空位缺陷对CrSi2光电性能的影响
2015-08-16于立军张春红张忠政邓永荣闫万珺
于立军,张春红,张忠政,邓永荣,闫万珺
(1.长春师范大学 物理学院,长春 130032;2.安顺学院 航空电子电气与信息网络工程中心,贵州 安顺 561000)
空位缺陷对CrSi2光电性能的影响
于立军1,张春红2,张忠政2,邓永荣2,闫万珺2
(1.长春师范大学 物理学院,长春 130032;2.安顺学院 航空电子电气与信息网络工程中心,贵州 安顺 561000)
采用第一性原理方法,计算含空位缺陷CrSi2的电子结构和光学性质,并分析含Cr和Si空位缺陷的CrSi2光电性能.结果表明:Cr和Si空位均使CrSi2的晶格常数和体积变小;能带结构密集而平缓,且整体向上移动,Si空位缺陷形成带隙宽度为0.35 eV的p型间接带隙半导体,Cr空位缺陷在原禁带间出现两条新的能带;含空位缺陷CrSi2的电子态密度仍主要由Cr 3d层电子贡献,Si空位缺陷对电子态密度的影响较小,Cr空位缺陷提高了Fermi面处的电子态密度;与CrSi2相比,含空位缺陷CrSi2的介电峰均向低能方向略有偏移且峰值降低,吸收系数明显变小.
CrSi2;空位缺陷;光电性能;第一性原理
过渡金属硅化物CrSi2是一种新型环境友好的半导体材料,在室温下的带隙宽度为0.35 eV[1],且与硅基底的错配度在CrSi2(0001)//Si(111)方向小于0.3%[2-3],有利于制备CrSi2/Si异质结.
掺杂是材料改性的主要方法之一,目前已有许多研究结果.例如:文献[4]研究了掺杂CrSi2的半导体性质;文献[5]研究了V掺杂多晶的热电性质;文献[6-7]测量了V掺杂和Al掺杂CrSi2单晶在不同温度下的电阻率和Seebeck系数;文献[8]在实验和理论上研究了不同浓度Ti掺杂CrSi2的热电性质;文献[9]研究了块体CrSi2的光电性能;文献[10-16]研究了应力作用于CrSi2和掺杂CrSi2的光电性能.半导体材料在生长过程中会产生缺陷,从而影响晶格结构和晶体中原子的位置,导致半导体材料的电子结构和光学性质发生变化.目前,尚未见关于空位缺陷对CrSi2电子结构和光学性质影响的研究报道.本文采用第一性原理方法,计算含有Cr和Si两种空位缺陷CrSi2的几何结构、电子结构和光学性质,并分析空位缺陷对其光电性能的影响.
1 理论模型与计算方法
图1 计算模型Fig.1 Calculation model
计算由从头算量子力学程序(CASTEP)[17]软件包完成.先用BFGS算法[18-21]将含有空位缺陷的计算模型进行几何结构优化,再计算其他性质.电子间的交换关联能用广义梯度近似(GGA-PBE)[22]泛函处理;离子实与电子间的相互作用采用超软赝势[23]处理.选取3s23p2为Si的价电子,3s23p63d54s1为Cr的价电子,平面波的截断能量设为310 eV,自洽计算收敛精度设为每个原子1.0×10-6eV,Brillouin区积分采用Monkhorst Pack形式[24]的高对称k点方法.
空位缺陷的形成能表达式为
2 结果与分析
2.1几何结构
CrSi2的实验值[2]、计算值及含Cr空位和Si空位CrSi2的晶格常数和体积列于表1.由表1可见,Cr空位和Si空位缺陷均使CrSi2的晶格常数和体积减小.经过结构优化的超胞可稳定存在,表明空位浓度是适度的,原来的晶体仍起主导作用.
Cr空位和Si空位缺陷的形成能分别为13.84 eV和7.08 eV.可见,Cr空位和Si空位的形成能均较大,在常温常压下,该反应不易自发进行,空位缺陷较难形成,且Cr空位形成的难度大于Si空位形成的难度.但在高温高压下,CrSi2晶体中可形成空位缺陷.
