC, Beam CA,. Zinc transporter-8 autoantibodies improve prediction of type 1 diabetes in relatives positive for the standard biochemical autoantibodies[J]. Diabetes Care, 2012, 35(6): 1213−1218.
[20] Yang L, Zhou ZG, Tan SZ,. Carboxypeptidase-H autoantibodies differentiate a more latent subset of autoimmune diabetes from phenotypic type 2 diabetes among Chinese adults[J]. Ann N Y Acad Sci, 2008, 115(1): 263−266.
[21] Kasimiotis H, Myers MA, Argentaro A,. Sex-determining region Y-related protein SOX13 is a diabetes autoantigen expressed in pancreatic islets[J]. Diabetes, 2000, 49(4): 555−561.
[22] Lampasona V, Scirpoli M, Bosi E,. ICA12(SOX13) autoantibodies are unlikely to be a useful marker for pre-clinical typeⅠ diabetes[J]. Diabetologia, 2001, 44(2): 267.
[23] Mallone R, Ortolan E, Pinach S,. Anti-CD38 autoantibodies: characterisation in new-onset type Ⅰ diabetes and latent autoimmune diabetes of the adult (LADA) and comparison with other islet autoantibodies[J]. Diabetologia, 2002, 45(12): 1667−1677.
[24] Winnock F, Christie MR, Batstra MR,. Autoantibodies to a 38-kDa glycosylated islet cell membrane-associated antigen in (pre)type 1 diabetes: association with IA-2 and islet cell autoantibodies[J]. Diabetes Care, 2001, 24(7): 1181−1186.
[25] Ziegler AG, Mollenhauer U, Achenbach P,. Anti-CCL3 autoantibodies are not markers of type 1 diabetes when measured by a commercial ELISA method[J]. Diabetologia, 2011, 54(3): 699−700.
[26] Pietropaolo M, Castaño L, Babu S,. Islet cell autoantigen 69 kD (ICA69). Molecular cloning and characterization of a novel diabetes-associated autoantigen[J]. J Clin Invest, 1993, 92(1): 359−371.
[27] Endo T, Takizawa S, Tanaka S,. Amylase alpha-2A autoantibodies: novel marker of autoimmune pancreatitis and fulminant type 1 diabetes[J]. Diabetes, 2009, 58(3): 732−737.
[28] Park SG, Park HS, Jeong IK,. Autoantibodies against aminoacyl-tRNA synthetase: novel diagnostic marker for type 1 diabetes mellitus[J]. Biomarkers, 2010, 15(4): 358−366.
[29] Bakar F, Unlütürk U, Başkal N,. AnnexinⅤ expression and anti-annexin Ⅴ antibodies in type 1 diabetes[J]. J Clin Endocrinol Metab, 2014, 99(3): 932−937.
[30] Koo BK, Chae S, Kim KM,. Identification of novel autoantibodies in type 1 diabetic patients using a high-density protein microarray[J]. Diabetes, 2014, 63(9): 3022−3032.
[31] Yu L, Miao D, Scrimgeour L,. Distinguishing persistent insulin autoantibodies with differential risk: nonradioactive bivalent proinsulin/insulin autoantibody assay[J]. Diabetes, 2012, 61(1): 179−186.
[32] Sosenko JM, Krischer JP, Palmer JP,. A risk score for type 1 diabetes derived from autoantibody-positive participants in the Diabetes Prevention Trial-type 1[J]. Diabetes Care, 2008, 31(3): 528−533.
[33] Knip M, Korhonen S, Kulmala P,. Prediction of type 1 diabetes in the general population[J]. Diabetes Care, 2010, 33(6): 1206−1212.
(编辑: 周宇红)
Research advances in autoantibodies of autoimmune diabetes
LIU Yi-Wen, LI Yu-Xiu*
(Department of Endocrinology, Key Laboratory of Endocrinology of ex-Ministry of Health, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing 100730, China)
Autoimmue diabetes is characterized by the damages in pancreatic β cells mediated by T cells and the presence of islet autoantibodies in the circulation. The initiation of autoimmune is the key step in its pathogenesis. Autoantibodies are the most reliable biomarkers for type 1 diabetes mellitus (T1DM), and widely used in clinical practice, especially in the prediction and diagnosis of T1DM. Though islet related autoantibodies are diverse with various features, glutamic acid decarboxylase antibodies (GADA), insulin autoantibodies (IAA), insulinoma-associated protein 2 antibodies (IA-2A) and zinc transporter-8 antibodies (ZnT8A) are the main islet related autoantibodies applied clinically. In addition, combined testing of islet related autoantibodies is of important significance in the prediction and diagnosis of T1DM.
autoimmune diabetes; islet related autoantibodies; diagnosis; prediction; combined testing
(Z151100003915077).
R587.1
A
10.11915/j.issn.1671-5403.2016.01.017
2015−07−01;
2015−07−29
北京市科委前沿技术培育项目(Z151100003915077)
李玉秀, E-mail: liyuxiu@medmail.com.cn