APP下载

各向异性断块油藏油井压力特征分析

2015-08-31董平川饶培玉杨立敏

关键词:断块夹角油井

雷 刚,董平川,饶培玉,杨立敏

各向异性断块油藏油井压力特征分析

雷刚*,董平川,饶培玉,杨立敏

中国石油大学(北京)石油工程学院,北京 昌平 102249

各向异性对断块油藏地层压力分布及油井井底压力有明显影响。针对无限大两夹角扇形断块油藏,建立了考虑断层闭合的单相不稳定渗流模型,利用坐标变换及数值计算得到不同生产时间各向异性断块油藏地层压力及油井井底压力,分析了不同生产时间、断层夹角和渗透率强度系数对地层压力及油井井底压力影响。通过分析得出:各向异性油藏压降损失在方向上存在差异,地层压降更多发生在主渗透率方向上;断层夹角越小,断层边界对生产影响越大,地层及油井井底压力值越低;油井井底压力随渗透率强度系数变化不呈现出单调变化关系,存在先减小后增大趋势。

各向异性;断层;坐标变换;渗透率强度系数;井底压力

网络出版地址:http://www.cnki.net/kcms/detail/51.1718.TE.20150330.1719.013.html

雷 刚,董平川,饶培玉,等.各向异性断块油藏油井压力特征分析[J].西南石油大学学报:自然科学版,2015,37(2):125-130.

Lei Gang,Dong Pingchuan,Rao Peiyu,et al.Analysis of Pressure Characteristics of Oil Well in Anisotropic Fault-block Oil Reservoirs[J].Journal of Southwest Petroleum University:Science&Technology Edition,2015,37(2):125-130.

引言

中国东部的许多断陷盆地的油藏中,断层非常发育,断层遮挡占有主导地位,许多相邻井的油层不属于同一油藏,也不属于同一断块,现实生产中很难做出符合油藏情况的开发部署,研究断块油藏油井压力特征具有重大意义。中国学者对断块油藏方面进行了大量的研究。周路等对断层连通性及定位进行了研究[1-2];卢德唐等考虑井储和表皮效应,从试井曲线方面对两夹角断块油藏油井井底压力特征进行了研究[3];王晓冬等通过建立模型对两夹角断块油藏油井井底压力方程进行了解析求解,研究了井底压力变化特征[4]。

对于断层以不同角度相交的窄小型断块油藏,由于沉积过程中的方向性,使得油藏具有各向异性。各向异性油藏对于渗透率具有方向性,具体表现为:在地层中同一点上,流体向某一个方向流动的渗透率比其他方向大,而在与该方向垂直方向上的渗透率最小。刘月田等研究了各向异性对无限大地层油井产能及井网规划的研究[5-10];王海静等研究了各向异性对盒状油藏油井流入动态的影响[11-12];王大为等人研究了各向异性对单井或面积井网产量影响[13-15],但各向异性对两夹角断块油藏地层压力及油井井底压力影响方面的研究却不多。本文在文献[3]和文献[4]对两夹角断块油藏研究基础上,建立模型分析了各向异性对两夹角断块油藏油井井底压力特征的影响。

1 模型建立及求解

1.1物理模型

两封闭断面 f1,f2围成一个等厚、无限大各向异性地层(图1),区域渗透率主值分别为Kx,Ky,且渗透率各向异性系数为τ=Kx/Ky(τ>1)(当τ→0时,流体在y方向渗流速度接近为0,τ→+∞,此时模型仍然适用),区域内有一口定产井A到间断面 f1,f2的距离分别为d1,d2。取两间断面交点O为坐标原点,渗透率主值Kx和Ky方向分别为x和y轴方向建立平面直角坐标系。假设间断面 f1与y轴的夹角为β,间断面f2与y轴的夹角为α,忽略井筒形状的影响,则井点坐标为

图1 变换前地层及井位分布图Fig.1 Distribution of formation and well location before transformation

图2 变换后地层及井位分布图Fig.2 Distribution of formation and well location after transformation