表1 CrSi2及Cr空位和Si空位的晶格常数和体积Table 1 Lattice constants and volume of CrSi2,Cr vacancy and Si vacancy
2.2电子结构
CrSi2及含Cr和Si空位缺陷的CrSi2在Fermi能级(EF=0)附近的能带结构如图2所示.由图2(A)可见,CrSi2为带隙宽度0.38 eV的间接带隙半导体,与文献[1,25-27]的结果相符.由图2(B)和(C)可见,Cr空位和Si空位缺陷均使电子能带变密且整体上移,Fermi能级移入价带中,含有空位缺陷的CrSi2变为p型半导体.Si空位缺陷的价带顶位于A点处,导带底位于G点处,带隙宽度为0.35 eV.
图2 Fermi能级附近的能带结构Fig.2 Band structure near the Fermi energy
CrSi2和含Si空位缺陷CrSi2在高对称k点处的价带顶(VBM)和导带底(CBM)的特征能量值列于表2.由表2可见,Si空位缺陷使CrSi2的带隙宽度略减小.Cr空位缺陷使原价带顶和导带底之间出现两条新能带,原VBM和CBM以及两条新能带在高对称点的特征能量值列于表3.
表2 CrSi2和含Si空位缺陷CrSi2的VBM和CBM在高对称k点处的特征能量值及带隙值Eg(eV)Table 2 Eigenvalues of VBM and CBM for CrSi2 and CrSi2 with Si-vacancy at high symmetry k point and band gap Eg (eV)
表3 含Cr空位缺陷CrSi2的能带1~4在高对称k点处的特征能量值(eV)Table 3 Eigenvalues (eV)of CrSi2 with Cr-vacancy from band 1 to 4 at high symmetry k point
由表3可见:含Cr空位缺陷CrSi2中能带1的顶部在A点,能带2的底部在K点,其带隙差为-0.078 eV;能带2与能带3在G和A间发生交叠;能带3的顶部在P点(0.633 0 eV),能带4的底部在G点,其带隙差为0.048 eV.
CrSi2及含Cr和Si空位缺陷CrSi2在Fermi能级附近的总能态密度(DOS)与Cr和Si的分波态密度(PDOS)如图3所示.由图3(A)~(C)可见:Cr空位缺陷使价带顶与导带底之间出现新的电子态密度峰,与图2(B)中出现的两条新能级对应;Si空位缺陷使电子态密度整体向高能方向移动,Fermi能级嵌入价带中,与图2(C)对应.由图3(D)~(I)可见,Fermi能级附近CrSi2的电子能态密度主要由Cr 3d层电子贡献.Cr空位缺陷导致Fermi能级处Cr 3d层和Si 3p层电子的分波态密度值变大,表明两条新能级是由Cr 3d层和Si 3p层电子贡献所致,新能带位于Fermi面与导带之间,这是由于Cr空位缺陷影响了其他电子散射与导带之间分裂的强相互作用[28],从而形成了两条新的能带.由于CrSi2中Si空位缺陷对总态密度的影响较小,因此,在含Si空位缺陷的CrSi2中未形成新能级,但总的价电子数减少,使得含Si空位缺陷的CrSi2变为以空穴为载流子的p型半导体.
图3 CrSi2及含Cr和Si空位缺陷的总能态密度(A)~(C)与Cr和Si的分波态密度(D)~(I)Fig.3 Total densities (A)—(C)of states and partial density (D)—(I)of states ofCrSi2,CrSi2 with Cr-vacancy and CrSi2 with Si-vacancy
2.3Mulliken布居分析
与空位缺陷相邻原子的Mulliken布居分析和与空位缺陷相邻键的Mulliken布居分析分别列于表4和表5.
表4 与空位缺陷相邻原子的Mulliken布居分析Table 4 Mulliken population analysis of atoms around the Cr-vacancy and Si-vacancy
表5 与空位缺陷相邻键的Mulliken布居分析Table 5 Mulliken population analysis of bonds around the Cr-vacancy and Si-vacancy
由表4可见,与Cr空位相邻Si原子的电荷为0.18e,明显低于0.42e,这是由于空位处缺少Cr原子,减少了对Si原子的吸引作用,从而使Si原子失去的电子数减少所致.由表5可见:与Cr空位和Si空位相邻的Si—Cr Ⅰ键(图1(C)中蓝色键)的布居数减小,共价性减弱,键长变短;Si—Cr Ⅱ键(图1(C)中紫色键)的布居数增大,共价性增强,键长变长;与Cr空位相邻的Si—Si键布居数增大,共价性增强,键长变长;与Si空位相邻的Si—Si键布居数减小,共价性变弱,键长变短.