1.2坐标变换

根据文献[1]采用如下坐标变换

经变换以后,各向异性地层变为等价各向同性地层,如图2所示。

OA与坐标轴ξ的夹角为

新坐标系下井点坐标为

井点到断面f1,f2距离分别为

在井点处

1.3数学模型

1.4模型计算

采用有限差分方法计算模型。首先将网格进行剖分,rD方向剖分为N个网格,θ方向剖分为M个网格,并采用如下变换:lHr1D=Δx=x1D;lHr2D= 2Δx=x2D;···;lHrnD=nΔx=xnD,则方程组(9)转换为

将方程组(10)离散化,得到离散方程为

其中

由于油井位置为(rD,γ3),则;([·]表示取整计算)。

离散方程(12)可写成AδP=F的矩阵形式,其中A为M×N维五对角方阵;δP,F分别为M、N维列向量。该方程可采用高斯赛德尔迭代法求解,从而得到地层压力值。

2 实例计算与结果分析

2.1实例计算

国内某油田的一个断块埋深2 354∼2 605 m,平均有效厚度7.5 m,x向、y向平均渗透率分别为115.9 mD和64.2 mD,平均孔隙度为20.5%,地层压力27.13 MPa,地层原油黏度10.4 mPa·s,原油密度0.855×103kg/m3,原油体积系数1.051m3/mm3,两断层夹角为50◦,生产井距两断层距离分别为50 m和31 m,生产井半径为0.12 m,产油量为14.64 m3/d。生产时间为100 d和300 d,计算地层压力等值线分布如图3、4所示。

图3 生产100 d地层压力等值线图Fig.3 Contour map of pressure distribution at 100 d production

图4 生产300 d地层压力等值线图Fig.4 Contour map of pressure distribution at 300 d production

由图3和图4可知,随着生产时间增加,压力波波及范围不断扩大,压力波波及区域地层压力迅速下降,生产井附近区域随生产时间增加而不断下降。压力波x方向波及速度大于y方向波及速度,这是因为地层x方向渗透率大于y方向渗透率。

2.2断层夹角对油层压力影响

对于不同断层夹角生产300 d地层压力等值线分布如图5、图6所示,油井井底压力随断层夹角变化如图7所示。

图5 40◦夹角地层压力等值线图Fig.5 Contour map of pressure distribution of 40◦angle

图6 60◦夹角地层压力等值线图Fig.6 Contour map of pressure distribution of 60◦angle

图7 井底压力随地层夹角变化曲线Fig.7 Relation between bottom hole pressure and formation angle

由图5、图6可以看出,地层夹角越大,相同生产时间地层压降越小,压力值越高,压力波波及范围越大。主要原因是地层夹角越大,断层边界对油井生产影响越小,断层边界造成地层压降损失越小,从而地层压力值越大。从图7可以看出,油井井底压力随地层夹角增大而增大。主要原因也由于断层夹角越大,断层对油井井底压力影响越小,油井压降损失越小。

2.3渗透率各向异性对油井压力影响

表1 不同渗透率各向异性系数下油井与断层距离Tab.1 The distance of oil well and cracks with different permeability anisotropic coefficients

从表1可以看出,随渗透率各向异性系数增加,油井与两断层之间距离的较小值先增大再减小。从图8中看出井底压力随渗透率各向异性系数增大先增加再减小,即存在一个拐点,说明实际生产中存在最佳渗透率各向异性系数。

图8 井底压力随渗透率各向异性系数变化曲线Fig.8 Relation between bottom hole pressure and permeability anisotropic coefficient

油井与断层距离随渗透率各向异性系数变化而变化,当油井与两断层之间距离的较小值减小,说明油井受到断层边界影响变大,从而导致油井压降损失增大;当油井与两断层之间距离的较小值增加,说明油井受到断层边界影响减小,从而导致油井压降损失减小。随着渗透率各向异性系数增加,油井与两断层之间距离的较小值先增大再减小,因而导致图7中曲线出线拐点,即压降损失最大点。当渗透率各向异性系数大于拐点值后,油井压降损失减小,压力值升高。

3 结 论

(1)由于各向异性油藏本身地质特征的复杂性,导致其开发中存在压力波波及速度在方向上存在差异,压力波在主渗透率方向上传播速度较大,地层压降更多发生在主渗透率方向上。

(2)地层或油井井底压力随断层夹角不同发生变化。断层夹角越大,地层及油井压力值越高,反映出断层夹角越大,断层边界对生产影响越小。

(3)渗透率各向异性系数不同,会导致油井与断层的最短距离发生改变,最终会导致油井井底发生改变。在文中计算实例中油井井底压力随渗透率各向异性系数增大呈现先减小后增大趋势。

符号说明

f1,f2—封闭断面;Kx,Ky—x向,y向渗透率,D;τ—渗透率各向异性系数,无因次;d1,d2—xOy坐标系下生产井到两断面的距离,m;α,β—两断面与y轴的夹角,rad;x0—xOy坐标系下井点横坐标,m;y0—xOy坐标系下井点纵坐标,m;K—渗透率,D;γ1,γ2—两断面与ξ轴的夹角,rad;γ—两断面间的夹角,rad;—井点到坐标原点的距离,m;γ3—井点与坐标原点的连线和ξ轴的夹角,rad;ξ0—ξOη坐标系下井点横坐标,m;η0—ξOη坐标系下井点纵坐标,m;,—ξOη坐标系下生产井到两断面的距离,m;p—压力,MPa;r—径向距离,m;θ—角度,rad;δ—狄拉克函数,无因次;q—单位面积产量,m3/(d·m2);B—原油体积系数,无因次;μ—原油黏度,mPa·s;h—油层厚度,m;φ—孔隙度,%;t—生产时间,h;ct—岩石压缩系数,MPa−1;pe—原始地层压力,MPa;rw—井眼半径,m;tD—无因次时间,无因次;rD—无因次井眼半径,无因次;r1D—无因次距离,无因次;pD—无因次压力,无因次;M、N—等分数,无因次;n—迭代时间步;下标i,j—沿坐标等分点计数。

[1]周路,王丽君,罗晓容,等.断层连通概率计算及其应用[J].西南石油大学学报:自然科学版,2010,32(3):11-18.

Zhou Lu,Wang Lijun,Luo Xiaorong,et al.The calculation application of fault connective probability[J].Journal of Southwest Petroleum University:Science&Technology Edition,2010,32(3):11-18.

[2]刘宇,李娜,王涛.断层的准确定位方法[J].断块油气田,2012,19(3):294-296.

Liu Yu,Li Na,Wang Tao.Research on determining method of fault location[J].Fault-block Oil&Gas Field,2012,19(3):294-296.

[3]卢德唐,孔祥言.扇形区域内有井储和表皮的井底压力[J].油气井测试,1996,5(2):5-10.

[4]王晓冬,穆立婷.两任意夹角断层的井壁压力计算方法[J].油气井测试,1997,6(2):10-12.

[5]刘月田,王世军,彭道贵.非均质各向异性对地层渗流及油井产能的影响[J].西南石油学院学报,2005,27(6):38-41.

[6]刘月田.各向异性油藏水平井渗流和产能分析[J].中国石油大学学报:自然科学版,2002,26(4):40-47.

[7]范乐宾,刘月田,顾少华,等.油藏各向异性对鱼骨井结构影响的数值模拟研究[J].石油钻探技术,2011,39(5):68-73.

Fan Lebin,Liu Yuetian,Gu Shaohua,et al.Numerical study of the effect of reservoir anisotropy on fishbone well structure[J].Petroleum Drilling Techniques,2011,39(5):68-73.

[8]刘月田.各向异性油藏注水开发布井理论与方法[J].石油勘探与开发,2005,32(5):101-104.

Liu Yuetian.Well location in water-flooding anisotropic oil reservoirs[J].Petroleum Exploration and Development,2005,32(5):101-104.

[9]刘月田.各向异性油藏水平井开发井网设计方法[J].石油勘探与开发,2008,35(5):619-624.

[10]刘月田,葛家理.各向异性圆形地层渗流的解析解[J].中国石油大学学报:自然科学版,2000,24(2):40-43.

[11]王海静,薛世峰,高存法.各向异性油藏大斜度井入流动态[J].石油勘探与开发,2012,39(2):222-227.

Wang Haijing,Xue Shifeng,Gao Cunfa.Inflow performance for highly deviated wells in anisotropic reservoirs[J].Petroleum Exploration and Development,2012,39(2):222-227.