2.4差分电荷密度分析
含Cr空位和Si空位的差分电荷密度如图4所示,其中红色和蓝色区域分别表示电荷得与失的空间分布.由图4可见:空位缺陷周围的电荷分布发生了变化,Cr空位处的电荷数明显减少,与Cr空位相邻的Si1原子失去的电子增多,对应Si—CrⅠ键布居数减小,Si2原子得到的电子增多,对应Si—CrⅡ键布居数增大;Si空位处的电荷数略有增加,与Si空位相邻的Cr1原子得到的电子增多,对应Si—CrⅡ键布居数增大,与Si空位相邻的Cr2和Cr3原子得到的电子减少,对应Si—CrⅠ键布居数减小.差分电荷密度结果与布居数的分析结果相符.
图4 含Cr空位和Si空位的差分电荷密度Fig.4 Electron density difference of Cr-vacancy and Si-vacancy
2.5光学性质
CrSi2及含Cr和Si空位缺陷CrSi2的复介电函数ε1(A)与ε2(B)随能量的变化关系如图5所示.
图5 复介电函数ε1和ε2随能量的变化关系Fig.5 Variation relationship of the complex dielectric function ε1 and ε2 with the energy
图6 吸收系数随能量的变化关系Fig.6 Variation relationship of the absorptioncoefficient with the energy
由图5(A)可见,CrSi2及含Cr和Si空位缺陷CrSi2的静态介电常数ε1(0)分别为29.1,36.9,56.5,即空位缺陷可提高CrSi2的静态介电常数.由图5(B)可见:在0~10 eV内,CrSi2介电函数虚部ε2(ω)在1.63 eV处出现介电峰,对应CrSi2价带Cr 3d的t2g轨道至eg轨道的d-d电子跃迁,在4.53 eV处的介电峰对应价带中部Si 3p态电子至导带Cr 3d态的跃迁;含Cr空位缺陷CrSi2的介电峰位于1.25 eV处;含Si空位缺陷的CrSi2存在两个介电峰,分别位于0.27 eV和1.44 eV处.即含空位缺陷CrSi2的介电峰均向低能方向偏移且峰值降低.由图2和图3可见,在含空位缺陷的CrSi2中,由于Fermi能级穿过价带,因此在光子能量为0处也存在电子跃迁.
CrSi2及含Cr和Si空位缺陷CrSi2的吸收系数随能量的变化关系如图6所示.由图6可见:在0~15 eV内,CrSi2的吸收系数在6.06 eV处取得峰值4.02×105cm-1;含Cr和Si空位缺陷CrSi2的吸收系数均向低能方向偏移,且吸收峰明显降低,其中Cr空位缺陷CrSi2在4.50 eV附近取得最大吸收峰1.56×105cm-1;Si空位缺陷CrSi2在4.23 eV附近取得最大吸收峰1.34×105cm-1.
综上,本文采用第一性原理方法对含Cr和Si空位缺陷CrSi2的几何结构、电子结构、复介电函数和吸收系数进行了计算,并分析了含空位缺陷CrSi2的光电特性.结果表明:含空位缺陷CrSi2的晶格常数a,b,c均减小,体积变小;含Si空位缺陷的CrSi2变为p型半导体,带隙宽度由0.38 eV变为0.35 eV,Cr空位缺陷CrSi2的原禁带中出现两条新的能带;价带顶和导带底的态密度主要由Cr 3d层电子贡献;与CrSi2相比,含空位缺陷CrSi2的介电峰均向低能方向略有偏移且峰值降低,吸收系数明显变小.
感谢贵州大学云计算平台提供的计算支持.
[1] Bost M C,Mahan J E.An Investigation of the Optical Constants and Band Gap of Chromium Disilicide [J].J Appl Phys,1988,63(3):839-844.
[2] Borisenko V E.Semiconducting Silicides [M].Berlin:Springer-Verlag,2000.
[3] Galkin N G,Velichko T A,Skripka S V,et al.Semiconducting and Structural Properties of CrSi2A-Type Epitaxial Films on Si (111)[J].Thin Solid Films,1996,280(1):211-220.
[4] Nishida I,Sakata T.Semiconducting Properties of Pure and Mn-Doped Chromium Disilicides [J].J Phys Chem Solids,1978,39(5):499-505.
[5] Hohl H,Ramirez A P,Palstra T T M,et al.Thermoelectric and Magnetic Properties of Cr1-xVxSi2Solid Solutions [J].J Alloys Comp,1997,248(1/2):70-76.
[6] Pan Z J,Zhang L T,Wu J S.Effects of Al Doping on the Transport Performances of CrSi2Single Crystals [J].Scripta Mater,2007,56(3):245-248.
[7] Pan Z J,Zhang L T,Wu J S.Effects of V Doping on the Transport Performances of CrSi2Single Crystals [J].Scripta Mater,2007,56(4):257-260.
[8] Karuppaiah S,Beaudhuin M,Viennois R.Investigation on the Thermoelectric Properties of Nanostructured Cr1-xTixSi2[J].J Solid State Chem,2013,199:90-95.
[9] ZHOU Shiyun,XIE Quan,YAN Wanjun,et al.First-Principles Study on the Electronic Structure and Optical Properties of CrSi2[J].Science in China Series G,2009,52(1):46-51.
[10] ZHOU Shiyun,XIE Quan,YAN Wanjun,et al.First-Principle Study on the Electronic Structure of Stressed CrSi2[J].Science in China Series G,2009,52(1):76-81.
[11] 周士芸,谢泉,闫万珺,等.锰掺杂二硅化铬电子结构和光学性质的第一性原理计算 [J].光学学报,2009,29(10):2848-2853.(ZHOU Shiyun,XIE Quan,YAN Wanjun,et al.First-Principles Calculation of Electronic Structure and Optical Properties of CrSi2with Doping Mn [J].Acta Optica Sinica,2009,29(10):2848-2853.)
[12] 周士芸,谢泉,闫万珺,等.V掺杂CrSi2能带结构的第1性原理计算 [J].云南大学学报:自然科学版,2009,31(5):484-488.(ZHOU Shiyun,XIE Quan,YAN Wanjun,et al.First-Principles Calculation of the Band Structure of V-Doped CrSi2[J].Journal of Yunnan University:Natural Sciences,2009,31(5):484-488.)
[13] 闫万珺,周士芸,谢泉,等.Al掺杂浓度对CrSi2电子结构和光学性质的影响 [J].光学学报,2012,32(5):0516003.(YAN Wanjun,ZHOU Shiyun,XIE Quan,et al.Effect of Al Doping Concentration on Electronic and Optical Properties of CrSi2[J].Acta Optica Sinica,2012,32(5):0516003.)
[14] 闫万珺,张春红,周士芸,等.第一性原理计算Ti掺杂CrSi2的光电特性 [J].原子与分子物理学报,2014,31(1):167-172.(YAN Wanjun,ZHANG Chunhong,ZHOU Shiyun,et al.First Principle Calculation of Optical-Electrical Characteristics of Ti-Doped CrSi2[J].Journal of Atomic and Molecular Physics,2014,31(1):167-172.)
[15] 闫万珺,张忠政,郭笑天,等.第一性原理计算V-Al共掺杂CrSi2的光电特性 [J].光学学报,2014,34(4):0416002.(YAN Wanjun,ZHANG Zhongzheng,GUO Xiaotian,et al.First Principles Calculation on the Photoelectric Properties of V-Al Co-doped CrSi2[J].Acta Optica Sinica,2014,34(4):0416002.)
[16] 张忠政,张春红,闫万珺,等.稀土La掺杂CrSi2电子结构与光学性质的第一性原理研究 [J].原子与分子物理学报,2014,31(4):652-656.(ZHANG Zhongzheng,ZHANG Chunhong,YAN Wanjun,et al.First Principle Study on Electronic Structure and Optical Properties of CrSi2Doped Rare Earth Element La [J].Journal of Atomic and Molecular Physics,2014,31(4):652-656.)