[12]王海静,薛世峰,高存法.非均质各向异性油藏水平井流入动态[J].大庆石油学院学报,2012,36(3):79-85.

Wang Haijing,Xue Shifeng,Gao Cunfa.Inflow performance for horizontal wells in heterogeneous,anisotropic reservoirs[J].Journal of Daqing Petroleum Institute,2012,36(3):79-85.

[13]王大为,李晓平.各向异性油藏水平井产量公式校正方法研究[J].西南石油大学学报:自然科学版,2010, 32(3):127-131.

Wang Dawei,Li Xiaoping.Research on correction methods for horizontal well productivity formula in anisotropic reservoirs[J].Journal of Southwest Petroleum University:Science&TechnologyEdition,2010,32(3):127-131.

[14]何志雄,何家欢,刘忠群,等.考虑各向异性的水平气井产能分析[J].钻采工艺,2010,33(6):43-45.

He Zhixiong,He Jiahuan,Liu Zhongqun,et al.Deliverability analysis of horizontal gas well considering anisotropism[J].Drilling&Production Technology,2010,33(6):43-45.

[15]陈元千,郭二鹏.对Joshi各向异性水平井产量公式的质疑、推导与对比[J].新疆石油地质,2008,29(3):331-334.

雷刚,1987年生,男,汉族,湖北洪湖人,博士,主要从事油气田开发方面的工作。E-mail:leigang5000@126.com

董平川,1967年生,男,汉族,四川南充人,教授,博士生导师,主要从事油气渗流理论与应用方面的工作。E-mail:dpcfem@163.com

饶培玉,1991年生,男,汉族,河南信阳人,硕士研究生,主要从事油藏数值模拟方面的工作。E-mail:raopeiyu@126.com

杨立敏,1970年生,女,汉族,河北唐山人,副教授,主要从事科学计算、油气渗流理论方面的工作。E-mail:ylm@cup.edu.cn

编辑:王旭东

编辑部网址:http://zk.swpuxb.com

Analysis of Pressure Characteristics of Oil Well in Anisotropic Fault-block Oil Reservoirs

Lei Gang*,Dong Pingchuan,Rao Peiyu,Yang Limin
School of Petroleum Engineering,China University of Petroleum(Beijing),Changping,Beijing 102249,China

Anisotropy has an obvious effect on the formation pressure distribution of fault-block oil reservoirs and oil well bottom-hole pressure.To study infinite two-angle fan-shaped block reservoir,a single phase unstable seepage flow model was established with the closed fault taken into consideration.According to the coordinate transformation and numerical calculating method,the formation pressure distribution of anisotropic fault-block oil reservoirs and well bottom-hole pressure were derived atdifferentproductiontime.Moreover,weanalyzedtheeffectofdifferentproductiontime,faultangleandpermeabilitystrength coefficient on formation pressure and bottom-hole pressure.The results show that the pressure drop loss in the anisotropic reservoir varies with different directions,and the pressure drop loss is bigger in the direction of main permeability than others′. The smaller the angle of the two intercept faults is,the bigger the effect of the fault boundary is,and the lower the well bottomhole pressure is.The relationship curve between bottom-hole pressure and permeability strength coefficient is not monotonic but has an inflection point.With the increase of the permeability strength coefficient,the bottom-hole pressure decreases first and then increases.

anisotropy;fault;coordinate transformation;permeability strength coefficient;bottom-hole pressure

10.11885/j.issn.1674-5086.2012.09.03.03

1674-5086(2015)02-0125-06

TE347

A

2012-09-03网络出版时间:2015-03-30

雷 刚,E-mail:leigang5000@126.com

猜你喜欢

断块夹角油井
复杂断块油藏三维地质模型的多级定量评价
探究钟表上的夹角
求解异面直线夹角问题的两个路径
断块油藏注采耦合物理模拟实验
港中油田南一断块高含水后期提高开发效果研究
注CO2采油井油管柱腐蚀速率预测
任意夹角交叉封闭边界内平面流线计算及应用
如何求向量的夹角
新型油井水泥消泡剂的研制
一种油井水泥用抗分散絮凝剂