[17] Segall M D,Lindan P J D,Probert M J,et al.First-Principles Simulation:Ideas,Illustrations and the CASTEP Code [J].J Phys Cond Matt,2002,14(11):2717-2744.
[18] Broyden C G.The Convergence of a Class of Double-Rank Minimization Algorithms.Ⅱ.The New Algorithm [J].Journal of the Institute for Mathematics and Applications,1970,6:222-231.
[19] Fletcher R.A New Approach to Variable Metric Algorithms [J].Comput J,1970,13(3):317-322.
[20] Goldfarb D.A Family of Variable-Metric Methods Derived by Variational Means [J].Math Comput,1970,24(109):23-26.
[21] Shanno D F.Conditioning of Quasi-Newton Methods for Function Minimization [J].Math Comput,1970,24(111):647-656.
[22] Perdew J P,Burkek K,Ernzerhof M.Generalized Gradient Approximation Made Simple [J].Phys Rev Lett,1996,77(18):3865-3868.
[23] Vanderbilt D.Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism [J].Phys Rev B,1990,41(11):7892-7895.
[24] Monkhorst H J,Pack J D.Special Points for Brillouin-Zone Integrations [J].Phys Rev B,1976,13(12):5188-5192.
[25] Shaposhnikov V L,Krivosheeva A V,Krivosheev A E,et al.Effect of Stresses in Electronic Properties of Chromium Disilicide [J].Microelectr Eng,2002,64(1):219-223.
[26] Krivosheev A V,Shaposhnikov V L,Borisenko V E.Electronic Structure of Stressed CrSi2[J].Mater Sci Eng B,2003,101(1/2/3):309-312.
[27] Bellani V,Guizzetti G,Marabelli F,et al.Theory and Experiment on the Optical Properties of CrSi2[J].Phys Rev B,1992,46(15):9380-9389.
[28] Shan W,Walukiewicz W,Ager III J W,et al.Band Anticrossing in GaInNAs Alloys [J].Phys Rev Lett,1999,82(6):1221-1224.
(责任编辑:王 健)
Optical-ElectricalCharacteristicsofCrSi2withVacancyDefect
YU Lijun1,ZHANG Chunhong2,ZHANG Zhongzheng2,DENG Yongrong2,YAN Wanjun2
(1.CollegeofPhysics,ChangchunNormalUniversity,Changchun130032,China;2.EngineeringCenterofAvionicsElectricalandInformationNetwork,AnshunUniversity,Anshun561000,GuizhouProvince,China)
The electronic structure and optical properties of CrSi2with vacancy defect were calculated based on the first principles method,and the photoelectric properties of CrSi2with Cr or Si vacancy defect were analyzed.The results show that the lattice constants and volume are all decreased with Cr or Si vacancy defect.The band structure becomes intensive and gentle,and moves upward.The band structure of CrSi2with Si vacancy defect is p type indirect semiconductor with a band gap of 0.35 eV;while two new energy levels are induced in the forbidden band with Cr-vacancy defect.Density of states of the valence band top and conduction band bottom are mainly composed of Cr 3d.Si-vacancy defect has a little effect on the density of states;Cr-vacancy defect improves the density of states of the Fermi energy.Compared with that of pure CrSi2,the dielectric peak slightly moves to the lower energy and decreases with vacancy defect,and the absorption index obviously decreases.
CrSi2;vacancy defect;photoelectric properties;the first principle
10.13413/j.cnki.jdxblxb.2015.03.39
2015-02-10.
于立军(1958—),男,汉族,副教授,从事光电半导体材料的研究,E-mail:ccyulw6908@163.com.通信作者:闫万珺(1978—),女,汉族,博士,副教授,从事电子功能材料模拟和计算的研究,E-mail:yanwanjun7817@163.com.
国家自然科学基金(批准号:61404010)和贵州省自然科学基金(批准号:黔科合J字(2010)2001;黔教科KY(2012)056号).
O474
:A
:1671-5489(2015)03-0561-07